Recirculator SALO project in NSC KIPT

Guk, I.S.; Dovbnya, A.N.; Kononenko, S.G.; Peev, F.A.; Tarasenko, A.S.; Botman, J.I.M.

Published in:
Proceedings of the 11th European Particle Accelerator Conference, (EPAC 2008), 23-27 June 2008, Genoa, Italy

Published: 01/01/2008

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Abstract

In NSC KIPT the electron recirculator project on energy up to 730 MeV is developing. The accelerator is designed first of all as facility for fundamental basic researches in the field of a nuclear physics. Superconducting accelerating structure TESLA on frequency of 1.3 GHz, which was developed in DESY, is used for electron acceleration. Isochronicity and achromaticity of injection system and magneto-optical system recirculator arcs allow to gain good beam parameters on an exit of the accelerator. The beam lines of the particle extraction to experimental stations are presented. The opportunities of recirculator beams use for applied researches are considered.

INTRODUCTION

Developed in NSC KIPT with Eindhoven Technical University recirculator SALO [1] can be used for the solution of major circle of problems. However the basic requirements to beams have been formulated proceeding from the main task: carrying out of basic researches in the field of a nuclear physics [2]. For reduction the facility cost we have tried to create the design of the accelerator which allowed using the experimental halls of the accelerating complex LU2000. Such decision has restricted the peak electron beam energy to 730 MeV. The general view of complex SALO with possible beam lines for beam extraction on various physical programs is presented in a Fig. 1.

Figure 1: Recirculator SALO lay-out with beam lines. N1-N3: Possible channels of an extraction of particles on sub-critical assembly operation. A, B, C, D, E - channels to the experimental targets for a nuclear physics. FEL - a place of arrangement of the free electron laser undulator.

RECCIRCULATOR STRUCTURE

In recirculator SALO structure includes [3] (see Fig. 2): 1. The electron injector of on the basis of high-frequency gun with superconducting accelerating structure on frequency of 1.3 GHz. As the injector prototype the one which was developed during several years at centre ELBE in Rossendorf (Germany [4] is chosen. The peak electron energy at an exit of injector equals 9.5 MeV.
2. The source of polarized electrons. As prototype we chose injector developed for SEBAF accelerator [1]. For injection in recirculator energy of electrons will be incremented at the expense of use of additional accelerating section.

3. The system of beam formation and transportation in recirculator. The injection scheme allows promptly transferring from operation with one injector before operation with another [3] is chosen.

4. For injection the magnet, which is a part of a chicane from three magnets is used. Three dipole magnets which are located in front of accelerating section, cause a feeble arcuation of a trajectory for the basic beam and allow yielding injection of a beam passing magnets of arches.

5. The accelerating system on the basis of superconducting structure TESLA. For embodying of the design we assume to use the accelerating module developed by firm ACCEL [5]. Such module contains two sections TESLA. The sizes of target hall allow to use six modules for particle acceleration. Planed acceleration rate is equal 20 MeV/m in a cw mode.

6. Two rings of electron recycling, which allow a beam triple passage through accelerating structure. Optimization of all chosen magneto optical system with the purpose of diminution of energy straggling of a beam [4] has been lead. Minimization of energy spread has been attained for the isochronicity and achromaticity of all sections of transportation of a beam, since a section of injection and two sections of a beam recycling.

For the electron peak energy 730 MeV the beam emittance on a recirculator exit will be equal 0.004 \(\pi \cdot \text{mm·mrad} \) and energy spread - \(2 \times 10^{-5} \).

Recirculator magnetic devices and their parameters are featured in article [6]. Into a composition of magneto-optical system of the first ring enter dipole magnets and quadrupole lenses of EUTERPE storage ring transmitted NSC KIPT by Eindhoven Technical University [1].

Proceeding from these requirements the structure of beam focusing on beam lines got out. On Figs. 3 and 4 general views of magneto-optical structures of the channels, providing given parameters on targets are presented.

The accelerator design provides an opportunity of its operation as driver of subcritical reactor [8]. For this purpose making special line which possible directions are shown in Fig. 1 and are designated N1-N3. At designing this line the main attention should be given to minimization of beam losses which mean power will be close to 130 kW.

The free electron laser (FEL) can be disposed in the free rectilinear recirculator gap, and radiation can be output in a direction of channel E. The second place for arrangement of the laser - the channel C.
REFERENCES

