First-Principles Investigation of C-H Bond Scission and Formation Reactions in Ethane, Ethene, and Ethyne Adsorbed on Ru(0001).

Citation for published version (APA):

DOI:
10.1021/jp5069363

Document status and date:
Published: 01/01/2014

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 29. Mar. 2020
First-Principles Investigation of C–H Bond Scission and Formation Reactions in Ethane, Ethene, and Ethyne Adsorbed on Ru(0001)

Chaitanya Krishna Ande,‡ Simon D. Elliott,‡ and Wilhelmus M. M. Kessels*†

‡Department of Applied Physics, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
†Tyndall National Institute, University College Cork, Dyke Parade, Lee Maltings, Cork, Ireland

ABSTRACT: We have studied all possible elementary reactions (including isomerization reactions) involved in the interaction of CH₄ (methane), CH₃CH₃ (ethane), CH₂CH₂ (ethene), and CHCH (ethyne) with the Ru(0001) surface using density functional theory based first-principles calculations. Site preference and adsorption energies for all the reaction intermediates and activation energies for the elementary reactions are calculated. From the calculated adsorption and activation energies, we find that dehydrogenation of the adsorbates is thermodynamically favored in agreement with experiments. Dehydrogenation of CH (methylidyne) is the most difficult in the dehydrogenation of CH₄ (methane). CH₃CH₃ (ethane), CH₂CH₂ (ethene), and CHCH (ethyne) dehydrogenate through the CH₄C (ethylene) intermediate. Of the five possible pathways for the production of CH₂C (ethenylidyne), the CH₂CH (ethenyl)–CH₂C (ethynylene) pathway is the most dominant. In the case of ethene, the ethynyl–ethenylidyne pathway is also the dominant pathway on Pt(111). Comparison of α and β–C–H bond scission reactions, important for the Fischer–Tropsch process, shows that alkenes should be the major products compared to the formation of alkenes. Dehydrogenation becomes slightly favorable at lower coverages of the hydrocarbon fragments while hydrogenation becomes slightly unfavorable. In addition to resolving the dominant pathways during decomposition of the above hydrocarbons, the activation energies calculated in this paper can also be used in the modeling of processes that involve the considered elementary reactions at longer length and time scales.

INTRODUCTION

C–H scission and formation reactions play an important role in a wide variety of industrial processes ranging from hydrogenation of unsaturated fats to the conversion of CO and H₂ to higher alkanes in the Fischer–Tropsch process.¹ In the Fischer–Tropsch process, hydrogenation and dehydrogenation reactions play an important role in the chain growth steps and also determine the final product distribution in terms of the amounts of various hydrocarbons.²,³ Among known Fischer–Tropsch catalysts, Ru is one of the most active. An in-depth knowledge of elementary C–H bond scission and formation reactions on its surface is therefore a welcome addition to existing knowledge.

In addition to the significance of C–H bond scission and formation reactions in traditional catalytic processes, they are also turning out to be important in thin film growth by atomic layer deposition (ALD). ALD is increasingly used to grow thin films at the nanometer scale with very good conformity even on complex structures. Among ALD of a variety of materials, noble metal ALD (Ru, Pt, Pd, etc.) finds uses in a number of applications ranging from microelectronics, clean energy, and catalysis to anticorrosion.⁴–⁹ It has recently been shown that after the initial nucleation of the noble metal film, the film itself catalyzes the decomposition of the precursor. In this light, achieving ultimate control over ALD of noble metals therefore requires a good understanding of precursor decomposition at the catalytic surface. This is still lacking.¹⁰ A number of precursors used are organometallic in which various organic (and inorganic) ligands bond to a metal center (for example, Ru₂C₅, Ru₂EtC₅₂, (CpMe)RuEt₂(CO)₂). The organic ligands are usually cyclic or aliphatic hydrocarbons like CH₄ (methyl), CH₃CH₂ (ethyl), C₅ (cyclopentadienyl), C₅Me (methyl cyclopentadienyl), and so forth. The decomposition of these organic ligands clearly involves C–H bond scission reactions. Thus, both traditional catalytic processes, like the Fischer–Tropsch process and precursor decomposition on noble metal surfaces, can benefit from the study of C–H bond scission and formation reactions. (Note: Names of all the hydrocarbon fragments used in this paper are derived from the names of the gas phase molecules: CH₄ (methane), CH₃CH₃ (ethane), CH₂CH₂ (ethene), and CHCH (ethyne). For a fragment derived from one of the gas phase molecules and short of 1 H, -ane (-ene, -yne) is modified to -yl (-enyyl, -ynyl). If the molecule is short of 2 H atoms, -ane (-ene, -yne) is modified to -ylidene (-enylylidene, -ynylidene). And finally, if the molecule is short of 3 H atoms, -ane is modified to -ynyl. CH₃CH₂ (ethene), CH₂CH₂ (ethenyl), and CH₂C (ethenylidyne) are also commonly known as ethylene, acetylene, vinyl, and vinylidene, respectively.)
Although the final objective would be to study the decomposition of the complete precursor, in this paper, as a first step, we restrict ourselves to the decomposition of CH₄ (methylene) and CH₂CH₂ (ethyl) groups on Ru(0001). Since CH₄ (methylene) and CH₂CH₂ (ethyl) groups are just one H atom short of CH₃ (methylene) and CH₂CH₃ (ethane), we include the latter also in the present study. Since the elementary reactions in CH₄ (methane) are obvious, the decomposition pathway for CH₂CH₂ (ethene) on the Ru(0001) surface, including all the intermediates, is shown in Figure 1.

Figure 1. Dehydrogenation pathways for CH₃CH₃ (ethane), CH₂CH₂ (ethene) and CHCH (ethyne) including isomerization reactions. Possible mechanisms for the formation of ethenylidene, one of the key intermediates during dehydrogenation (M: mechanism, R: reaction) are M.2: R.5, R.18), M.3: (R.17, R.7), M.4: (R.5, R.12, R.7), M.6: (R.11, R.4, R.7).

In the present paper, we study all the elementary C–H bond reactions going from CH₃CH₂ (ethane), CH₂CH₂ (ethene), and CHCH (ethyne) to surface carbon—including 1,2-H-transfer (isomerization) reactions (Figure 1). We calculate adsorption geometries and activation energy barriers for all the elementary reactions (Figure 1). The knowledge gained from the study of these elementary reactions is used to identify the most favorable reaction pathways during the interaction of CH₄ (methane), CH₂CH₂ (ethene), and CHCH (ethyne) with the Ru(0001) surface. It will be shown that a number of stable intermediates, which are also observed experimentally, result from the interaction of these hydrocarbons with Ru(0001). Therefore, we also identify the pathways that lead to the occurrence of these stable intermediates. Further, we classify the C–H bond reactions into α and β C–H bond reactions to utilize the knowledge obtained in the present study in the context of Fischer–Tropsch catalysis. The β C–H bond scission is especially relevant for the Fischer–Tropsch process as it leads to the formation of alkenes and determines product distribution.

To the best of our knowledge, no studies have been done on the interaction of CH₃CH₃ (ethane), CH₂CH₂ (ethene), and CHCH (ethyne) with the Ru(0001) surface using first-principles calculations. However, recently first-principles investigations have been carried out on the interaction of CH₂CH₂ (ethene) with Pd, Pt, Rh, and Ni (111) surfaces; kinetic Monte Carlo simulations have also been carried out on the Pd and Pt (111) surfaces. As in the present study, the ethenyl–ethenylidene mechanism is also calculated to be the most favorable pathway for the formation of CH₂CH₂ (ethylidyne) in the case of CH₂CH₂ (ethene) on both Pd and Pt(111) surfaces. The interested reader is referred to ref 11 for more references related to first-principles calculations on Pd, Pt, Rh, and Ni.

METHODOLOGY

Computational Details. We used six layer 2 × 2 and 3 × 3 surface supercells for calculating the adsorption and activation energies. The cell parameters of a fully relaxed 2 × 2 × 2 hexagonal unit cell of Ru were used in building the surface supercell. A vacuum of about 15 Å is used to separate the slabs to minimize interactions via periodic boundary conditions. The three bottom layers of Ru atoms were kept fixed during all relaxations. For the supercells considered, the adsorbate coverage is equivalent to 25% (0.25 ML) and 11% (0.11 ML), respectively.

We used the generalized gradient approximation (GGA) to density functional theory (DFT) and a plane-wave basis with a kinetic energy cutoff of 400 eV. The Kohn–Sham equations were solved using the Vienna ab initio simulation package (VASP, v 5.2.12). The valence electron and core interactions were described using the projector augmented wave method (PAW). The first-order Methfessel-Paxton method was used with a smearing width of 0.05 eV along with the Perdew–Burke–Ernzerhof (PBE) exchange correlation functional. Structural relaxations were considered converged when the energy in two consecutive ionic relaxation steps differed by less than 10 μeV. Integrations in reciprocal-space employed a dense 16 × 16 × 1 evenly spaced k-point grid with Monkhorst-Pack sampling centered on the gamma point. Both the k-point density and energy cutoff were verified to give total energy convergence of 1 meV/supercell or better. Spin of the isolated fragments was taken into consideration by using the spin-polarized version of the GGA approximation. All energies correspond to 0 K. The transition states were found first using the nudged elastic band (NEB) method and were later refined using the dimer method as implemented into VASP using the VTST tool set. The transition state was assumed to be found when the force on the dimer was less than 0.01 eV/Å.

Adsorption Energies. We calculate three different adsorption energies with different reference energies: $E_{\text{ads,iso}}$, $E_{\text{ads,ne}}$, and $E_{\text{ads,neq}}$ (eq 1) is the adsorption energy of the CH₄ or C₂H₄ fragments with respect to isolated gas phase fragments. $E_{\text{ads,ne}}$ (eq 2) is the adsorption energy of the fragment with respect to all the dissociated H adsorbed in separate supercells and the gas phase molecule. Finally, $E_{\text{ads,neq}}$ (eq 3) is the same as $E_{\text{ads,ne}}$ except that 1 H atom is adsorbed along with the fragment and the rest are adsorbed in separate supercells (Figure 2).

The adsorption energy of a gas phase fragment CH₄ or C₂H₄ on the bare Ru surface is given as $E_{\text{ads,neq}}$.
The adsorption energy of a C$_2$H$_x$ fragment with respect to all H atoms adsorbed in separate supercells and gas phase CH$_3$CH$_3$ (ethane), $E_{ads,far}$, is calculated as

$$E_{ads,far} = E_{surf} + C_2H_x + (6 - x)(E_{surf} + H - E_{surf}) - E_{surf} - E_{C_2H_6(g)}$$

Along similar lines, the adsorption energy of a C$_2$H$_x$ fragment, $E_{ads,near}$, with respect to 1 H atom coadsorbed with the fragment and the rest of the H atoms in separate cells, is calculated as

$$E_{ads,near} = E_{surf} + C_2H_x + (6 - x - 1)(E_{surf} + H - E_{surf}) - E_{surf} - E_{C_2H_6(g)}$$

Similarly, the adsorption energy of CH$_4$ dissociating into a one carbon fragment of the form CH$_x$ is calculated as

$$E_{ads,far} = E_{surf} + CH_x + (4 - x)(E_{surf} + H - E_{surf}) - E_{surf} - E_{CH_4(g)}$$

and

$$E_{ads,near} = E_{surf} + CH_x + (4 - x - 1)(E_{surf} + H - E_{surf}) - E_{surf} - E_{CH_4(g)}$$

For example, consider the dissociation reaction CHCH \rightarrow CHC + H. The CHC fragment and the H atom can be considered to occupy either the same supercell or two different supercells. $E_{ads,near}$ is applicable to the case in which CHC and H are considered in the same supercell while $E_{ads,far}$ is applicable when they are considered in different supercells. Since the reference gas phase molecule is CH$_2$CH$_2$ (ethene)—with a total of 6 H atoms—in both the cases, the other 4 H atoms, not involved in the reaction considered, are assumed to be adsorbed in separate supercells.

Our sign convention for the adsorption energies is that negative adsorption energies mean that the adsorption reaction is energetically favorable. In other words, more negative adsorption energies mean stronger binding. Finally, our nomenclature is that the carbon atom with the least number of H atoms attached is called the α-C atom and is the closest C atom to the surface. In cases where both the C atoms have equal numbers of H atoms (CH$_3$CH$_3$ (ethane), CH$_2$CH$_2$ (ethene), and CHCH (ethyne)) the C atom where the bond scission or formation happens is the α-C atom and is the closest C atom to the Ru surface. The other C atom is the β-C atom and is the farthest C atom from the surface. In the same way, H atoms attached to the α-C (β-C) atom are called α-H (β-H) atoms.

Activation Energies. As a consequence of the two different adsorption energies defined above, two different reverse activation energies, where two adsorbed fragments combine to form a single fragment, can be defined: $E_{r,near}$ and $E_{r,far}$. In our case, $E_{r,near}$ refers to the case when one H atom is coadsorbed along with the CH$_x$ or the C$_2$H$_x$ fragment and the rest occupy different supercells. $E_{r,far}$ refers to the case where all the H atoms are adsorbed on different supercells (Figure 2). The difference in the two activation energies is equal to the difference between the corresponding adsorption energies. It is clearly seen from Figure 2 that, while the reverse activation energy in the two cases can be different, the forward activation energy E_f in both cases is identical. Unless otherwise
mentioned, we use \(E_{ad,iso} \) in all our discussions below. This would correspond to a situation where the H atom would have to reach the reaction site from a distance.

RESULTS

Adsorption Geometries and Energies. \(CH_x \) Fragments. Adsorption energies \(E_{ad,iso} \), \(E_{ad,near} \), and \(E_{ad,far} \) as calculated from eqs 1, 4, and 5 are given in Table 1 along with results from previous first-principles studies. The geometries of all the adsorbed fragments and transition states are presented graphically and as coordinates within the supercell in the Supporting Information (SI).

\(CH_x \) (methane) adsorbs very weakly on Ru(0001) with an adsorption energy of about 20 meV. Of the four possible adsorption sites on the Ru(0001) surface (bridge, fcc, hcp, and ontop), \(CH_x \) (\(x = 1 \) or 2) fragments and C adsorb preferentially on a hcp site. The adsorption of the remaining fragment, \(CH_3 \) (methyl), is slightly more favorable on an fcc site. These observations are in good agreement with previous calculations\(^{27,29} \) and experiments. \(^{30,31} \) Considering the adsorption energy increases almost linearly with decreasing hydrogen content with atomic C having the highest adsorption energy.

<table>
<thead>
<tr>
<th>fragment</th>
<th>(E_{ad,iso}) [eV]</th>
<th>(E_{ad,near}) [eV]</th>
<th>(E_{ad,far}) [eV]</th>
<th>(r_{Ru-C}) [Å]</th>
<th>(r_{C-C}) [Å]</th>
<th>adsorption geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH_4)</td>
<td>-0.02</td>
<td>-</td>
<td>-0.02</td>
<td>4.13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(CH_3)</td>
<td>-2.05</td>
<td>0.01</td>
<td>-0.20</td>
<td>1.75</td>
<td>-</td>
<td>hcp</td>
</tr>
<tr>
<td>(CH_2)</td>
<td>-4.33</td>
<td>-0.12</td>
<td>-0.39</td>
<td>1.37</td>
<td>-</td>
<td>hcp</td>
</tr>
<tr>
<td>(CH)</td>
<td>-6.83</td>
<td>-0.84</td>
<td>-0.95</td>
<td>1.20</td>
<td>-</td>
<td>hcp</td>
</tr>
<tr>
<td>(C)</td>
<td>-7.54</td>
<td>-0.57</td>
<td>-0.72</td>
<td>1.05</td>
<td>-</td>
<td>hcp</td>
</tr>
<tr>
<td>H</td>
<td>-2.87</td>
<td></td>
<td>-</td>
<td>-</td>
<td>fcc</td>
<td></td>
</tr>
<tr>
<td>(CH_2CH_3)</td>
<td>-0.03</td>
<td></td>
<td>-0.03</td>
<td>3.82</td>
<td>1.52</td>
<td>-</td>
</tr>
<tr>
<td>(CH_2CH_4)</td>
<td>-1.58</td>
<td>0.23</td>
<td>0.05</td>
<td>1.76</td>
<td>1.54</td>
<td>hcp-ontop</td>
</tr>
<tr>
<td>(CH_2C)</td>
<td>-3.96</td>
<td>-0.29</td>
<td>-0.41</td>
<td>1.41</td>
<td>1.53</td>
<td>hcp</td>
</tr>
<tr>
<td>(CH_2C_2)</td>
<td>-5.91</td>
<td>-1.08</td>
<td>-1.14</td>
<td>1.24</td>
<td>1.51</td>
<td>hcp</td>
</tr>
<tr>
<td>(CH_2CH)</td>
<td>-3.20</td>
<td>-0.37</td>
<td>-0.64</td>
<td>1.43</td>
<td>1.43</td>
<td>hcp-ontop</td>
</tr>
<tr>
<td>(CH_2C)</td>
<td>-4.70</td>
<td>-0.97</td>
<td>-1.14</td>
<td>1.26</td>
<td>1.41</td>
<td>hcp-fcc</td>
</tr>
<tr>
<td>(CHCH)</td>
<td>-2.67</td>
<td>-0.81</td>
<td>-1.07</td>
<td>1.43</td>
<td>1.43</td>
<td>hcp-fcc</td>
</tr>
<tr>
<td>(CHC)</td>
<td>-5.76</td>
<td>-0.84</td>
<td>-1.11</td>
<td>1.27</td>
<td>1.38</td>
<td>hcp-fcc</td>
</tr>
<tr>
<td>CC</td>
<td>-7.65</td>
<td>-0.22</td>
<td>-0.59</td>
<td>1.31</td>
<td>1.36</td>
<td>hcp-fcc</td>
</tr>
</tbody>
</table>

\(^{a} \)\(E_{ad,iso} \) adsorption energy with respect to isolated fragment (eq 1). \(E_{ad,near} \): adsorption energy with respect to 1 H atom co-adsorbed in the same supercell and \((n-1) \) H atoms each adsorbed in a separate supercell (eq 3). \(E_{ad,far} \): adsorption energy with respect to \(n \) H atoms each adsorbed in a separate supercell (eq 2) \((n = 4 \) and 6 for \(CH_4 \) (methane) and \(CH_3CH_3 \) (ethane) respectively). \(\oplus \)Ref 27 for a 3 \(\times \) 3 supercell. \(\ominus \)Ref 28. \(\ominus \)Ref 29. \(\ominus \)Ref 32.
and the organic fragment. In other words, up to 300 meV is gained when a coadsorbed hydrogen atom diffuses away from an organic fragment.

C2H Fragments. Similar to CH4 (methane), CH3CH3 (ethane) also adsorbs very weakly with an adsorption energy of about 30 meV. Adsorption energies of the C2Hx fragments are in good agreement with previous first-principles calculations42 (Table 1). All the C2Hx (0 ≤ x ≤ 6) fragments are more stable with the α-C atom on the hcp adsorption site than on any of the other sites; the β-C atom is either on the fcc site or the ontop site depending on the fragment. The preference for the hcp site with respect to the next most stable site, fcc, increases as the amount of hydrogen in the fragment decreases. While CH2CH2 (ethene) adsorbs in the well characterized di-σ configuration40 (Figure 3), CHCH (ethyne) adsorbs with one C atom on a hcp site and another on an fcc site (Supporting Information Figure S14). In both cases, the C−C bond length is about 1.45 Å, which is between the C−C bond length in CH2CH2 (ethene) and CH2CH (ethyne). The lengthening of the bond with respect to the gas phase molecules implies significant bonding with the surface (Table 1). In all the fragments that are derived from CH2CH2 (ethene) or CHCH (ethyne), the C−C bond length is greater than the bond length of gas phase CH2CH2 (ethene) implying significant bonding to the surface (Table 1). The mean distance between the top layer of Ru atoms and the C atom closest to the surface varies from 3.82 Å for CH2CH2 (ethene) to 1.24 Å in CH2C (ethene) (Table 1). In general, the fragments move closer to the surface as the number of H atoms decreases indicating increased bonding with the surface. For fragments with the same number of H atoms (e.g., CH3CH2, CH3CH; CH2C, CH2CH; CH3C, CHCH), the fragments with fewer α-H atoms are closer to the surface.

With the number of β-H atoms fixed and the number of α-H atoms increasing, the angle that the C−C bond makes with the plane of the surface decreases. For example, while CH3C (ethylidyne), with no α-H atoms, is perpendicular to the surface (Supporting Information Figure S13), the C−C bond in CH2CH2 (ethyl) makes an angle of about 55° with the surface (Supporting Information Figure S7). In contrast, with a fixed number of α-H atoms and increasing number of β-H atoms, the C−C bond angle with the surface increases. For example, while CHCH (ethyne) is almost parallel to the surface (about 3°) (Supporting Information Figure S14) and CH2CH (ethinylene) makes an angle of 70° with the surface (Supporting Information Figure S9).

Going from a stable gas-phase molecule (CH2CH2 (ethane), CH2CH (ethene), or CHCH (ethyne)) to a surface species completely dehydrogenated of the α-H atoms (CH2C (ethylidyne), CH2C (ethenylene), or CHC (ethenyl)), the binding energy increases linearly with decreasing number of H atoms. In other words, fragments with less α-H bind more strongly with the surface.

Irrespective of which adsorption energy is considered—E_{ads,near} or E_{ads,far}—the fragments CH3C (ethenylene), CH2C (ethynylidene), CHC (ethynyl), and CHCH (ethyne) are the most stable. Considering only E_{ads,far}, the binding energies of all the fragments in increasing order of stability are CHCH (ethyne) = CHC (ethynyl) = CH2C (ethenylidene) = CH2CH (ethene) < CH2CH2 (ethene) < CH3CH3 (ethane) < CH3CH (ethylidyne) < CC (ethynylidene) = CH3C (ethylidyne) (Figure 3). In both cases, the C−H bond angle with the surface increases. For example, while CH3C (ethylidyne) makes an angle of about 55° with the surface (Supporting Information Figure S13), the C−H bond angle in the fragments is slightly higher compared to the case of one carbon fragment. For example, in the case of CH2CH2 (ethene) and CC (ethynylidene), the lateral repulsion is as high as 400 meV. This is expected on steric grounds as the number of atoms in the surface supercell is almost twice that of the CH4 fragments.

Transition State Geometries and Activation Energies. We classify the C−H bond reactions into two types: α and β. C−H bond scission at the α-C (closest to the surface) is called an α-C−H bond scission reaction and that at β-C (farthest from the surface) is called β-C−H bond scission. They are also called α and β-hydrogen abstraction reactions in some of the literature. It is instructive to consider these scission reactions as happening at CHx groups. This will enable us to use this knowledge in the context of the Fischer–Tropsch process where longer carbon chains (>2) are encountered. Obviously, given the reaction energy, the activation energy calculated for the bond scission reaction can be used to calculate the activation energy for the reverse reaction, i.e., bond formation. Therefore, these findings are equally applicable to the reverse, C−H bond formation reactions.

Geometries. The transition state geometries can be classified into three types: (1) In all the α-C−H scission reactions from the groups CH, RCH2 and RCH (R = H, CH3, CH2), the α-C atom is on the hcp site with the leaving α-H atom activated to the closest atop site (Figure 3). (2) In the β-C−H scission...
reactions from the groups RCH₂, RCH, and RC (R = CH₃), the α-C atom is on the hcp site while the β-C atom is activated to an atop site with the leaving β-H atom pointing toward the closest hcp site (Figure 4). (3) In the β-C–H scission reactions from the groups RCH, RC (R = CH₂ or CH), the α-C atom is on the hcp site while the β-C atom is activated to an fcc site.

Table 2. Forward Activation Energy (Eᵢ) and Reverse Activation Energies (Er,near and Er,far) for C–H Bond Scission and Isomerization Reactions for CH₄ (Methane) and CH₃CH₃ (Ethane) Adsorbed on the Ru(0001) Surface

<table>
<thead>
<tr>
<th>reaction</th>
<th>C–H scission</th>
<th>Isomerization</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eᵢ [eV]</td>
<td>Er,near [eV]</td>
<td>Er,far [eV]</td>
<td>rTS C–H [Å]</td>
</tr>
<tr>
<td>R.1</td>
<td>CH₄ = CH₃ + H</td>
<td>0.86</td>
<td>0.82</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.88ᵇ</td>
<td>0.79ᵇ</td>
<td>0.94ᵇ</td>
</tr>
<tr>
<td>R.3</td>
<td>CH₃ = CH₂ + H</td>
<td>0.65</td>
<td>0.57</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.51ᵇ</td>
<td>0.32ᵇ</td>
<td>0.56ᵇ</td>
</tr>
<tr>
<td>R.6</td>
<td>CH₂ = CH + H</td>
<td>0.16</td>
<td>0.62</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.17ᵇ</td>
<td>0.51ᵇ</td>
<td>0.63ᵇ</td>
</tr>
<tr>
<td>R.10</td>
<td>CH = C + H</td>
<td>1.06</td>
<td>0.67</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.12ᵇ</td>
<td>0.51ᵇ</td>
<td>0.76ᵇ</td>
</tr>
<tr>
<td>R.2</td>
<td>CH₃CH₃ = CH₃CH₂ + H</td>
<td>0.86</td>
<td>0.59</td>
<td>0.77</td>
</tr>
<tr>
<td>R.4</td>
<td>CH₃CH₂ = CH₃CH + H</td>
<td>0.29</td>
<td>0.62</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.37ᵈ</td>
<td>0.64ᵈ</td>
<td>0.80ᵈ</td>
</tr>
<tr>
<td>R.11</td>
<td>CH₃CH₂ = CH₃CH₂ + H</td>
<td>0.32</td>
<td>0.37</td>
<td>0.77</td>
</tr>
<tr>
<td>R.5</td>
<td>CH₃CH₃ = CH₃CH + H</td>
<td>0.37</td>
<td>0.42</td>
<td>0.69</td>
</tr>
<tr>
<td>R.7</td>
<td>CH₃CH = CH₃C + H</td>
<td>0.08</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>R.12</td>
<td>CH₃CH = CH₃CH + H</td>
<td>0.49</td>
<td>0.45</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.23ᵈ</td>
<td>0.08ᵈ</td>
<td>0.33ᵈ</td>
</tr>
<tr>
<td>R.8</td>
<td>CH₂CH = CH₂C + H</td>
<td>0.19</td>
<td>0.52</td>
<td>0.69</td>
</tr>
<tr>
<td>R.13</td>
<td>CH₂CH = CH₂CH + H</td>
<td>0.70</td>
<td>0.87</td>
<td>1.12</td>
</tr>
<tr>
<td>R.14</td>
<td>CH₃C = CH₃C + H</td>
<td>0.64</td>
<td>0.48</td>
<td>0.65</td>
</tr>
<tr>
<td>R.9</td>
<td>CHCH = CHC + H</td>
<td>0.81</td>
<td>0.59</td>
<td>0.85</td>
</tr>
<tr>
<td>R.15</td>
<td>CH₂C = CHC + H</td>
<td>1.00</td>
<td>0.71</td>
<td>0.98</td>
</tr>
<tr>
<td>R.16</td>
<td>CHC = CC + H</td>
<td>1.59</td>
<td>0.70</td>
<td>1.07</td>
</tr>
<tr>
<td>R.17</td>
<td>CH₂CH = CH₂CH₂</td>
<td>1.78</td>
<td>1.68</td>
<td>–</td>
</tr>
<tr>
<td>R.18</td>
<td>CH₂C = CH₂CH</td>
<td>1.80</td>
<td>1.30</td>
<td>–</td>
</tr>
<tr>
<td>R.19</td>
<td>CH₂C = CHCH</td>
<td>2.24</td>
<td>2.17</td>
<td>–</td>
</tr>
</tbody>
</table>

ᵃ rTS C–H is the bond C–H bond length in the transition state between the C atom and the dissociating H atom according to the present work.ᵇ Ref 28. ᶜ Ref 42. ᵃᵉ Ref 34.
with the β-H activated toward the closest hcp or atop site (Figure S).

In the majority of the transition states, the C–H bond length between the dissociating H and the C atom is in the range of 1.50 to 1.70 Å (Table 2). No clear correlation is found between the bond length in the transition state and the activation energy. From visual inspection (see Supporting Information) it can be seen that the C–H bond dissociation reactions have a late transition state. That is, the transition state is closer to the product state than to the reactant state.

Activation Energies. The activation energies E_{f}, $E_{r,near}$ and $E_{r,far}$ for all the C–H bond scission reactions are listed in Table 2. As mentioned before, we refer to $E_{r,far}$ below. Although the activation energies range from 0.1 to 1.6 eV depending on the reaction, they fall into three distinct groups (considering both forward and reverse reactions): (i) reactions with E_{f} between 0.1 and 0.4 eV (7 reactions), (ii) reactions with E_{f} between 0.6 and 0.9 eV (17 reactions), and (iii) reactions with E_{f} above 1 eV (7 reactions). As can be seen, the majority of the reactions have activation energies closely spaced in the range of 0.6–0.9 eV.

Results of α–C–H reactions where the α-C group is fixed and the β-C group changes are presented first, followed by β–C–H reactions. Since C1 fragments do not have a β-C atom, they will all be considered under α–C–H reactions.

The RCH$_3$ group ($R = H, CH_3$) can undergo two possible α–C–H reactions:

$$\begin{align*}
CH_4 & \rightleftharpoons CH_3 + H \\
CH_3CH_4 & \rightleftharpoons CH_2CH_2 + H
\end{align*}$$

The numbers above and below the arrows are forward and reverse activation energies E_{f} and $E_{r,near}$, respectively (Table 2). These scission (forward) and formation (reverse) reactions are equivalent to alkane activation and alkane formation reactions, respectively. The activation energies for the scission of the C–H bond in CH$_4$ and C$_2$H$_4$ are very similar (both 0.86 eV). Considering the opposite, hydrogenation of the CH$_3$CH$_2$ (ethyl) group has a smaller activation energy compared to that of the CH$_3$ (methyl) group. As we will see later, the magnitude of these activation energies indicates that these are relatively slow processes.

There are three α–C–H reactions of adsorbed RCH$_2$ ($R = H, CH_3, CH_2$):

$$\begin{align*}
CH_4 & \rightleftharpoons CH_3 + H \\
CH_3CH_2 & \rightleftharpoons CH_2CH_2 + H \\
CH_2CH_2 & \rightleftharpoons CH_2CH + H
\end{align*}$$

The activation energies indicate that dehydrogenation of an CH$_3$CH$_2$ (ethyl) group can occur substantially faster than that of a CH$_3$ (methyl) group (0.29 vs 0.65 eV). Going from $R = CH_3$ to $R = CH_2$, the activation energy for dehydrogenation increases slightly (0.29 vs 0.37 eV), that is, CH$_3$CH$_2$ (ethyl) dehydrogenation is more facile than CH$_2$CH$_2$ (ethene) dehydrogenation. The activation energies indicate that CH$_3$CH$_2$ would rapidly dehydrogenate after the initial slowactivation of the CH$_3$CH$_2$ (ethane) molecule ($E_{r} = 0.86$ eV, R.2).

For α–C–H bond reactions of adsorbed RCH ($R = H, CH_3, CH_2, or CH$) there are four possibilities:

$$\begin{align*}
CH_2 & \rightleftharpoons CH + H & 0.16 & 0.73 \\
CH_3CH & \rightleftharpoons CH_3C + H & 0.08 & 0.80 \\
CH_2CH & \rightleftharpoons CH_2C + H & 0.19 & 0.89 \\
CHCH & \rightleftharpoons CHC + H & 0.81 & 0.85
\end{align*}$$

Excluding the dehydrogenation of CHCH (ethyne), the dehydrogenation of the RCH ($R = H, CH_3, CH_2$) group is found to be the most facile among all the dehydrogenation reactions (all activation energies less than 0.2 eV). This implies that the dehydrogenation of CH$_3$CH (ethyldene), CH$_2$CH (ethylidene), and CH$_2$C (methyldiene) to CH$_2$C (ethyldiene), CH$_2$CH (ethyldiene), and CH (methylidyne) groups, respectively, happens readily even at low temperatures. It is noteworthy that the resulting RC fragments are also the most stable fragments observed on the Ru(0001) surface. Consistent with this, in all the reactions except R.9, the reverse hydrogenation reactions have a much higher barrier (0.7–0.9 eV) than the dehydrogenation reactions.

Now, considering the first dehydrogenation reaction of adsorbed alkanes, alkenes, and alkynes ($E_{f} = 0.86, 0.37$ vs 0.81 eV, respectively), it can be seen that dehydrogenation is most facile for alkenes.

Finally, α–C–H bond scission from the RC group ($R = H$) group can be written as

$$\begin{align*}
CH & \rightleftharpoons C + H & 1.06 & 0.83
\end{align*}$$

Among all the α–C–H bond scission reactions described so far, this reaction has the highest activation energy (1.06 eV). This explains the persistence of CH groups on the Ru surface, even at relatively high temperatures.

Our activation energies for the reactions R.1, R.3, R.6, and R.10—dehydrogenation reactions in methane—agree well with previous first-principles results. There are six possible β–C–H bond reactions for C$_2$H$_x$ ($1 \leq x \leq 5$):

$$\begin{align*}
CH_2CH_2 & \rightleftharpoons CH_2CH_2 + H & 0.32 & 0.77 \\
CH_2CH & \rightleftharpoons CH_2CH + H & 0.49 & 0.72 \\
CH_2CH_2 & \rightleftharpoons CHCH + H & 0.70 & 1.12 \\
CH_2C & \rightleftharpoons CHC + H & 0.64 & 0.65 \\
CH_3C & \rightleftharpoons CHC + H & 1.00 & 0.98 \\
CHC & \rightleftharpoons CC + H & 1.59 & 1.07
\end{align*}$$
β-C−H scission is the most facile from the β-methyl groups of CH3CH2 (ethyl) (0.32 eV) and CH2CH (ethylidyne) (0.49 eV) followed by higher activation energies in CH3C (ethylidyne) (0.64 eV) and CHC (ethenyl) (0.70 eV). The highest activation energies occur for dehydrogenation from CH2C (ethenylidene) (1.00 eV) and CHC (ethynyl) (1.59 eV). The activation energies thus increase in the order: CH3CH2 (ethyl) < CH3C (ethylidyne) < CH2C (ethenylidene) < CHC (ethenyl). Again, it is noteworthy that CH2C (ethenylidene) and CHC (ethynyl), whose dehydrogenation is the hardest, are also the most stable fragments on the Ru(0001) surface (Table 1). In light of this, it is interesting that although CHC (ethynyl) has not been spectroscopically identified in experiments, CH2C (ethenylidene) has not been identified on bare Ru(0001). However, it has been identified on O-covered Ru(0001).33

Ciobića et al. calculated the activation energies for the reactions R.4, an α-C=H scission reaction, and R.12, a β-C=H scission reaction.34 While our results agree well (to within 5 meV with the activation energy for the α-C=H scission reaction, they do not compare equally well (differ by up to 40 meV for E_{act} and E_{tot}) with the activation energy for the β-C=H scission reaction (Table 2). Although it is hard to point out exactly where the origin of this difference lies, it could be, among other reasons, due to the different exchange-correlation potentials used (PBE in this paper vs PW91), different treatment of the core-valence electrons (PAW vs pseudopotentials), different plane-wave energy cut-offs, or the different k-point meshes. But, more importantly, it could be an artifact of using adsorption on both sides of a 4-layer surface model with no fixed surface atoms—we use a 6-layer model with single side adsorption with the three bottom layers held fixed. Our thicker slab with bulk constrained bottom layers may therefore be a more reliable model. Moreover, our transition states have been refined using dimer method while this is not the case with Ciobića et al.

Isomerization by H-1,2-Shift Reaction. Intramolecular 1,2-H-shift reactions are possible in three of the fragments: CH3CH (ethylidene), CH3C (ethenylidene), and CH2C (ethynylidene). They are

\[CH_3CH \xrightleftharpoons{1.78} CH_2CH_2 \]
\[CH_3C \xrightleftharpoons{1.80} CH_2CH \]
\[CH_2C \xrightleftharpoons{2.24} CHCH \]

In the transition state, the H atom involved in the transfer is roughly equidistant from the two carbon atoms and away from the surface (Figure 6). In CH3CH (ethylidene) and CH3C (ethenylidene) the CH3 group is activated to an atop site and in CH2C (ethynylidene) the CH2 group is activated to an fcc site. The lowest activation energy for isomerization is observed in CH3CH \rightarrow CH3C (1.3 eV, R.18); the others are substantially higher. Therefore, all the intramolecular isomerization reactions, compared to all the reactions considered so far, will be relatively slow and can be neglected as possible reactions during the dehydrogenation of CH4, CH2CH2 (ethene), CH3CH2 (ethane), or CH3CH (ethyne). Alternative pathways for the isomerization via hydrogenation–dehydrogenation reactions involving the surface show much lower activation energies. For example, for the isomerization reaction CH2CH \rightarrow CH2C R.18, with an activation barrier of 1.3 eV, an alternative reaction pathway via the mechanism CH2CH \rightarrow CH3C \rightarrow CH3C R.8, R.18 is available and the highest barrier in the latter multistep pathway (0.65 eV) is only half the activation energy of the former.

The activation energies that we obtained for C−H bond scission in CH4 on Ru(0001) and its reverse reaction are also in good agreement with those reported in ref 28 (Table 2).

DISCUSSION

In this section, we first present a brief overview of the knowledge gained from previous experimental research on the interaction of CH4 (methane), CH2CH2 (ethene), and CH3CH (ethyne) with the Ru(0001) surface; to the best of our knowledge, there is no report on the interaction of CH2CH2 (ethene). In addition, experiments which isolate some of the stable intermediates observed will also be discussed. Then, we discuss how our results relate to what has been experimentally observed. This includes the dominant reaction pathways available to the hydrocarbons during the interaction with the Ru(0001) surface, pathways leading to the stable intermediates and their decomposition. All the discussion below is based on the 2 × 2 supercell calculations with the effect of increasing supercell size discussed at the end.

Previous Research. Interaction of CH4 (methane) with the Ru(0001) surface ultimately leads to complete dehydrogenation above 700 K. Below 700 K, CH (methylidyne) and CH2C (ethenylidene) are observed as stable intermediates.35 Since CH4 (methane) is a C1 fragment, the CH3C (ethenylidene) fragments obviously result from C−C coupling reactions. Although we have not considered C−C coupling of C1 fragments in the present paper, various elementary C−C coupling reactions have been considered in the past—both on stepped and flat Ru surfaces.34,36,37 CH3CH2 (ethene) adsorbs molecularly on a Ru(0001) surface at least up to 120 K; further increase in temperature leads to the onset of dehydrogenation. Using HREELS, it is seen that between 150 and 280 K, CH3CH (ethenylidene) is the
most stable intermediate.30,38,39 At temperatures above 400 K, further dehydrogenation of \textit{CH}_{3}C (ethylidyne) occurs and CHC (ethyl) is observed. At even higher temperatures C–C bond scission occurs and leads to the formation of CH (methylidyne) on the surface. Increasing the temperature further leads to complete dehydrogenation and surface carbon.30,38,39

\textit{CHCH} (ethyne) adsorbs horizontally with a significant amount of hybridization on the C atoms bound to Ru(0001) up to a temperature of about 230 K. Above this temperature, experiments show that it dehydrogenates and forms CHC (ethylidyne) and \textit{CH}_{2}C (ethenylidyne) at temperatures below 350 K.39,40

It is clear from the above summary that, as surface temperature is increased, interaction of all three hydrocarbons with the Ru(0001) surface leads to complete dehydrogenation and surface C via the occurrence of stable intermediates. Our results also clearly show that this should be the case. A reaction energy diagram showing all the dehydrogenation reactions going from \textit{CH}_{3}CH (ethane) to surface carbon is shown in Figure 2. It is clear that after the initial activation of \textit{CH}_{3}CH (ethane), \textit{CH}_{2}CH (ethene) or CHCH (ethyne) dehydrogenation is thermodynamically favorable and should lead to one of the stable intermediates \textit{CH}_{3}C (ethylidyne), \textit{CH}_{2}C (ethenylidyne), or CHC (ethyl) . Since the adsorption energies of these intermediates is almost equal to that of CH (methylidyne), C–C bond cleavage in any of these fragments should lead to the formation of CH (methylidyne), another stable intermediate observed in all the above studies before complete dehydrogenation occurs. It can also be seen that once the stable intermediates form, it is thermodynamically uphill for complete dehydrogenation occurs. This explains why dehydrogenation of the stable intermediates happens only when the temperature is increased to greater than 400 K.

While \textit{CH}_{2}C (ethenylidyne) and CH (methylidyne) occur as stable intermediates in the case of \textit{CH}_{4} (methane), \textit{CH}_{3}C (ethylidyne), \textit{CHC} (ethyl), and CH (methylidyne) occur in the case of \textit{CH}_{2}CH (ethene) and \textit{CHCH} (ethyne). It is interesting that \textit{CH}_{2}C (ethenylidyne) occurs in the interaction of \textit{CH}_{4} (methane) but not during the interaction of \textit{CH}_{3}CH (ethane) or \textit{CHCH} (ethyne). Moreover, \textit{CH}_{3}C (ethenylidyne) also occurs during the interaction of \textit{CH}_{2}CH (ethene) with a O-covered Ru(0001) surface.41 Below, we will discuss the most favorable dehydrogenation reaction pathways leading to the formation of stable intermediates and their further dehydrogenation to surface C.

\textit{CH}_{4} (Methane). The dehydrogenation pathway for \textit{CH}_{4} (methane) is straightforward:

\[
\text{\textit{CH}_{4}} \rightarrow \text{\textit{CH}_{3}} \rightarrow \text{\textit{CH}_{2}} \rightarrow \text{\textit{CH}} \rightarrow \text{C} \tag{M.1}
\]

Dehydrogenation of CH (methylidyne) R.10 has the highest activation energy and thus would be the rate-determining step (Table 2) for complete dehydrogenation of \textit{CH}_{4} (methane) once it is activated, R.1. Among the four \textit{CH}_{4} fragments, CH is the most stable fragment on the Ru(0001) surface ($E_{\text{ads,far}}$ Table 1). Thus, both the adsorption energy and the activation energy for its dehydrogenation corroborate previous experimental evidence about the formation of CH (methylidyne) as a stable intermediate during dehydrogenation of \textit{CH}_{4} (methane)35 (and also of \textit{CH}_{2}CH_{2} (ethene) and of CHCH (ethyne)30,31,35,38,40). Besides being isolated in dehydrogenation experiments, CH (methylidyne) has also been directly synthesized on a Ru(0001) surface by hydrogenation of surface C, R.10.31,42 Shimizu et al. used scanning tunneling microscopy at 100 K directly to follow this reaction.43 However, the activation energy proposed by Shimizu et al. (0.26 eV) is almost four times lower than the one reported by Barteau et al. (0.95 eV). We report an activation energy of about 0.83 eV (Table 2, R.10) which is close to the value of Barteau et al., and the discrepancy could be due to the different initial coverages in the experiments. Our calculations at 25% coverage resemble the experiments of Barteau et al. more closely than those of Shimizu et al.

\textit{CH}_{3}CH_{3} (Ethane). Since the activation energies for both \textit{CH}_{4} (methane) and \textit{CH}_{2}CH_{3} (ethane) activation are very similar and \textit{CH}_{4} (methane) has been observed experimentally to interact with Ru(0001),30 one can expect that \textit{CH}_{3}CH_{3} (ethane) would also interact with the Ru(0001) surface. But, to the best of our knowledge, there is no report of experimental/theoretical study of the dehydrogenation of \textit{CH}_{3}CH_{3} (ethane) on Ru(0001). In the event that \textit{CH}_{3}CH_{3} (ethane) is activated on the surface, R.2, further dehydrogenation can occur either to form \textit{CH}_{3}CH_{2} (ethene), R.11, or \textit{CH}_{3}CH (ethylidene), R.4. While the activation energies for these dehydrogenation reactions are very similar (they differ only by about 30 meV), the formation of \textit{CH}_{3}CH (ethylidene), R.4, is thermodynamically slightly more favorable (Figure 2). Hence, the formation of \textit{CH}_{3}CH (ethylidene) should be more favorable than the formation of \textit{CH}_{3}CH_{2} (ethene) on the surface. The \textit{CH}_{3}CH (ethylidene) can then easily dehydrogenate to one of the most stable stable fragments on the surface, \textit{CH}_{3} (ethylidyne) ($E_f = 0.08$ eV, Table 2, R.7). The dehydrogenation of \textit{CH}_{3}C (ethylidyne) is described below.

\textit{CH}_{2}CH_{2} (Ethene). Since in a number of studies of \textit{CH}_{2}CH_{2} (ethene) interacting with Ru(0001), \textit{CHC} (ethylidyne) and CHC (ethylene) have been observed, in this section we describe all possible dehydrogenation pathways that lead to \textit{CH}_{3}C (ethylidyne). Later, we will describe how \textit{CH}_{3}C (ethylidyne) dehydrogenates further to CHC (ethyl).

There are five possible pathways for the formation of \textit{CH}_{3}C (ethylidyne) from \textit{CH}_{2}CH_{2} (ethene) (Figure 1): via CHCH (ethenylidyne) and 1,2-H-shift:

\[
\text{\textit{CH}_{2}CH}_{2} \rightarrow \text{\textit{CH}_{2}CH} \rightarrow \text{\textit{CH}_{3}C} \tag{M.2}
\]

via 1,2-H-shift and \textit{CH}_{3}CH (ethylidyne):

\[
\text{\textit{CH}_{2}CH}_{2} \rightarrow \text{\textit{CH}_{2}CH} \rightarrow \text{\textit{CH}_{3}C} \tag{M.3}
\]

via \textit{CH}_{2}CH (ethenylidyne) and \textit{CH}_{2}C (ethenylidyne):

\[
\text{\textit{CH}_{2}CH}_{2} \rightarrow \text{\textit{CH}_{2}CH} \rightarrow \text{\textit{CH}_{3}C} \rightarrow \text{\textit{CHC}} \tag{M.4}
\]

via \textit{CH}_{3}CH (ethyl) and \textit{CH}_{2}CH (ethylene):

\[
\text{\textit{CH}_{2}CH}_{2} \rightarrow \text{\textit{CH}_{2}CH} \rightarrow \text{\textit{CH}_{3}C} \rightarrow \text{\textit{CHC}} \tag{M.5}
\]

via \textit{CH}_{3}CH (ethyl) and \textit{CH}_{3}CH (ethylene):

\[
\text{\textit{CH}_{2}CH}_{2} \rightarrow \text{\textit{CH}_{2}CH} \rightarrow \text{\textit{CH}_{3}C} \rightarrow \text{\textit{CHC}} \tag{M.6}
\]

Mechanisms involving isomerization (M.2 and M.3) can be immediately excluded as the activation energies are too high compared to alternative pathways (Table 2). The ethenyl–ethenylidyne mechanism M.4 will be compared to both the ethenyl–ethylidyne mechanism M.5 and the ethyl–ethylene mechanisms M.6. In both cases, it will be shown that the ethenyl–ethenylidyne M.4 mechanism will be the dominant mechanism.
First, we will compare the ethenyl—ethenylidene mechanism M.4 with the ethenyl—ethylidyne mechanism M.5. While the first step is identical in both mechanisms, R.5, the second reaction R.8 in the ethenyl—ethenylidene mechanism M.4 is more favorable ($E_a = 0.19$ eV), both kinetically (about 103 times more likely to occur at 450 K) and thermodynamically (Figure 2) compared to the second reaction R.12 in the ethenyl—ethylidyne mechanism M.5 ($E_{\text{act}} = 0.45$ eV); (note: the rate r of a reaction can be approximated as $A \exp(-E_a/k_bT)$ where E_a is the activation energy, T is the temperature of the reaction and A is the prefactor of the reaction). Given two competing reactions with activation energies E_a and E_{act}, the relative rates of the two reactions, assuming the same prefactor, will be given as $r_1/r_2 = \exp\left[-(E_a - E_{\text{act}})/k_bT]\right]$. Also, the second reaction in the ethenyl—ethenylidene mechanism M.4 leads to the formation of the CH$_2$C (ethenylidene) intermediate which is one of the most stable species on the surface (E_{adh} Table 1, Figure 2). The conversion between CH$_2$C (ethenylidine) and CH$_2$C (ethylidyne) can then be understood as surface mediated hydrogenation—dehydrogenation reactions. These arguments show that the ethenyl—ethenylidene mechanism M.4 will be dominant over the ethenyl—ethylidyne mechanism M.5 in the formation of both the CH$_2$C (ethenylidine) and CH$_2$C (ethylidyne) surface species.

Next, comparing the ethenyl—ethenylidene mechanism M.4 to the ethenyl—ethylidyne mechanism M.6, the ethenyl—ethylidyne mechanism M.4 is again more favorable. The first reaction R.5 in the ethenyl—ethenylidine mechanism M.4 is either kinetically equivalent or more favorable compared to the first reaction in the ethenyl—ethylidyne mechanism M.6 depending on the chosen activation energy for the hydrogenation step R.11 of the ethenyl—ethylidyne mechanism M.6. Considering E_{act}, the first reactions in both mechanisms are kinetically equivalent, but considering E_{adh} the first reaction in the ethenyl—ethenylidene mechanism is clearly more favorable. In addition, the first reaction R.5 in the ethenyl—ethenylidene mechanism M.4 is thermodynamically more favorable as it leads to the formation of a more stable CH$_2$CH (ethyl) species compared to the CH$_2$CH$_2$ (ethyl) species. Additionally, dehydrogenation of the CH$_2$CH (ethyl) species ($E_a = 0.19$ eV) is kinetically more facile compared to the dehydrogenation of the CH$_2$CH$_2$ (ethyl) species ($E_a = 0.29$ eV). These arguments show that the ethenyl—ethenylidene mechanism M.4 is more likely than the ethenyl—ethylidyne mechanism M.6.

Combining the two comparisons above, it can be seen that the ethenyl—ethenylidene mechanism M.4 will be the dominant mechanism in the dehydrogenation of CH$_2$CH$_2$ (ethene) on Ru(0001). Previous first-principles studies show that the same mechanism is also favored on Pt(111) surfaces.12 Although no experiments have reported the occurrence of CH$_2$C (ethylidyne) on the surface, according to activation energies obtained in our calculations, CH$_2$C (ethylidyne) should exist in at least a narrow window of temperature between the onset of dehydrogenation in CH$_2$CH$_2$ (ethene) and the observation of CH$_2$C (ethylidyne) on the surface. Once CH$_2$CH$_2$ (ethene) is activated via R.5 ($E_i = 0.37$ eV), it should immediately convert to CH$_2$C (ethenylidene) as the activation energy for the dehydrogenation of CH$_2$CH (ethyl), R.8, is quite low (0.19 eV). The conversion of CH$_2$C (ethenylidene) to CH$_2$C (ethylidyne), R.14, has an appreciably higher activation energy ($E_{\text{act}} = 0.48$ eV). So, in the temperature window corresponding to this difference in activation energies, one can expect the existence of the CH$_2$C (ethenylidene) surface fragment. Also, CH$_2$C (ethylidyne) and the CH$_2$C (ethylidyne) surface species are almost equally stable on the surface, and hence there is no thermodynamic reason why one should be favored over the other. Of course, this only holds if we assume that there are no systematic errors from the exchange-correlation functional. It is possible that coverage effects (of adsorbed carbon fragments, hydrogen, or other adsorbates like oxygen) alter the activation energies for this interconversion. This can play an important role in determining the exact composition of the surface. In addition, the position of the equilibrium will also depend on the availability of surface H. These points need to be investigated further.

CHCH (Ethyne). Although dehydrogenation of CHCH (ethyne) leads to the occurrence of CH$_2$C (ethylidyne) and CHC (ethynyl) as surface intermediates, CH$_2$C (ethenylidene) has not been experimentally observed as an intermediate during dehydrogenation on the bare Ru(0001) surface.33 Based on the absence of CH$_2$C (ethenylidine) as intermediate on the Ru(0001) surface in experiments and our calculated activation energies, we propose the following reaction for the formation of CHC (ethynyl) and CH$_2$C (ethylidyne):

$$2\text{CHCH} \rightarrow \text{2CHC} + 2\text{H}$$
$$\rightarrow \text{CH}_2\text{C} + \text{H} + \text{CHC}$$
$$\rightarrow \text{CH}_3\text{C} + \text{CHC}$$ \hspace{1cm} (M.7)

Essentially, we propose that two CHCH (ethyne) molecules first undergo dehydrogenation to two CHC (ethynyl) and then one of these CHC (ethynyl) is hydrogenated to form CH$_2$C (ethylidyne). Since the rate-limiting step for the conversion is the hydrogenation of CHC (ethynyl) to CH$_2$C (ethylidyne), at temperatures where this reaction can readily happen, CH$_2$C (ethenylidene) should readily convert to CH$_2$C (ethylidyne).

CH$_2$C (Ethylnide), CH$_2$C (Ethenylidene), and CHC (Ethyne). The dehydrogenation of CH$_2$C (ethylidyne) can happen directly via CH$_2$C (ethylidyne), R.14, and CHC (ethyl), R.15, or with an intermediate conversion of CHC (ethynyl) to CHCH (ethyne). The CHCH (ethyne) intermediate can possibly occur as the activation energy for the hydrogenation of CHC (ethynyl) (R.9, $E_{\text{adh}} = 0.85$ eV) is lower than the activation energy for further dehydrogenation of CHC (ethyl) (R.16, $E_i = 1.59$ eV) to CC. The same sequence also explains the dehydrogenation of CH$_2$C (ethylidyne) to CHC (ethylidyne). Finally, CHC (ethyl) can either first undergo C–C bond scission to C and CH (methylidyne) or, alternatively, completely dehydrogenate and then undergo C–C scission to give two surface C atoms.

Fischer–Tropsch Process. Role of Isomerization Reactions. Three major chain propagation steps are thought to happen during the Fischer–Tropsch process: (i) Bradyl-Pettit alkyl mechanism,43 (ii) Maftlis alkylen mechanism,44 and (iii) Gaube alkylidene mechanism.45 H-transfer reactions have been proposed to happen in the Gaube and Maftlis mechanisms. The high activation energies that we obtain here for H-transfer suggest that (at least in the case of Ru(0001)) intramolecular H-transfer reactions (R.17, R.18, and R.19) can be precluded from happening. Obviously, this does not exclude the possibility that surface mediated isomerization can happen (see M.7).

α vs β Dehydrogenation Reactions. α and β C–H bond scission reactions play an important role in the selectivity of a
number of catalytic processes including the Fischer–Tropsch process. Among the three C₂H₄ species where both α and β C–H bond scission are possible (CH₃CH₂ (ethyl) R₄, R₁₁), CH₃CH (ethyldiene) (R₇, R₁₂), and CH₂CH (ethenyl) (R₈, R₁₃), α-H abstraction is always more facile. However, in the CH₂CH (ethenyl) case, the activation energy for α and β C–H bond scission are within 0.1 eV (the difference in the other two C₂H₄ species is more than 0.4 eV). Thus, it is clear that β-H abstraction from an RCH₂ (R = CH₃) species is more facile than the dehydrogenation from RCH (R = CH₃) or RC(R = CH) groups on Ru(0001). This implies that the probability of forming an α-olefin is much higher than that of forming an alkyn.

Supercell Size Effects. In addition to the calculations on 2 × 2 supercells, on which the above discussion is based, we also carried out calculations on 3 × 3 supercells to see the effect of supercell size. Since increase in the supercell size translates to lower coverage of the surface species, we can also draw conclusions on the effect of surface coverage. Eᵣ and Eᵣₐₚ are calculated using a 3 × 3 supercell indicate that dehydrogenation is more favorable (by ≤20 meV). In contrast, hydrogenation becomes slightly unfavorable by about the same amount. This implies that as the coverage of the hydrocarbon species on the surface decreases, dehydrogenation becomes slightly more favorable while hydrogenation becomes slightly unfavorable.

CONCLUSIONS

In conclusion, we have studied the site preference, adsorption energies, and activation energies for C–H bond reactions in CH₄ (methane), CH₃CH₂ (ethane), CH₃CH (ethene), and CHCH (ethyne) on the Ru(0001) surface at 0.25 and 0.11 ML coverage (2 × 2 and 3 × 3 supercells, respectively) using density functional theory (DFT) based first-principles calculations. In all the fragments except CH₄ (methane), CH₃CH₂ (ethane), and CH₃ (methyl), the α-C adsorbs on the hcp site; depending on the fragment, the β-C is either on an ontop or an fcc site. Adsorption energies show that CH₃C (ethylidyne), CH₂C (ethylenide), CHC (ethenyl), and CH (methylidyne) are the most stable fragments on the Ru(0001) surface. The activation energies for the C–H bond cleavage reactions range from 0.1 to 1.6 eV, with the majority of them closely spaced between 0.6 and 0.9 eV. Dehydrogenation from CH₂CH (ethenyl) is the most facile, while dehydrogenation from CHC (ethynyl) is the hardest. 1,2-H-shift isomerization reactions, (ethynyl) is the most facile, while dehydrogenation from CH₂CH (ethene), CHCH (ethyne) proceeds via CHC (ethenylidene) from CH₂CH (ethenyl), a fraction of which then undergoes hydrogenation to CHC (ethenylidene). CH₂C (ethylenide) dehydrogenates via CH₂C (ethylenide) to CHC (ethenyl), which further dehydrogenates to surface carbon, possibly via C–C bond cleavage which leads to CH (methylidyne) on the surface. Finally, we would like to comment that the activation energies for some of the competing reactions are so close that it is difficult to quantify the exact contribution of each reaction to the overall mechanism without a detailed analysis. A microkinetic model employing these activation energies could yield more information about the exact reaction pathways and also provide a handle to see how coverage would affect the reaction pathways.

ASSOCIATED CONTENT

Supporting Information

Structural information on the adsorbed fragments, reactant, product, and transition states is provided. Additionally, graphical representations of all the elementary reactions are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

*E-mail: w.m.m.kessels@tue.nl.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by NWO and the Technology Foundation STW through the VICI program on "Nanomanufacturing". S.E. acknowledges the Science Foundation Ireland for funding under the ALDesign project, grant 09.IN1.12628.

REFERENCES

(26) VTST, http://theory.cm.utexas.edu/vasp/.

