Protected Urban Planet: monitoring the evolution of protected urban areas worldwide
Verbruggen, R.C.; Roders, A.R.; Stash, N.; Leony, D.; De Bra, P.M.E.

Published in:
Special Session 'Real Spaces and Cyber Spaces: New Challenges in Regional Science' within ERSA 54th Congress Regional Development & Globalisation: Best practices: Saint Petersburg, Russia, August 26-29, 2014

Published: 01/01/2014

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 19. Oct. 2018
Protected Urban Planet: Monitoring the Evolution of Protected Urban Areas Worldwide

Richard Verbruggen*, Ana Pereira Roders**, Natalia Stash**, Derick Leony***, Paul de Bra**

* richard@sturb.nl
Van Nut, Eindhoven, The Netherlands
** a.r.pereira-roders@bwk.tue.nl , n.v.stash@tue.nl , debra@win.tue.nl
Eindhoven University of Technology, The Netherlands
*** dleony@it.uc3m.es
University Carlos III of Madrid, Spain

Abstract

This paper aims to introduce Protected Urban Planet (PUP)\(^1\), the first tool developed for visualizing, mapping and contributing to information exchange on the evolution of protected urban areas worldwide. Besides locating them, Protected Urban Planet provides communities with means to disseminate and raise awareness for their cultural significance, while monitoring their threats and causes and sharing assessment methods and tools. Protected Urban Planet brings together spatial data, descriptive information and images from various sources, which together are today unrealistic for communities to reach.

We look at Protected Urban Planet in comparison to (1) three other tools developed for heritage management such as Protected Planet\(^2\), Red List of Threatened Species\(^3\), Arches\(^4\); (2) demonstrators for providing personalized access to cultural/world heritage information that are based on CHIP project results\(^5\); and (3) three tools outside the heritage management field cartoDB\(^6\), CAPA\(^7\) and LearnGlass\(^8\) that could be used for extending the features of PUP.

We provide a comparative analysis that discusses the differences and similarities between the tools. The comparison has three focal points: (a) *how* data is analyzed and visualized, (b) *what* is analyzed, and (c) *who* contributes and benefits from the tools. The results contribute to

1 http://protectedurbanplanet.net
2 http://www.protectedplanet.net
3 http://maps.iucnredlist.org/
4 http://archesproject.org/
5 http://chip.win.tue.nl. CHIP stands for Cultural Heritage Information Personalization
6 http://cartodb.com
7 http://www.win.tue.nl/~mpechen/projects/capa/
setting a research agenda around alike tools, as well as, their contribution to the raise of reliability on research targeting a comparative analysis on the evolution of protected urban areas worldwide.

1. Introduction

The number of documents and their scattered archives, but also the diversity in focus, approach and methodologies in heritage studies has been disabling the assembly of results from varied research projects and subsequent spatio-temporal analysis and extrapolation of trends on World Heritage management. Cultural and natural heritage properties\(^9\) (e.g. Bolgar Historical and Archaeological Complex, Russian Federation and the Stevns, Denmark) are often analyzed separately\(^{10}\), except on mixed properties (e.g. Trang An Landscape complex, Vietnam)\(^{11}\).

The approaches in heritage studies are often either critical or technical. Critical heritage studies primarily focus on the uses of heritage\(^{12}\). Instead, technical heritage studies focus on heritage conservation\(^{13}\). Particularly, in cultural heritage, the methodologies employed are either illustrative global interpretations\(^{14}\) or detailed case studies\(^{15}\). The application of automated analysis is already being explored for heritage documents e.g. maps\(^{16}\) and letters\(^{17}\). It is still underexplored for documentation referring to heritage properties, in support of their management.

There is a growing number of tools targeting the support of heritage management practices. Though, they still fail in bridging culture and nature sectors, and supporting spatio-temporal analysis and extrapolation of trends, through the integration of Geographic Information

\(^9\) Property is an official boundary to what World Heritage is.

Systems (GIS)\(^{18}\), data mining\(^{19}\), personalization and semantic data enrichment\(^{20}\). Most of these technologies have already been applied, but seldom on heritage management, crossing heritage categories or in combination\(^{21}\).

Some remain skeptical about the use of generic tools for heritage management, especially in developing countries\(^{22}\). Though, the growth of internet access\(^{23}\) and mobile-broadband subscriptions are a worldwide trend\(^{24}\). GIS has proven beneficial to heritage management and site monitoring\(^{25}\). GIS facilitates data management and analysis, far more efficiently and effectively than any other data management system\(^{26}\). It also facilitates communication and knowledge-sharing\(^{27}\).

1.1. Protected Urban Planet (PUP)

Protected Urban Planet (figures 1a and 1b) is the first tool developed for visualizing, mapping and contributing to information exchange on the evolution of protected urban areas worldwide. PUP is contributing to a larger research project titled “Outstanding Universal Value, World Heritage Cities and Sustainability”, initiated in 2009, developed jointly by Eindhoven University of Technology (TU/e) and UNESCO World Heritage Centre. (\(Q.c.\) \(Who?\)) Besides locating protected urban areas, PUP provides communities with means to disseminate and raise awareness for their attributes\(^{28}\) and values of significance, while monitoring their threats and causes and sharing assessment methods and tools. (\(Q.b.\) \(What?\)) It is an online platform to share and disseminate information about protected urban areas, their

\(^{28}\) Attribute is the reasons why the property became heritage.
cultural values and attributes, as well as their protection challenges. PUP brings together spatial data, descriptive information and images from various sources, which together are today unrealistic for communities to reach. *(Q.c. Who?)* Sources range from National governments, Non-government Organizations (NGOs), International conventions and regional Partners, to more proactive members of these communities. *(Q.a. How?)* Combining all these heterogeneous -in size, subject and format- and highly unstructured datasets to one comprehensive portal provides stakeholders a broader overview of all the processes threatening protected urban areas. All of which contributes to a better assessment per heritage property and provides a comparison between properties with similar characteristics, or facing similar threats.

![Figure 1a. Protected Urban Planet (PUP): Home page](image1)

A relational survey between heritage (impact) assessment practices and the sustainable urban development focused on World Heritage cities. The methodology bridged a more universal approach, surveying the collective documentation produced while nominating and managing World Heritage properties, such as the decisions adopted at the Session of the World Heritage
Committee; to a more local approach taking a limited number of World Heritage cities as case studies. The latter also included a documentation survey, but then, focusing on the existing documentation set produced for the specific World Heritage property. The Netherlands Funds-in-Trust nobly facilitated attendance at relevant meetings e.g. Sessions of the World Heritage Committee and World Congresses of the Organization of World Heritage Cities, so that contacts could be established with national and local governments for the case studies. The Flemish Funds-in-Trust supported the fieldwork in Island of Mozambique and the development of Protected Urban Planet. TU/e has co-financed all fieldwork.

In 4 years’ time, a young and committed research team was built up. More than 1000 urban areas have been identified to include protected urban areas designated as World Heritage. The information related to these properties and municipalities has been assembled in GIS, with a considerable share located. It also includes information on their affecting factors, until now distinguished in threats (changes) and causes (change agents).

Thirteen World Heritage cities have been taken as case studies, illustrative for 4 out of 5 UNESCO regions, except for the Arab States: Willemstad, Oporto, Evora, Guimarães, Salamanca, Edinburgh and Amsterdam in Europe and North America; Galle and

Macao39 in Asia and the Pacific; Zanzibar40 and Island of Mozambique41 in Africa; and Valparaiso and Queretaro in Latin America and the Caribbean.

2. Assessment Framework

Table 1 lists the assessment criteria, divided in three categories:

<table>
<thead>
<tr>
<th>Who?</th>
<th>Web-based GIS</th>
<th>A Web-based Geographic Information System (GIS) for analyzing and displaying geographic information</th>
</tr>
</thead>
<tbody>
<tr>
<td>How?</td>
<td>Spatio-Temporal Analysis</td>
<td>The spatio-temporal analysis per property and/or summing the results in time per municipality, country, region or total</td>
</tr>
<tr>
<td></td>
<td>Automated Analysis</td>
<td>The automated documentation analysis, aimed at the raise of understanding for ontological, sentiment and behavioral trends</td>
</tr>
<tr>
<td></td>
<td>Comparative Analysis</td>
<td>The ability to compare results on more than one property, municipality, country or region</td>
</tr>
<tr>
<td>What?</td>
<td>Protected Areas</td>
<td>The overview of data related to the geographical context of the protected areas</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td>The overview of data related to the attributes and values conveying the heritage significance of the protected areas</td>
</tr>
<tr>
<td></td>
<td>Affecting factors</td>
<td>The overview of data related to the changes and change agents affecting the heritage significance of the protected areas</td>
</tr>
<tr>
<td></td>
<td>Management tools</td>
<td>The overview of data related to the management practices and tools, applied to the protected areas</td>
</tr>
<tr>
<td>Who?</td>
<td>Data analysts</td>
<td>A team providing the data analysis and scientific valuation</td>
</tr>
<tr>
<td></td>
<td>Data providers</td>
<td>The data guardians contributing to raw data and its validation</td>
</tr>
<tr>
<td></td>
<td>Data references</td>
<td>The reference to scientific publications backing up the data analysis</td>
</tr>
<tr>
<td></td>
<td>Community of users</td>
<td>A community of users exploring the data, but also contributing to their collection and validation</td>
</tr>
</tbody>
</table>

Table 1: The assessment criteria

(a) how data is analyzed and visualized, (b) what is analyzed, and (c) who contributes and benefits from the tools. The results contribute to setting a research agenda around alike tools, as well as, their contribution to the raise of reliability on research targeting a comparative analysis on the evolution of protected urban areas worldwide. First category, how, includes four criteria: Web-based GIS, Spatio-Temporal Analysis, Automated Analysis, and Comparative Analysis. Second category, what, includes four criteria: Protected Areas, Significance, Affecting factors, and Management tools. Third category, who, includes three criteria: data analysts, providers and references.

3. Tools for Comparative Analysis

In this section we discuss a number of tools for world/cultural heritage domain that we can consider related to PUP - Protected Planet, Red List of Threatened Species, Arches, CHIP and its follow up demonstrators, as well as a number of tools outside the heritage management field that we consider for extending PUP functionality - cartoDB, LearnGlass and CAPA. Particularly, Protected Planet and the Red List of Threatened Species are the confirmation that long term scientific monitoring systems can endure (over 30 years), with the contribution of governments, NGOs and researchers.

3.1. Protected Planet (PP)

(Q.a. How? Q.b. What?) The Protected Planet (figures 2a and 2b) is the new face of the World Database on Protected Areas (WDPA), a joint initiative between IUCN42 (Union for Conservation of Nature) and UNEP-WCMC43 (United Nations Environment Programme World Conservation Monitoring Centre).

Figure 2a. Protected Planet (PP): Home page

Its humble beginnings started 30 years ago as a basic global list of national parks and has evolved into the only global, spatially referenced information source on parks and protected areas. *(Q.c. Who?)* Protected Planet was not only created to showcase this wealth of information but also gives tools to willing 'citizen scientists' who can feed their knowledge about protected areas into the WDPA. The World Database on Protected Areas is managed at UNEP-WCMC in Cambridge, UK supported by IUCN staff and World Commission on Protected Areas members all over the world. It relies on the magnitude of work carried out by staff in institutions covering every country on the planet. Without this work from governments and NGOs alike, there would be no World Database on Protected Areas.

3.2. Red List of Threatened Species (RL)

(Q.a. How? Q.b. What?) The IUCN Red List of Threatened Species™ (figure 3a and 3b) is
Figure 3b. Red List of Threatened Species (RL): Attribute (species)

widely recognized as the most comprehensive, objective and global approach for evaluating the conservation status of plant and animal species. From its small beginning, the IUCN Red List has grown in size and complexity and now plays an increasingly prominent role in guiding conservation activities of governments, NGOs and scientific institutions. The introduction in 1994 of a scientifically rigorous approach to determine risks of extinction that is applicable to all species, has become a world standard. *(Q.c. Who?)* In order to produce the IUCN Red List of Threatened Species™, the IUCN Species Programme working with the IUCN Survival Commission (SSC) and with members of IUCN draws on and mobilizes a network of scientists and partner organizations working in almost every country in the world, who collectively hold what is likely the most complete scientific knowledge base on the biology and conservation status of species.

3.3. Heritage Inventory & Management System (Arches)

(Q.a. How? Q.b. What?) Arches (figures 4a and 4b) is a new open-source geospatial software system for cultural heritage inventory and management, developed jointly by the Getty Conservation Institute and World Monuments Fund. Arches grew out of the collaborative effort to create the Middle Eastern Geodatabase for Antiquities, and the widespread need within the heritage field for low-cost electronic inventories that are easy to use and access. Arches combines state-of-the-art software development with *(Q.c. Who?)* the insights and perspective of heritage professionals from around the world. The need for functional heritage inventories has grown over the last decades, together with the rise of a global awareness of the importance of heritage management. Nevertheless, inventories remain complicated to
establish and maintain, and frequently rely on costly proprietary software that does not always fit the needs of the heritage field.

Figure 4a. Arches: Home page

Figure 4b. Arches: Property *Grotto of St. Paul*

3.4. Personalized Access to Cultural Heritage Information with CHIP Tools

Within the CHIP project, a collaboration between Eindhoven University of Technology (TU/e), Rijksmuseum Amsterdam and Telematica Institute in the Netherlands, and follow up
research44,45, an open-source tool was developed for providing personalized access to Cultural/World Heritage information (figure 5). (Q.a. How?) The prototype helps visitors in creating personalized museum and city tours based on their individual interests. The tours can be prepared in advance through Web-based tools called Art/Sightseeing Recommender and Tour Wizard and can be visualized on a museum map (in a museum environment), on Google maps, a historical timeline, through faceted views upon the list of points of interest (POI) in a museum (artworks) or city (attributes of cultural significance) or as carousel of POIs (figure 5). Recommendations are based on semantically enriched collection data. By semantic enrichment we mean connecting the data to standard vocabularies (such as Getty thesauri46 and Iconclass47) and adding extra semantic relationships from these vocabularies such as student of, teacher of, broader/narrower, etc. which were not present in the original data. The software also includes the prototype of a Mobile Guide that is meant to help the user on the spot – navigating in the physical museum or in the city. This Web-based tool is presented by means of case study of the Rijksmuseum as museum location48 and Amsterdam, specifically its World Heritage property Seventeenth-century canal ring area of Amsterdam inside the Singelgracht49 as urban location.

Through data visualization50 we can provide the visitor not only with different perspectives upon the POIs in the tour – historical, geographical, etc. but also help discovering interests that were not so apparent. The tool does not apply any complicated 3D visualizing techniques as few other city/museum guides do. The main focus is on personalization. The strong point of the tool is its generic character which means that it can be used with the data of other museum or city as well. Appreciation of certain POIs, artists, styles and art topics in the museum can generate recommendations for an urban tour and vice versa.

(Q. b. What?) The prototype currently works on previously collected and categorized data on cultural/world heritage. Recommendations as to what visitors might find interesting are based on previous ratings are only content-based, they do not take into account information about what other visitors liked/disliked.

46 \url{http://www.getty.edu/research/tools/vocabularies/}
47 \url{http://iconclass.org}
48 \url{http://chip.win.tue.nl/demo/mobileguide/}
49 \url{http://chip.win.tue.nl/cityguide/sightguide/}
50 CHIP software applies open-source visualization tool SimileExhibit (\url{http://www.simile-widgets.org/exhibit/})
Figure 5. CHIP-based tools: Sightseeing Recommender, Tour Wizard and Mobile Guide
At the moment the tool is meant for art curators (data providers) willing to share the available information with the city/museum visitors (community of users). By using a city guide application to not only share, but also collect information from the users, it can become a tool to promote heritage properties as well as better understand how heritage is valued and perceived, and even to map and monitor the WH properties with the help of the public.

3.5 CartoDB

CartoDB is a cloud-based system to store, analyze and visualize geospatial data. The main objective of the software is to provide an easy way to create visualizations based on maps. This is achieved by the provision of two elements: CartoDB Editor and CartoDB Platform.

CartoDB Editor has two main sections: tables and visualizations. A table, as in relational database systems, is the element in which a user will store geospatial data. In this abstraction, the columns of the table represent the fields and each row represents a record stored. A table in CartoDB has four mandatory fields: the record ID, the date and time of creation and last update, and the location. Being a geospatial database, the location field is mandatory and can be either a single point on the map or a set of them to form an area, each point represented by the pair latitude-longitude.

The data stored in a table can be visualized on a map in addition to the grid layout, an example of this view is presented in figure 6. This visualization is only available for the user that has logged into CartoDB, and there are many situations where the visualization are meant to be shared with a larger audience or made completely public. This is the role of visualizations, which can include the data of several tables within the same map. They can also be customized with a specific design and enhanced with legends and descriptive texts.

The other element in the system is CartoDB Platform which offers access to both data and maps in scenarios that need a higher level of customization. The platforms is a set of development tools that allow programmers to interact directly with the data and the maps created within CartoDB. The elements that compose the platform are a JavaScript library called CartoDB.js and two application programming interfaces: SQL API and Maps API.
3.6. Learning/Web Analytic Tools

In this section we discuss the Learning and Web analytics tools LearnGlass and CAPA which we consider for extending PUP. The field of web analytics aims at understanding the behavior of users in web-based applications through the analysis of server logs. A final goal of understanding users is usually to improve the usability and user retention of the system, although this depends on the domain in which the web application is working. Web analytics uses several tools to obtain defined metrics of interest, such as amount of visits, number of unique visitors, and top sources of incoming users.

Learning analytics intends to understand and optimize learning experiences and the environment where they occur. This includes the tools, resources and activities that learners are interact with when they participate in an educational activity. In order to achieve this goal, learning analytics not only involves the analysis and reporting of data about learners and their surroundings but also the processes for measuring and collecting these data. Learning analytics can apply web analytics to infer information of the activity of learners in a web-based learning system but it will often require other tools such as surveys, specialized software and sensors for data gathering; statistics, machine learning and artificial intelligence algorithms for data analysis; and visualizations for data reporting.
3.6.1. LearnGlass

(Q.b. What?) LearnGlass is a platform that enables the development of visualizations based on a common dataset of events occurring in a learning activity. The objective of this platform is to provide a way to create and publish visualizations on the web without having to develop features of a web system such as user management, a database to store actions done by learners, and a dashboard interface.

(Q.b. How?) The visualizations are added to the platform through the installation of modules. A module is composed of a set of scripts and resources used to display one or more visualizations. The visualizations can be accessed through the system menu and the platform provides a set of filters that can be applied on the data displayed. Examples of these filters are date ranges, user groups (classes or project teams) and specific users. In order to interact with these parameters, the visualization can include elements to modify the selected value of each filter. In addition, visualizations can have a simplified version meant to be embedded into the user's dashboard. In this situation, the simplified visualization will keep the selected values for each filter, making it possible to present many insights with the same visualization. For instance, figure 7 presents a dashboard with four simplified visualizations generated by one single module. Visualizations at top-left and bottom-right have been generated with the same interactive visualization but with different parameters. The same occurs with examples at top-right and bottom-left.

Figure 7. Dashboard of a user in LearnGlass, showing four visualizations of events in a learning activity
3.6.2. Context Aware Predictive Analysis (CAPA)

(Q.a. How?) CAPA project involves Web analytics for understanding behavioral patterns of users of various Web-based applications or information services to predict user intentions on the Web, such as accessing information resources, in order to achieve better personalization to diverse user needs and interests. User behavior may vary depending on the context, such as user activity, location, time, weather, etc. (Q.b. What?) CAPA develops mechanisms to identify what the (current) context is and to integrate it into predictions.

One of the scenarios to use CAPA to extend PUP includes suggesting protected urban areas in the proximity of user's current location. Another scenario is to discover interesting patterns from user search queries and to use this information for recommending “closest/nearby” places to look for. For example, if the user searches for Amsterdam, based on historical data and some preferences, (s)he could get recommendation for Paris. In fact there maybe be no link between Amsterdam and Paris in the data description but the analysis of user behavior could show that.

(Q.c. Who?) The tool can help users in finding interesting information related to the previous search queries, it can also help solving the cold start problem for the first time PUP Web site users by providing recommendations based on available context information.

4. Comparative analysis

The results of the comparative analysis are presented in table 2. The assessment values are as follows: 😊 Available; 😕 Getting there; 😞 Not available.

Concerning applications (Q.a. How?), most key projects already make use of GIS and are Web-based. To see Arches and CAPA in action you have to download the code. PUP is the only tool that provides for a spatio-temporal analysis on the protected urban areas listed as World Heritage, even if only at global level. It provides a list of respective properties and also provides for a cumulative overview per municipality, country, region and total on protected areas. The presented projects do not provide for comparative analysis of content data e.g. do not compare two properties to each other although it is possible to some extend in CHIP (plus) prototypes. The presented Web/learning analytic tools are more focused on comparing users of applications rather than content.

The focus (Q.b. What?) of key projects is on (World) heritage properties – PP and RL on the nature sector, and PUP, Arches, CHIP on the cultural sector. CHIP prototype originally developed for the cultural heritage domain can be applied on World Heritage properties as
well. CAPA researchers are particularly interested in e-commerce applications. For the
experimental study they used web-portal MastersPortal.eu that provides information about
various study programmes in Europe51. All key projects provide the most recent analysis,
disabling the spatio-temporal analysis. They also relate analysis to the protected areas, rather
than to specific entities e.g. significance, affecting factors. The overview in management tools
is a common lack, already lightly tackled by RL and Arches.
Last, the stakeholders involved (Q.c. Who?) always include scientific data analysts. They also
try to enroll the data providers, being PP, RL and Arches the most successful in integrating
them among the community of users. They all somehow involve the broader public and
research community in the exploration of information and data analysis, thus the community
of users benefits from all tools. Only PP and CHIP are providing the services to personalize
their use and revise the data analysis.

<table>
<thead>
<tr>
<th></th>
<th>PP</th>
<th>RL</th>
<th>PUP</th>
<th>ARCHES</th>
<th>Carto DB</th>
<th>CHIP (plus)</th>
<th>CAPA</th>
<th>Learn Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>How?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web-based GIS</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Spatio-temporal analysis</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Automated analysis</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Comparative analysis</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>What?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protected areas</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Significance</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Affecting factors</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Management tools</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Who?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data analysts</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Data providers</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Data references</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Community of users</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
</tbody>
</table>

Table 2: The assessment results, per criterion and tool

51 Kiseleva, J., Hoang Thanh, L., Pechenizkiy M., Calders, T.: Discovering temporal hidden contexts in web
sessions for user trail prediction. In: Proceedings of TempWeb@WWW'2013, pp. 1067-1074 (WWW
Companion Volume)
5. Conclusions/Future Work

Protected Urban Planet is crucial both to the integration of research results, and to the dissemination of the research outcomes. Yet, the first prototype was far beyond our targets. More resources are needed to develop it properly. Moreover, while surveying the documentation produced while nominating and managing World Heritage properties, in both global and local approaches, it became clear that more efficient methods, targeting automation, would be needed to reach a larger sample of World Heritage properties, as well as, a higher number of documents per case study.

In the paper we presented the comparative analysis that discusses the differences and similarities between Protected Urban Planet a number of related tools within and outside heritage management. The comparison had three focal points: how data is analyzed and visualized, what is analyzed, and who contributes and benefits from the tools. Even though, each has its own advantages and disadvantages, there is still no tool to perform semi-automated analysis and extrapolation of spatio-temporal trends on World Heritage ontologies from the ever growing documentation produced while nominating and managing World Heritage properties. The authors, therefore, recommend the following research agenda for the future work:

5.1. Research challenges

- E-research: The application of e-research to support the semi-automated analysis and extrapolation of spatio-temporal trends from documentation, which otherwise would not be possible to develop, taken the ever growing nature of the documentation, the required amount of resources (time, facilities and analysts) and worldwide coordination.

- World Heritage Ontology: The elaboration on a dynamic domain-ontology for the World Heritage field and researchers, derived from data mining analysis of the documentation, and incorporating varied international heritage documentation standards, from both culture and nature sectors.

- Mapping World Heritage: The elaboration on the variety of locations and definition of boundaries, including buffer zones, as well as the context of World Heritage properties and their proximity.

- Analysis and Trends: The establishment of a long term scientific monitoring practice which allows spatio-temporal analysis and extrapolation of trends on World Heritage ontologies, bridging the gap between both culture and nature sectors.
5.2. Technical challenges

- GIS: The application of spatio-temporal analysis enabled by geographic information systems, to support the location and definition of boundaries deduced from ever growing, heterogeneous (in content and format) and highly unstructured information sources.

- Data mining: The application of automated analysis enabled by spatio-temporal data mining technologies, including opinion mining, to support ontological knowledge construction of ever growing, heterogeneous (in content and format) and highly unstructured information sources.

- Personalization and semantic data enrichment: The application of software developed for spatio-temporal personalized access to semantically enriched art collection, evolving from a collection of movable tangible objects to a variety of predominantly immovable objects, including intangible attributes.