Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions

Citation for published version (APA):

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Well-posedness and approximation of a measure-valued mass
evolution problem with flux boundary conditions

by

J.H.M. Evers, S.C. Hille, A. Muntean

Centre for Analysis, Scientific computing and Applications
Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands
ISSN: 0926-4507
Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions

Joep Eversa, Sander C. Hilleb, Adrian Munteana

aCASA - Centre for Analysis, Scientific computing and Applications, ICMS - Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands

bMathematical Institute, Leiden University, The Netherlands

Abstract

This Note deals with imposing a flux boundary condition on a non-conservative measure-valued mass evolution problem posed on a bounded interval. To establish the well-posedness of the problem we exploit particle system approximations of the mass accumulation in a thin layer near the active boundary. We derive the convergence rate for the approximation procedure as well as the structure of the flux boundary condition in the limit problem.

Résumé

La bien-position et l’approximation d’un problème d’évolution des mesures de masse avec des conditions frontières sur le flux. Dans cette Note nous étudions l’évolution de mesures (de masse) dans un interval borné où la dynamique non-conservative est imposée à l’aide de conditions frontières de type flux. Nous montrons la bien-position du problème en exploitant des systèmes de particules et l’accumulation de masse provoquée par ces particules dans une couche limite tout près de la frontière active. Finalement, nous obtenons la vitesse de convergence de la procedure d’approximation ainsi que la structure de la condition de frontière concernant le problème limite.

\textsuperscript{Email addresses: j.h.m.evers@tue.nl (Joep Evers), shille@math.leidenuniv.nl (Sander C. Hille), a.muntean@tue.nl (Adrian Muntean).
1 Introduction

We consider particles moving in the interval $[0, 1]$, forced by an externally determined velocity field $v(x), x \in [0, 1]$ (see [1,3] for closely related scenarios). There is no interaction among individuals and the boundary $x = 1$ is ‘sticking’ and partially absorbing: once a particle arrives at the boundary $x = 1$ it stays there and can be removed from the system (being ‘absorbed’ or ‘gated’) randomly at a time after arrival that is exponentially distributed with constant absorption rate $a \geq 0$. If a particle is distributed initially according to the probability measure ν_0, then – formally – the distribution of this particle at time t is described by

$$\frac{\partial}{\partial t} \mu_t + \frac{\partial}{\partial x} (v \mu_t) = -a \mu_t(\{1\}) \delta_1, \quad \mu_0 = \nu_0. \tag{1}$$

Equation (1) may also be viewed as unifying both a continuum formulation and particle description for this mass evolution problem in a single framework. Note that in the measure-valued formulation for the associated particle system with ‘sticking’ boundary conditions [8] such Robin-like boundary conditions should be incorporated in the measure-valued equation (1) as a density dependent (point located) sink.

One may apply the weak solution concept to (1) as in e.g. [4]. In this Note, however, we point out that an approach through mild solutions (see e.g. [7]) is feasible, while (1) can be obtained as limit of a family of systems with interaction in a shrinking boundary layer. That is, if $\mathcal{M}([0, 1])_{BL}$ is the Banach space completion of the finite Borel measures $\mathcal{M}([0, 1])$ on $[0, 1]$ for the norm

$$\|\mu\|_{BL} := \sup\left\{ \int_{[0,1]} f \, d\mu : f \in \text{BL}([0,1]), \|f\|_\infty \leq 1, \|f\|_L \leq 1 \right\},$$

where $\text{BL}([0,1])$ is the space of bounded Lipschitz functions f with Lipschitz constant $|f|_L$ (cf. [6]), then a mild solution to (1) is a continuous map $t \mapsto \mu_t$ from $[0, T]$ into $\mathcal{M}([0, 1])_{BL}$ such that

$$\mu_t = P_t \mu_0 - a \int_0^t \mu_s(\{1\}) \, ds \cdot \delta_1. \tag{2}$$

Here, $(P_t)_{t \geq 0}$ is the strongly continuous semigroup in $\mathcal{M}([0, 1])_{BL}$ associated to mass transport along characteristics defined by the bounded Lipschitz velocity field $v(x)$. Equation (2) may be viewed as a usual Variation of Constants
\[\mu_t = P_t \mu_0 + \int_0^t P_{t-s} F(\mu_s) \, ds, \quad F(\mu) = -a\mu(\{1\}) \cdot \delta_1, \]

(3)

since \(\delta_1 \) is invariant under \((P_t)_{t \geq 0} \), i.e. \(P_t \delta_1 = \delta_1 \) for all \(t \). The key point here is, that \(F \) is not Lipschitz continuous, not even continuous on \(\mathcal{M}([0,1])_{BL} \), although \(t \mapsto \mu_t(\{1\}) \) is measurable such that (2) and (3) are well-defined.

The standard arguments for solving such equations use Picard iteration, and require Lipschitz continuity of the perturbation term to invoke Banach’s Fixed Point Theorem and Gronwall’s Lemma; see e.g. [2,4]. Still, problem (2) is well-posed for mild solutions, as will be shown below.

If \(x(\cdot, x_0) \) is the unique solution to \(\dot{x}(t) = v(x(t)), x(0) = x_0 \) and \(\tau_\partial(x_0) \in [0, \infty] \) is the time at which this solution reaches the boundary 0 or 1, then

\[\Phi_t(x_0) := \begin{cases}
 x(t; x_0), & \text{if } t \in I_{x_0}, \\
 x(\tau_\partial(x_0); x_0), & \text{otherwise},
\end{cases} \]

(4)

yields the stopped individualistic flow \((\Phi_t)_{t \geq 0} \) in \([0,1]\) along characteristics. \(P_t \) is the lift of \(\Phi_t \) to \(\mathcal{M}([0,1]) \) by means of push forward under \(\Phi_t \): for all \(\mu \in \mathcal{M}([0,1]) \), \(P_t \mu := \Phi_t # \mu = \mu \circ \Phi_t^{-1} \). \(P_t \) maps positive measures to positive measures and is mass preserving on positive measures. That is, \((P_t)_{t \geq 0} \) is a Markov semigroup on measures on \([0,1]\). One has \(\|P_t \mu\|_{TV} \leq \|\mu\|_{TV} \) and \(\|P_t \mu\|_{BL} \leq e^{\|v\|_L} \|\mu\|_{BL} \) for general \(\mu \in \mathcal{M}([0,1]) \).

2 Well-posedness results

Proposition 1 (Uniqueness) A solution to (2) in \(C(\mathbb{R}^+, \mathcal{M}([0,1])_{BL}) \) is unique, if it exists.

Proof. A modified argument of Gronwall-type shows the uniqueness of solutions. In fact, if (2) had two solutions \(\mu_t \) and \(\hat{\mu}_t \) on \([0, T]\), having the same initial data \(\mu_0 \), then for all \(t \geq 0, \)

\[\mu_t - \hat{\mu}_t = -a \int_0^t [\mu_s(\{1\}) - \hat{\mu}_s(\{1\})] \, ds \cdot \delta_1. \]

(5)

That is, two solutions can differ by mass concentrated at 1 only. Note that the integrand in (5) is a bounded measurable function. Evaluating the latter
The Jordan decomposition of the integrand in \((6)\) is a bounded continuous function from \([0,1]\) into \(\mathcal{M}([0,1])\). For each \(\mu_0 \in \mathcal{M}([0,1])\), there exists a continuous solution \(\mu : \mathbb{R}^+ \to \mathcal{M}([0,1])\) to (2) given by the Bochner integral

\[
\mu_t := \int_{[0,1]} e^{-a[t-\tau_\theta(x) \wedge t]} \delta_{\Phi_t(x)}(x) \, d\mu_0(x) \quad \text{in} \quad \mathcal{M}([0,1])_{\text{BL}}.
\]

Proof. The integrand in \((6)\) is a bounded continuous function from \([0,1]\) into \(\mathcal{M}^+([0,1])_{\text{BL}}\) (cf. Corollary 2.4 in [5]). Thus for \(\mu_0 \in \mathcal{M}([0,1])\), the Bochner integral exists, with value in \(\mathcal{M}^+([0,1])\), because this cone is closed. For \(\mu \in \mathcal{M}([0,1])\), the integral yields a measure in \(\mathcal{M}([0,1]) \subset \mathcal{M}^+([0,1])_{\text{BL}}\), by using the Jordan decomposition \(\mu_0 = \mu_0^+ - \mu_0^-\). Fix \(t_0 \in \mathbb{R}^+\) and let \(t \in \mathbb{R}^+\). Then

\[
\|\mu_t - \mu_0\|_{\text{BL}}^* \leq \int_{[0,1]} |e^{-a[t-\tau_\theta(x) \wedge t]} - e^{-a[t_0-\tau_\theta(x) \wedge t_0]}| \, d\mu_0(x)
\]

Continuity of the maps \(t \mapsto \Phi_t(x)\) and \(t \mapsto \exp(-a[t-\tau_\theta(x) \wedge t])\) and application of Lebesgue’s Dominated Convergence Theorem yield continuity of \(t \mapsto \mu_t\). We verify easily that \(\mu_t\) satisfies (2). Since the perturbation is not Lipschitz continuous, the standard Gronwall-like argument to obtain continuous dependence on initial conditions fails in this setting. Instead, we use (6).

Proposition 3 (Continuous dependence on initial conditions) For each \(T \geq 0\), there exists \(C_T > 0\) such that for all initial measures \(\mu_0, \mu'_0 \in \mathcal{M}^+([0,1])\)
the corresponding solutions μ and μ' to (2) satisfy for all $t \in [0, T]$

\[
\|\mu_t - \mu'_t\|^*_{BL} \leq C_T\|\mu_0 - \mu'_0\|^*_{BL}. \tag{7}
\]

Proof. In view of Lemma 2.2 (ii) in [5], we need to control the integral term in (2). It is the total amount of mass that disappeared from the system in the time interval $[0, t]$. To be precise, according to (2) and (6):

\[
a \int_0^t \mu_s(\{1\}) ds = P_t \mu_0(S) - \mu_t(S) = \|\mu_0\|_{TV} - e^{-at} \int_{[0,1]} e^{a[\tau_0(x) \land t]} d\mu_0(x)
\]

\[
= \|\mu_0\|^*_{BL} - e^{-at} \langle \mu_0, e^{a[\tau_0(\cdot) \land t]} \rangle. \tag{8}
\]

Note that the map $x \mapsto e^{a[\tau_0(\cdot) \land t]}$ is bounded Lipschitz (Corollary 2.4 in [5]):

\[
|e^{a[\tau_0(\cdot) \land t]}|_L \leq e^{at}|\tau_0(\cdot) \land t|_L \leq e^{at}|\tau_0(\cdot)|_L \quad \text{and} \quad \|e^{a[\tau_0(\cdot) \land t]}\|_\infty \leq e^{at}.
\]

Therefore, using Lemma 2.2. from [5] and (8),

\[
\|\mu_t - \mu'_t\|^*_{BL} \leq \|P_t(\mu_0 - \mu'_0)\|^*_{BL} + \int_0^t |\mu_s(\{1\}) - \mu'_s(\{1\})| ds
\]

\[
\leq e^{\|v\|L^t}\|\mu_0 - \mu'_0\|^*_{BL} + \|\mu_0\|^*_{BL} - \|\mu'_0\|^*_{BL} + e^{-at}|\langle \mu_0 - \mu'_0, e^{a[\tau_0(\cdot) \land t]} \rangle|
\]

\[
\leq \|\mu_0 - \mu'_0\|^*_{BL} \left(e^{\|v\|L^t} + 1 + e^{-at}\|e^{a[\tau_0(\cdot) \land t]}\|_{BL}\right)
\]

\[
\leq (e^{\|v\|L^t} + 2 + |\tau_0(\cdot)|_L) \|\mu_0 - \mu'_0\|^*_{BL}.
\]

The factor in front of $\|\mu_0 - \mu'_0\|^*_{BL}$ is dominated by some C_T for $t \in [0, T]$.

3 Approximation results

We consider a countable family of regularized systems defined by a decreasing sequence $(f_n) \subset \text{BL}([0, 1])$ of regularizers. Define $f_n(x) := [n(x - (1 - \frac{1}{n}))]^+$, where $[\cdot]^+$ denotes the positive part of the argument. Denote by $\mu^{(n)}$ the mild solution to the regularized system defined by (3) with $F(\mu) = -af_n \cdot \mu$ for initial condition $\mu_0 \in \mathcal{M}^+([0, 1])$. This perturbation is a bounded linear operator on $\mathcal{M}([0, 1])$ with $\|F\| \leq n + 1$. Therefore, standard arguments yield the global existence, uniqueness and (Lipschitz) continuous dependence on initial conditions of positive measure-valued solutions.
A regularized solution can be viewed as describing the state of a system where there is absorption in a small layer (here of width $\frac{1}{n}$) at the boundary. We report here the following result:

Theorem 4 Let $\mu_0 \in \mathcal{M}^+([0,1])$ be the initial datum. Then the sequence of solutions $(\mu_0^{(n)})$ to the regularized systems defined by (f_n) is a Cauchy sequence in the space $C([0,T],\mathcal{M}^+([0,1])_{BL})$ for each $T > 0$. Moreover,

$$\|\mu_t^{(n)} - \mu_t\|_{BL} = \mathcal{O}(\frac{1}{n}) \quad \text{as } n \to \infty,$$

uniformly on compact time intervals.

The proofs of these results are given in Sections 4.2 and 4.3 of Ref. [5].

References

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-21</td>
<td>P.J.P. van Meurs, A. Muntean, M.A. Peletier</td>
<td>Upscaling of dislocation walls in finite domains</td>
<td>Aug. '13</td>
</tr>
<tr>
<td>13-23</td>
<td>J.C. van der Meer</td>
<td>The Kepler system as a reduced 4D harmonic oscillator</td>
<td>Oct. '13</td>
</tr>
</tbody>
</table>