Machine integrated gearbox for electrical vehicles

Gerrits, T.; Wijnands, C.G.E.; Paulides, J.J.H.; Duarte, J.L.; Lomonova, E.

Published in:
Proceedings of the Fisita World Automotive Congress, 2-6 June 2014, Maastricht, The Netherlands

Published: 01/01/2014

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 09. Jan. 2019
MACHINE INTEGRATED GEARBOX FOR ELECTRIC VEHICLES

Gerrits, Thomas*; Wijnands, Korneel; Paulides, Johan; Duarte, Jorge; Lomonova, Elena
Eindhoven University of Technology, The Netherlands

Keywords
Electric Vehicle; Actuation Concepts; Machine Integrated Gearbox; Modular Drive; EV Transmission

Research and/or Engineering Questions/Objective
The required electric machine (EM) power to propel an electric vehicle (EV) depends heavily on the speed ratio (SR) that can be obtained by the drive-line. An increased SR reduces the required EM power for a given vehicle weight and acceleration profile. A method is presented, capable of increasing the SR of an EM without the need for weakening the machine magnetic field, potentially improving the drive-line efficiency.

Methodology
To increase the speed ratio of an EM, a speed dependent reconfigurable stator winding structure is presented, named dynamic machine operation (DMO). With DMO, a high starting torque can be combined with a high final speed, as required for traction. Transitions between the different winding structures can be executed during acceleration, realizing a machine integrated gearbox as a result. An overview of existing transmission systems used for EVs, capable of increasing the speed range is presented. The advantages and disadvantages of these systems are weighted and compared with the DMO principle. The open-winding structure EM is powered by an unconventional modular power electronics (PE) system capable of driving each of the winding sections individually or in a per phase series connected manner.

Results
In the paper, simulation and measurement results of different operating modi will be presented and compared. The multi-phase test machine is coupled to a DC load machine, which is driven according to a speed profile or drive cycle. The control methods are tested and will be detailed. The implemented 12 leg voltage source inverter measurement setup has been tested successfully and its operation will be made clear. Efficiency plots of the PE, the EM and the complete drive system are presented for various torque levels.

Limitations of this study
The different operation modi of the DMO principle are demonstrated, however, no transitions between the modi are shown in this paper, due to the restricted number of pages.

What does the paper offer that is new in the field including in comparison to other work by the authors?
Compared to previously published work of the authors, the detailed simulations of the proposed DMO principle including a multiple-harmonics feed-forward controller executed in Matlab Simulink applying PLECS is new. Furthermore, the performed measurements proving the feasibility of the concept are also new.

Conclusions
A new EV propulsion system increasing the speed range of an EM is presented, explained, simulated, and measured. As a result, the machine power requirement for a given dynamical vehicle response can be reduced, potentially improving the drive-line efficiency.