Homogenization of a thermo-diffusion system with Smoluchowski interactions
Krehel, O.; Aiki, T.; Muntean, A.

Published in:
Networks and Heterogeneous Media

DOI:
10.3934/nhm.2014.9.739

Published: 01/01/2014

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
HOMOGENIZATION OF A THERMO-DIFFUSION SYSTEM WITH SMOLUCHOWSKI INTERACTIONS

OLEH KREHEL
Department of Mathematics and Computer Science
CASA – Center for Analysis, Scientific computing and Engineering
Eindhoven University of Technology
5600 MB, PO Box 513, Eindhoven, The Netherlands

TOYOHIKO AIKI
Department of Mathematical and Physical Sciences, Faculty of Science
Japan Women’s University, Tokyo, Japan

ADRIAN MUNTEAN
Department of Mathematics and Computer Science
CASA – Center for Analysis, Scientific computing and Engineering
ICMS – Institute for Complex Molecular Systems
Eindhoven University of Technology
5600 MB, PO Box 513, Eindhoven, The Netherlands

Abstract. We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale convergence techniques, allows the investigation of deposition effects in porous materials in the presence of thermal gradients.

1. Introduction. We aim at understanding processes driven by coupled fluxes through media with microstructures. In this paper, we study a particular type of coupling: we look at the interplay between diffusion fluxes of a fixed number of colloidal populations and a heat flux, the effects included here are incorporating an approximation of the Dufour ad Soret effects (cf. Section 2.3, see also [6]. The type of system of evolution equations that we encounter in Section 2.4 resembles very much cross-diffusion and chemotaxis-like systems; see e.g. [29, 10]. The structure of the chosen equations is useful in investigating transport, interaction, and deposition of a large numbers of hot multiple-sized particles in porous media.

Practical applications of our approach would include predicting the response of refractory concrete to high-temperatures exposure in steel furnaces, propagation of combustion waves due to explosions in tunnels, drug delivery in biological tissues, etc.; see for instance [3, 4, 25, 28, 12, 11]. In the paper [15] we study quantitatively some of these effects, focusing on colloids deposition under thermal gradients. Within this framework, our focus lies exclusively on two distinct theoretical aspects:

2010 Mathematics Subject Classification. Primary: 35B27, 35K59; Secondary: 80M40, 80A25.
Key words and phrases. Homogenization, well-posedness, colloids, thermal-diffusion, cross-diffusion, combustion.
(i) the mathematical understanding of the microscopic problem (i.e. the well-posedness of the starting system);
(ii) the averaging of the thermo-diffusion system over arrays of periodically-distributed microstructures (the so-called, homogenization asymptotics limit; see, for instance, [5, 19] and references cited therein).

The complexity of the microscopic system makes numerical simulations on the macro scale very expensive. That is the reason that the aspect (ii) is of concern here. Obviously, the study does not close with these questions. Many other issues like derivation of corrector estimates, design of efficient convergent numerical multiscale schemes, multiscale parameter identification etc. need also to be treated. Possible generalizations could point out to coupling heat transfer with Nernst-Planck-Stokes systems (extending [24]) or with semiconductor equations [18]. The paper is structured in the following manner. We present the basic notation and explain the multiscale geometry as well as some of the relevant physical processes in Section 2. Section 3 contains the proof of the solvability of the microstructure model. Finally, the homogenization procedure is performed in Section 4. The strong formulation of the upscaled thermo-diffusion model with Smoluchowski interactions is emphasized in Section 4.3.

2. Notations and assumptions.

2.1. Model description and geometry. The geometry of the problem is depicted in Figure 1. The standard cell is shown in Figure 2.

\[
\begin{align*}
(0, T) & = \text{time interval of interest} \\
\Omega & = (0, L) \times \cdots \times (0, L) \text{ bounded domain in } \mathbb{R}^n \text{ for } L > 0 \\
\varepsilon & = \frac{L}{\ell} \text{ for any integer } \ell \\
\partial \Omega & = \text{piecewise smooth boundary of } \Omega \\
\bar{e}_i & = \text{i}th \text{ unit vector in } \mathbb{R}^n \\
\mathcal{Y} & = \{\sum_{i=1}^n \lambda_i \bar{e}_i : 0 < \lambda_i < 1\} \text{ unit cell in } \mathbb{R}^n \\
\mathcal{Y}_0 & = \text{open subset of } \mathcal{Y} \text{ that represents the solid grain} \\
\mathcal{Y}_1 & = \mathcal{Y} \setminus \mathcal{Y}_0 \\
\Gamma & = \partial \mathcal{Y}_0 \text{ piecewise smooth boundary of } \mathcal{Y}_0 \\
X^k & = X + \sum_{i=1}^n k_i \bar{e}_i, \text{ where } k = (k_1, \ldots, k_n) \in \mathbb{Z}^n \text{ and } X \subset \mathcal{Y} \\
\mathcal{Y}_0^k & = \bigcup\{\varepsilon \mathcal{Y}_0 \bigm/ (\mathcal{Y}_0^k \subset \mathcal{Y}, k \in \mathbb{Z}^n\} \text{ pore skeleton} \\
\Omega^\varepsilon & = \Omega \setminus \mathcal{Y}_0^k \text{ pore space} \\
\Gamma^\varepsilon & = \partial \mathcal{Y}_0^k \text{ boundary of the pore skeleton}
\end{align*}
\]

The cells regions without the grain \(\varepsilon \mathcal{Y}_1^k\) are filled with water and we denote their union by \(\Omega^\varepsilon\). Colloidal species are dissolved in the pore water. They react between themselves and participate in diffusion and convective transport. The colloidal matter cannot penetrate the grain boundary \(\Gamma^\varepsilon\), but it deposits there reducing the amount of mass floating inside \(\Omega^\varepsilon\). Here \(\partial \Omega^\varepsilon = \partial \Omega \cup \Gamma^\varepsilon\), where \(\Gamma^\varepsilon = \Gamma^\varepsilon_N \cup \Gamma^\varepsilon_R\) and \(\Gamma^\varepsilon_N \cap \Gamma^\varepsilon_R = \emptyset\). The boundary \(\Gamma^\varepsilon_N\) is insulated to the heat flow, while \(\Gamma^\varepsilon_R\) admits flux. The unknowns are:

- \(\theta^\varepsilon\) – the temperature in \(\Omega^\varepsilon\).
- \(u_i^\varepsilon\) – the concentration of the species that contains \(i\) monomers in \(\Omega^\varepsilon\).
- \(\nu_i^\varepsilon\) – the mass of the deposited species on \(\Gamma^\varepsilon\).
A THERMO-DIFFUSION SYSTEM WITH SMOLUCHOWSKI INTERACTIONS

Figure 1. Porous medium geometry $\Omega^\varepsilon = \Omega \setminus \Omega_0^\varepsilon$, where the pore skeleton $\Omega_0^\varepsilon$ is marked with gray color and the pore space $\Omega^\varepsilon$ is white.

Figure 2. The unit cell geometry. The colloidal species $u_i^\varepsilon$ and temperature $\theta^\varepsilon$ are defined in $\Omega^\varepsilon$, while the deposited species $v_i^\varepsilon$ are defined on $\Gamma^\varepsilon = \Gamma_R^\varepsilon \cup \Gamma_N^\varepsilon$. The boundary conditions for $\theta^\varepsilon$ differ on $\Gamma_R$ and $\Gamma_N$, while the boundary conditions for $u_i^\varepsilon$ are uniform on $\Gamma^\varepsilon$.

Furthermore, for a given $\delta > 0$ we introduce the mollifier:

$$J_\delta(s) := \begin{cases} C e^{\varepsilon/(|s|^2 - \delta^2)} & \text{if } |s| < \delta, \\ 0 & \text{if } |s| \geq \delta, \end{cases}$$

(1)

where the constant $C > 0$ is selected such that

$$\int_{\mathbb{R}^d} J_\delta = 1,$$

see [8] for details.
Using $J_\delta$ from (1), define the mollified gradient:

$$\nabla^\delta f := \nabla \left[ \int_{B(x,\delta)} J_\delta(x-y) f(y) dy \right].$$  \hspace{1cm} (2)

The following statement holds for all $1 \leq p \leq \infty$:

$$\| \nabla^\delta f \cdot g \|_{L^p(\Omega^\varepsilon)} \leq c_\delta \| f \|_{L^\infty(\Omega^\varepsilon)} \| g \|_{L^p(\Omega^\varepsilon)}$$  \hspace{1cm} (3)

$$\| \nabla^\delta f \|_{L^p(\Omega^\varepsilon)} \leq c_\delta \| f \|_{L^2(\Omega^\varepsilon)}$$  \hspace{1cm} (4)

In the equations below all norms are $L^2(\Omega^\varepsilon)$ unless specified otherwise, with $c_\delta$ independent of the choice of $\varepsilon$.

2.2. Smoluchowski population balance equations. We want to model the transport of aggregating colloidal particles under the influence of thermal gradients. We use the Smoluchowski population balance equation, originally proposed in [27], to account for colloidal aggregation:

$$R_i(s) := \frac{1}{2} \sum_{k+j=i} \beta_{kj} s_k s_j - \sum_{j=1}^N \beta_{ij} s_i s_j, \quad i \in \{1, \ldots, N\}; \quad N > 2.$$  \hspace{1cm} (5)

Here $s_i$ is the concentration of the colloidal species that consists of $i$ monomers, $N$ is the number of species, i.e. the maximal aggregate size that we consider, $R_i(s)$ is the rate of change of $s_i$, and $\beta_{ij} > 0$ are the coagulation coefficients, which tell us the rate aggregation between particles of size $i$ and $j$ [7]. Colloidal aggregation rates are described in more detail in [14].

2.3. Soret and Dufour effects. The system we have in mind is inspired by the model proposed by Shigesada, Kawasaki and Teramoto [26] in 1979 when they have studied the segregation of competing species. For the case of two interacting species $u$ and $v$, the diffusion term looks like:

$$\partial_t u = \Delta (d_1 u + \alpha u v),$$  \hspace{1cm} (6)

where the second term in the flux is due to cross-diffusion. The second term can be expressed as:

$$\Delta(uv) = u \Delta v + v \Delta u + 2 \nabla u \cdot \nabla v.$$  \hspace{1cm} (7)

As a first step in our approach, we consider only the last term of (7), i.e. $\nabla u \cdot \nabla v$, as the driving force of cross-diffusion and we postpone the study of terms $u \Delta v$ and $v \Delta u$ until later.

From mathematical point of view, still it is not easy to treat the term $\nabla u \cdot \nabla v$. Hence, in the paper we approximate this term by $\nabla^\delta u \cdot \nabla v$ for $\delta > 0$.

2.4. Setting of the model equations. We consider the following balance equations for the temperature and colloid concentrations:

$$(P^\varepsilon):$$

$$\partial_t \theta^\varepsilon + \nabla \cdot \left( -\kappa^\varepsilon \nabla \theta^\varepsilon \right) - \tau^\varepsilon \sum_{i=1}^N \nabla^\delta \theta^\varepsilon \cdot \nabla u_i^\varepsilon = 0, \quad \text{in} \ (0, T) \times \Omega^\varepsilon,$$  \hspace{1cm} (8)

$$\partial_t u_i^\varepsilon + \nabla \cdot \left( -d_i^\varepsilon \nabla u_i^\varepsilon \right) - \delta_i^\varepsilon \nabla^\delta \theta^\varepsilon \cdot \nabla u_i^\varepsilon = R_i(u^\varepsilon), \quad \text{in} \ (0, T) \times \Omega^\varepsilon,$$  \hspace{1cm} (9)
with boundary conditions:
- \( \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nu = 0 \), \( \text{on } (0, T) \times \Gamma_N^\varepsilon \), \( \text{(10)} \)
- \( \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nu = \varepsilon g_{0\varepsilon} \theta^\varepsilon \), \( \text{on } (0, T) \times \Gamma_R^\varepsilon \), \( \text{(11)} \)
- \( \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nu = 0 \), \( \text{on } \partial \Omega \), \( \text{(12)} \)
- \( -d_i^\varepsilon \nabla u_i^\varepsilon \cdot \nu = 0 \), \( \text{on } \partial \Omega \), \( \text{(13)} \)

where \( \nu \) is the outward normal vector on the boundary and a boundary condition for colloidal deposition:

\[-d_i^\varepsilon \nabla u_i^\varepsilon \cdot \nu = \varepsilon(a_i u_i^\varepsilon - b_i v_i^\varepsilon) \), \( \text{on } (0, T) \times \Gamma^\varepsilon \), \( \text{(14)} \)

\[\partial_t v_i^\varepsilon = a_i u_i^\varepsilon - b_i v_i^\varepsilon \), \( \text{on } (0, T) \times \Gamma^\varepsilon \). \( \text{(15)} \)

As initial conditions, we take for \( i \in \{1, \ldots, N\} \):

\[\theta^\varepsilon(0, x) = \theta_i^{\varepsilon, 0}(x) \), \( \text{in } \Omega^\varepsilon \), \( \text{(16)} \)

\[u_i^\varepsilon(0, x) = u_i^{\varepsilon, 0}(x) \), \( \text{in } \Omega^\varepsilon \), \( \text{(17)} \)

\[v_i^\varepsilon(0, x) = v_i^{\varepsilon, 0}(x) \), \( \text{on } \Gamma^\varepsilon \). \( \text{(18)} \)

**Table 1. Physical parameters of \((P^\varepsilon)\).**

| \( \kappa^\varepsilon \) | heat conduction coefficient |
| \( d_i^\varepsilon \) | diffusion coefficient |
| \( \tau^\varepsilon \) | Soret coefficient |
| \( \delta^\varepsilon \) | Dufour coefficient |
| \( g_i \) | Robin boundary coefficient, \( i \in \{0, \ldots, N\} \) |
| \( a_i \) | Deposition coefficient 1, \( i \in \{1, \ldots, N\} \) |
| \( b_i \) | Deposition coefficient 2, \( i \in \{1, \ldots, N\} \) |

We refer to (8)-(18) as \((P^\varepsilon)\) — our reference microscopic model. Note that the Soret and Dufour coefficients determine the structure of the particular cross-diffusion system (see [6], [26], [2], [3], [22], [29]). The coefficients \( a_i \) and \( b_i \) describe the deposition interaction between \( u_i^\varepsilon \) and \( v_i^\varepsilon \). Consequently, each \( u_i^\varepsilon \) has a different affinity to sediment as well as a different mass.

All functions defined in \( \Omega^\varepsilon \) are taken to be \( \varepsilon \)-periodic, i.e. \( \kappa^\varepsilon(x) = \kappa(x/\varepsilon) \) and so on.

Note the use of the mollified gradient in the cross diffusion terms in (8) and (9). This is a choice that we have to make at this point in order to obtain the necessary estimates for our equations. From a physical point of view, smoothed gradients causing advection can be interpreted as there being no turbulence.

**2.5. Assumptions on data.**

\((A_1)\): \( \kappa, \tau, d_i, \delta_i \in L^\infty(Y) \) for each \( i \in \{1, \ldots, N\} \). Moreover, \( \kappa_0 \leq \kappa \leq \kappa_\ast, \tau \leq \tau_\ast, d_0 \leq d_i \leq d_\ast, \delta_i \leq \delta_\ast \) on \( Y \) for \( i \in \{1, \ldots, N\} \), where \( \kappa_0, \kappa_\ast, d_0, d_\ast \) and \( \delta_\ast \) are positive constants. Also, \( a_i \) and \( b_i \) are positive constants for \( i \in \{1, \ldots, N\} \), and we put \( a_0 = \min(a_1, a_2, \ldots, a_N) \), \( a_\ast = \max(a_1, a_2, \ldots, a_N) \), and \( b_\ast = \max(b_1, b_2, \ldots, b_N) \).

\((A_2)\): \( \theta^\varepsilon, 0 \in L^\infty_0(\Omega^\varepsilon) \cap H^1(\Omega^\varepsilon), u_i^{\varepsilon, 0} \in L^\infty_0(\Omega^\varepsilon) \cap H^1(\Omega^\varepsilon), v_i^{\varepsilon, 0} \in L^\infty_0(\Gamma^\varepsilon) \) for \( i \in \{1, \ldots, N\} \) and \( \varepsilon > 0 \). Moreover, \( ||\theta^\varepsilon, 0||_{H^1(\Omega^\varepsilon)} \leq C_0, ||u_i^{\varepsilon, 0}||_{H^1(\Omega^\varepsilon)} \leq C_0, \) and \( ||v_i^{\varepsilon, 0}||_{L^\infty(\Gamma^\varepsilon)} \leq C_0 \) for \( i \in \{1, \ldots, N\} \) and \( \varepsilon > 0 \). Here \( C_0 \) is a positive
Remark 2.1. By the definitions of \( \kappa^\varepsilon, d_i^\varepsilon, \tau^\varepsilon, \delta_i^\varepsilon \) and \( (A_1) \), it holds that \( \kappa_0 \leq \kappa^\varepsilon \leq \kappa_* \), \( \tau^\varepsilon \leq \tau_* \), \( d_0 \leq d_i^\varepsilon \leq d_* \), \( \delta_i^\varepsilon \leq \delta_* \) on \( \Omega^\varepsilon \) for \( i \in \{1, \ldots, N\} \) and each \( \varepsilon > 0 \).

3. Global solvability of problem \((P^\varepsilon)\).

Definition 1. The triplet \( (\theta^\varepsilon, u_i^\varepsilon, v_i^\varepsilon) \) is a solution to problem \((P^\varepsilon)\) if the following holds:

\[
\begin{align*}
\theta^\varepsilon, u_i^\varepsilon & \in H^1(0,T;L^2(\Omega^\varepsilon)) \cap L^\infty(0,T;H^1(\Omega^\varepsilon)) \cap L^\infty((0,T) \times \Omega^\varepsilon), \\
v_i^\varepsilon & \in H^1(0,T;L^2(\Gamma^\varepsilon)) \cap L^\infty((0,T) \times \Gamma^\varepsilon),
\end{align*}
\]

for all \( \phi \in H^1(\Omega^\varepsilon) \):

\[
\int_{\Omega^\varepsilon} \partial_t \theta^\varepsilon \phi + \int_{\Omega^\varepsilon} \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nabla \phi + \varepsilon g_0 \int_{\Gamma^\varepsilon_R} \theta^\varepsilon \phi = \sum_{i=1}^N \int_{\Gamma^\varepsilon} \tau^\varepsilon \delta_i^\varepsilon u_i^\varepsilon \cdot \nabla \theta^\varepsilon \phi,
\]

for all \( \psi_i \in H^1(\Omega^\varepsilon) \):

\[
\begin{align*}
\int_{\Omega^\varepsilon} \partial_t u_i^\varepsilon \psi_i & + \int_{\Omega^\varepsilon} d_i^\varepsilon \nabla u_i^\varepsilon \cdot \nabla \psi_i + \varepsilon \int_{\Gamma^\varepsilon} (a_i u_i^\varepsilon - b_i v_i^\varepsilon) \psi_i \\
& = \int_{\Omega^\varepsilon} \delta_i^\varepsilon \nabla \theta^\varepsilon \cdot \nabla u_i^\varepsilon \psi_i + \int_{\Omega^\varepsilon} R_i(u^\varepsilon) \psi_i,
\end{align*}
\]

for all \( \varphi_i \in L^2(\Gamma^\varepsilon) \):

\[
\int_{\Gamma^\varepsilon} \partial_t v_i^\varepsilon \varphi_i = \int_{\Gamma^\varepsilon} (a_i u_i^\varepsilon - b_i v_i^\varepsilon) \varphi_i,
\]

for all \( i \in \{1, \ldots, N\} \).

Remark 3.1. We note that each term appearing in Definition 1 is finite, since \( \nabla \theta^\varepsilon \) and \( \nabla \theta^\varepsilon \) are bounded in \( \Omega^\varepsilon \) due to (3).

To prove the existence of solutions to problem \((P^\varepsilon)\), we introduce the following auxiliary problems as iterations steps of the coupled system:

\( (P_1) \):

\[
\begin{align*}
\partial_t \theta^\varepsilon + \nabla \cdot (-\kappa^\varepsilon \nabla \theta^\varepsilon) - \tau^\varepsilon \sum_{i=1}^N \nabla \delta_i^\varepsilon u_i \cdot \nabla \theta^\varepsilon & = 0, & \text{in } (0,T) \times \Omega^\varepsilon, \\
- \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nu & = 0, & \text{on } (0,T) \times \Gamma^\varepsilon_N, \\
- \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nu & = \varepsilon g_0 \theta^\varepsilon, & \text{on } (0,T) \times \Gamma^\varepsilon_R, \\
- \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nu & = 0, & \text{on } (0,T) \times \partial \Omega, \\
\theta^\varepsilon(0,x) & = \theta^{\varepsilon,0}(x), & \text{in } \Omega^\varepsilon,
\end{align*}
\]

and
Lemma 3.2. Existence of solutions to $(P)$ for all $\phi$ and that solves $(P)$ that solves $(P)$ and use the Banach fixed point theorem to prove the existence and uniqueness of solutions to $(P)$. We define the solution operators $(P)$.

Let $\theta$ we denote by $\theta$ that.

Proof. Let $\theta$ we denote by $\theta$ that.

Here

$$R_i^M(s) := R_i(\sigma_M(s_1), \sigma_M(s_2), \ldots, \sigma_M(s_N))$$

for $s \in \mathbb{R}^N$

(23)

denotes our choice of truncation of $R_i$, where

$$\sigma_M(r) := \begin{cases} 0, & r < 0, \\ r, & r \in [0, M], \\ M, & r > M, \end{cases}$$

(24)

where $M > 0$ is a fixed threshold. Note that if $M$ is large enough, the essential bounds obtained later in this paper will remain below $M$. This means that the existence result is obtained also for the uncut rates.

In the following, assuming $(A_1)$–$(A_2)$, we show the existence, positivity and boundedness of solutions to $(P_1)$ and $(P_2)$.

When we denote the solutions of $P_1(\bar{u})$ by $\theta^\varepsilon$ and of $P_2(\bar{\theta})$ by $(u_i^\varepsilon, v_i^\varepsilon)$, respectively, we can define the solution operators $(\theta^\varepsilon, u_i^\varepsilon) = T(\bar{\theta}, \bar{u}_i)$ and $v_i^\varepsilon = T_2(\bar{\theta}, \bar{u}_i)$. We will show that the operator $T$ is a contraction in the appropriate functional spaces and use the Banach fixed point theorem to prove the existence and uniqueness of solutions to $(P)^\varepsilon$.

Notation 1. Let $K(T, M) := \{z \in L^2(0, T; L^2(\Omega^\varepsilon)) : |z| \leq M \text{ a.e. on } (0, T) \times \Omega^\varepsilon\}$.

Lemma 3.2. Existence of solutions to $(P_1)$. Let $\bar{u}_i \in K(T, M)$, and assume that $(A_1)$–$(A_2)$ hold. Then there exists $\theta^\varepsilon \in H^1(0, T; L^2(\Omega^\varepsilon)) \cap L^\infty(0, T; H^1(\Omega^\varepsilon))$ that solves $(P_1)$ in the sense:

for all $\phi \in H^1(\Omega^\varepsilon)$ and a.e. in $[0, T]$:

$$\int_{\Omega^\varepsilon} \partial_t \theta^\varepsilon \phi + \int_{\partial \Omega^\varepsilon} \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nabla \phi + \varepsilon g_0 \int_{\Omega^\varepsilon} \theta^\varepsilon \phi = \sum_{i=1}^N \int_{\Omega^\varepsilon} \tau^\varepsilon \nabla \bar{u}_i \cdot \nabla \theta^\varepsilon \phi,$$

(25)

and

$$\theta^\varepsilon(0, x) = \theta^{\varepsilon, 0}(x) \quad \text{a.e. in } \Omega^\varepsilon.$$

(26)

Proof. Let $\{\xi_j\}$ be a Schauder basis of $H^1(\Omega^\varepsilon)$. Then for each $n \in \mathbb{N}$ there exists

$$\theta^{\varepsilon, 0}_n(x) := \sum_{j=1}^n \alpha_{j}^{n, 0} \xi_j(x)$$

such that $\theta^{\varepsilon, 0}_n \to \theta^{\varepsilon, 0}$ in $H^1(\Omega^\varepsilon)$ as $n \to \infty$.

(27)

We denote by $\theta^{\varepsilon}_n$ the Galerkin approximation of $\theta^\varepsilon$, that is:

$$\theta^{\varepsilon}_n(t, x) := \sum_{j=1}^n \alpha_{j}^{n} (t) \xi_j(x) \quad \text{for all } (t, x) \in (0, T) \times \Omega^\varepsilon.$$

(28)
By definition, $\theta_n^e$ must satisfy (25) for all $\phi \in \text{span}\{\xi_j\}_{j=1}^n$, i.e.:

$$
\int_{\Omega^e} \partial_t \theta_n^e \phi + \int_{\Omega^e} \kappa \nabla \theta_n^e \cdot \nabla \phi + \varepsilon g_0 \int_{\Gamma^e_n} \theta_n^e \phi = \sum_{i=1}^{N} \int_{\Gamma^e_i} \tau \nabla \delta \bar{u}_i \cdot \nabla \theta_n^e \phi. \tag{29}
$$

The coefficients $\alpha_i^n(t)$ can be found by testing (29) with $\phi = \xi_i$ and using (27) to solve the resulting ODE system:

$$
\partial_t \alpha_i^n(t) + \sum_{j=1}^{n} (A_{ij} + B_{ij} - C_{ij}) \alpha_j^n(t) = 0, \quad i \in \{1, \ldots, n\}, \tag{30}
$$

$$
\alpha_i^n(0) = \alpha_i^0. \tag{31}
$$

The coefficients in (30) and (31) are defined by the following expressions

$$
A_{ij} := \int_{\Omega^e} \kappa \nabla \xi_i \cdot \nabla \xi_j, \quad i, j \in \{1, \ldots, n\},
$$

$$
B_{ij} := \varepsilon g_0 \int_{\Gamma^e_i} \xi_i \xi_j, \quad i, j \in \{1, \ldots, n\},
$$

$$
C_{ij} := \sum_{k=1}^{N} \int_{\Gamma^e_k} \tau \nabla \delta \bar{u}_k \cdot \nabla \xi_i \xi_j \quad i, j \in \{1, \ldots, n\}.
$$

Since the system (30) is linear, there exists for each fixed $n \in \mathbb{N}$ a unique solution $\alpha_i^n \in C^1([0, T])$.

To prove uniform estimates for $\theta_n^e$ with respect to $n$, we take in (29) $\phi = \theta_n^e$. We obtain:

$$
\frac{1}{2} \partial_t \|\theta_n^e\|^2 + \kappa_0 \|\nabla \theta_n^e\|^2 + \varepsilon g_0 \|\theta_n^e\|_{L^2(\Gamma^e_n)}^2 \leq \sum_{i=1}^{N} \int_{\Omega^e} \tau \nabla \delta \bar{u}_i \cdot \nabla \theta_n^e \theta_n^e := \tau \sum_{i=1}^{N} A_i.
$$

Using the Cauchy-Schwarz inequality and Young’s inequality in the form $ab \leq \eta a^2 + b^2/4\eta$, where $\eta > 0$, we get:

$$
A_i \leq \eta \|\nabla \theta_n^e\|^2 + \frac{1}{4\eta} \|\nabla \delta \bar{u}_i \theta_n^e\|^2 \leq \eta \|\nabla \theta_n^e\|^2 + \frac{1}{4\eta} \|\nabla \delta \bar{u}_i\|_{L^4(\Omega^e)}^4 \|\theta_n^e\|^2_{L^4(\Omega^e)}.
$$

The mollifier property (3) yields $\|\nabla \delta \bar{u}_i\|_{L^4(\Omega^e)}^4 \leq c^4 \|\bar{u}_i\|_{L^\infty}^2$. Using Gagliardo-Nirenberg inequality (see [23] e.g.), we get:

$$
\|\theta_n^e\|^2_{L^4(\Omega^e)} \leq c \|\theta_n^e\|^{1/2} \|\nabla \theta_n^e\|^{3/2}. \tag{32}
$$

Applying Young’s inequality, we obtain:

$$
c \|\theta_n^e\|^{1/2} \|\nabla \theta_n^e\|^{3/2} \leq \eta \|\nabla \theta_n^e\|^2 + c_\eta \|\theta_n^e\|^2. \tag{33}
$$

Finally, we obtain the structure:

$$
\frac{1}{2} \partial_t \|\theta_n^e\|^2 + (\kappa_0 - 2N\eta) \|\nabla \theta_n^e\|^2 + \varepsilon g_0 \|\theta_n^e\|_{L^2(\Gamma^e_n)}^2 \leq c_\eta \sum_{i=1}^{N} \|\bar{u}_i\|^2 \|\theta_n^e\|^2.
$$

For a small $\eta > 0$ Gronwall’s lemma gives:

$$
\|\theta_n^e(t)\|^2 + \kappa_0 \int_0^t \|\nabla \theta_n^e(t)\|^2 < C \quad \text{for } t \in (0, T),
$$

where $C$ depends on $\kappa_0$, $g_0$, and $\|\bar{u}_i\|_{L^\infty}$.
where $C > 0$ is independent of $n$ and $\varepsilon$, since $\bar{u}_i$ are uniformly bounded. This ensures that

$$\{\theta^\varepsilon_n\} \text{ is bounded in } L^\infty(0, T; L^2(\Omega^\varepsilon)) \cap L^2(0, T; H^1(\Omega^\varepsilon)).$$ (34)

To show uniform estimates for $\partial_t \theta^\varepsilon_n$ with respect to $n$, we can take $\phi = \partial_t \theta^\varepsilon_n$ in (29). Indeed, by the formula (28) of $\theta^\varepsilon_n$, $\partial_t \theta^\varepsilon_n = \sum_{j=1}^n (\partial_t \alpha^\varepsilon_j) \xi_j$ so that $\partial_t \theta^\varepsilon_n \in \text{span}\{\xi_j\}_{j=1}^n$. Then by using the Cauchy-Schwarz and Young’s inequalities, as well as the mollifier property (3) we get:

$$\|\partial_t \theta^\varepsilon_n\|^2 + \frac{1}{2} \partial_t \|\sqrt{\kappa^\varepsilon \nabla \theta^\varepsilon_n}\|^2 + \varepsilon \frac{g_0}{2} \partial_t \|\theta^\varepsilon_n\|_{L^2(\Gamma^\varepsilon_n)}^2 \leq \tau_s \sum_{i=1}^N \int_{\Omega^\varepsilon} |\nabla^\delta \bar{u}_i \cdot \nabla \theta^\varepsilon_n \partial_t \theta^\varepsilon_n|$$

$$\leq \left( e^{\delta \tau_s} \sum_{i=1}^N \|\bar{u}_i\|_{L^\infty(\Omega^\varepsilon)} \right) \left( \eta \|\partial_t \theta^\varepsilon_n\|^2 + C_\eta \|\nabla \theta^\varepsilon_n\|^2 \right) \text{ for } \eta > 0.$$ (35)

By taking a small $\eta > 0$ and using (34), it holds that:

$$\kappa_0 \|\nabla \theta^\varepsilon_n\|^2 + \int_0^T \|\partial_t \theta^\varepsilon_n\|^2 < C \quad \text{for all } t \in (0, T),$$

where $C > 0$ depends on $\delta$, but is independent of $n$ and $\varepsilon$. Together with (34) this ensures that:

$$\{\theta^\varepsilon_n\} \text{ is bounded in } H^1(0, T; L^2(\Omega^\varepsilon)) \cap L^\infty(0, T; H^1(\Omega^\varepsilon)).$$ (36)

Hence, we can choose a subsequence $\theta^\varepsilon_{n_k} \rightharpoonup \theta^\varepsilon$ in $H^1(0, T; L^2(\Omega^\varepsilon))$ and $\theta^\varepsilon_{n_k} \rightarrow \theta^\varepsilon$ in $L^\infty(0, T; H^1(\Omega^\varepsilon))$ as $k \rightarrow \infty$.

Now, using

$$v_m(t, x) := \sum_{j=1}^m \beta^\varepsilon_j(t) \xi_j(x)$$ (37)

as a test function in (29) and integrating with respect to time we get:

$$\int_0^T \int_{\Omega^\varepsilon} \partial_t \theta^\varepsilon_{n_k} v_m + \int_0^T \int_{\Omega^\varepsilon} \kappa^\varepsilon \nabla \theta^\varepsilon_{n_k} \cdot \nabla v_m + \varepsilon g_0 \int_0^T \int_{\Gamma^\varepsilon_n} \theta^\varepsilon_{n_k} v_m$$

$$= \sum_{i=1}^N \int_0^T \int_{\Omega^\varepsilon} \tau^\varepsilon \nabla^\delta \bar{u}_i \cdot \nabla \theta^\varepsilon_{n_k} v_m.$$ (38)

Using (36), we pass to the limit as $k \rightarrow \infty$ to obtain: For each $m$

$$\int_0^T \int_{\Omega^\varepsilon} \partial_t \theta^\varepsilon v_m + \int_0^T \int_{\Omega^\varepsilon} \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nabla v_m + \varepsilon g_0 \int_0^T \int_{\Gamma^\varepsilon_n} \theta^\varepsilon v = \sum_{i=1}^N \int_0^T \int_{\Omega^\varepsilon} \tau^\varepsilon \nabla^\delta \bar{u}_i \cdot \nabla \theta^\varepsilon v_m.$$ (39)

Note that (39) holds for all $v \in L^2(0, T; H^1(\Omega^\varepsilon))$ since we can approximate $v$ with $v_m$ in $L^2(0, T; H^1(\Omega^\varepsilon))$, hence

$$\int_0^T \int_{\Omega^\varepsilon} \partial_t \theta^\varepsilon v + \int_0^T \int_{\Omega^\varepsilon} \kappa^\varepsilon \nabla \theta^\varepsilon \cdot \nabla v + \varepsilon g_0 \int_0^T \int_{\Gamma^\varepsilon_n} \theta^\varepsilon v = \sum_{i=1}^N \int_0^T \int_{\Omega^\varepsilon} \tau^\varepsilon \nabla^\delta \bar{u}_i \cdot \nabla \theta^\varepsilon v,$$

holds for all $v \in L^2(0, T; H^1(\Omega^\varepsilon))$. 
Let \( \theta \in K(T, M) \), \( M > 0 \), and assume \((A_1)-(A_2)\). Then \( 0 \leq \theta^\varepsilon \leq \|\theta^\varepsilon(0)\|_{L_\infty(\Omega^\varepsilon)} \) a.e. in \((0, T) \times \Omega^\varepsilon\).

**Lemma 3.3.** Positivity and boundedness of solutions to \((P_1)\). Let \( \bar{u}_i \in K(T, M) \), \( M > 0 \), and assume \((A_1)-(A_2)\). Then \( 0 \leq \theta^\varepsilon \leq \|\theta^\varepsilon(0)\|_{L_\infty(\Omega^\varepsilon)} \) a.e. in \((0, T) \times \Omega^\varepsilon\).

**Proof.** Let \( \theta^\varepsilon := \theta^\varepsilon^+ - \theta^\varepsilon^- \), where \( z^+ := \max(z, 0) \) and \( z^- := \max(-z, 0) \). Testing (25) with \( \phi := -\theta^\varepsilon^- \), and using (3) gives:

\[
\frac{1}{2} \frac{d}{dt} \theta^\varepsilon^- ||^2 + \kappa_0 \|\nabla \theta^\varepsilon^- \|^2 + \varepsilon g_0 \|\theta^\varepsilon^- \|^2 \leq c_\varepsilon \theta^\varepsilon_0 \sum_{i=1}^N \|\bar{u}_i\|_\infty \|\nabla \theta^\varepsilon^- - \theta^\varepsilon^- \|_{L^1(\Omega^\varepsilon)}
\]

Choosing \( \eta < \kappa_0 \) and taking into account that \( \theta^\varepsilon^-(0) = 0 \), Gronwall’s lemma gives \( \|\theta^\varepsilon^-\|^2 \leq 0 \). This means \( \theta^\varepsilon \geq 0 \) a.e. in \( \Omega \) for all \( t \in (0, T) \).

Let \( \phi = (\theta^\varepsilon - M_0)^+ \) in (25) with \( M_0 \geq \|\theta^\varepsilon(0)\|_{L_\infty(\Omega^\varepsilon)} \): For \( \eta > 0 \)

\[
\frac{1}{2} \frac{d}{dt} \|\theta^\varepsilon - M_0\|^2 + \kappa_0 \|\nabla (\theta^\varepsilon - M_0)^+ \|^2 + \varepsilon g_0 \|\theta^\varepsilon - M_0\|^2 \leq c_\varepsilon \theta^\varepsilon_0 \sum_{i=1}^N \|\bar{u}_i\|_\infty \|\nabla (\theta^\varepsilon - M_0)^+ \|_{L^1(\Omega^\varepsilon)}
\]

Discarding the positive terms on the left side and then applying Gronwall’s lemma leads to:

\[
\|\theta^\varepsilon - M_0\|^2(t) \leq \|\theta^\varepsilon - M_0\|^2(0) \exp \left( \tau_\varepsilon c_\varepsilon \sum_{i=1}^N \|\bar{u}_i\|_\infty t \right).
\]

Since \( \|\theta^\varepsilon - M_0\|^2(0) = 0 \), we obtain \( \theta^\varepsilon - M_0\) \( (t) = 0 \). Thus the proof of the lemma is completed.

**Lemma 3.4.** Existence of solutions to \((P_2)\). Let \( \bar{\theta} \in K(T, M) \), \( M > 0 \) and \((A_1)-(A_2)\) hold. Then \((P_2)\) has solutions \( u^\varepsilon_i \in H^1(0, T; L^2(\Omega^\varepsilon)) \cap L^\infty(0, T; H^1(\Omega)) \) and \( v^\varepsilon_i \in H^1(0, T; L^2(\Gamma^\varepsilon)) \) in the following sense:

For all \( \psi_i \in H^1(\Omega^\varepsilon) \), it holds:

\[
\int_{\Omega^\varepsilon} \partial_t u^\varepsilon_i \psi_i + \int_{\Omega^\varepsilon} d^\varepsilon_i \nabla u^\varepsilon_i \cdot \nabla \psi_i + \int_{\Omega^\varepsilon} (a_i u^\varepsilon_i - b_i v^\varepsilon_i) \psi_i = \int_{\Omega^\varepsilon} \delta^\varepsilon_i \nabla \bar{\theta} \cdot \nabla u^\varepsilon_i + \int_{\Omega^\varepsilon} R_i^M (u^\varepsilon_i) \psi_i \quad (40)
\]

\[
u^\varepsilon_i(0, x) = u^\varepsilon_i(0, x) \quad \text{a.e. in } \Omega^\varepsilon \quad (41)
\]
and for all $\varphi_i \in L^2(\Gamma^\varepsilon)$:

$$
\int_{\Gamma^\varepsilon} \partial_t v^\varepsilon_i \varphi_i = \int_{\Gamma^\varepsilon} (a_i u^\varepsilon_i - b_i v^\varepsilon_i) \varphi_i,
$$

(42)

$$
v^\varepsilon_i(0, x) = v^{\varepsilon,0}_i(x) \ a.e. \ on \ \Gamma^\varepsilon.
$$

(43)

Proof. Let $\{\xi_j\}$ – Schauder basis of $H^1(\Omega^\varepsilon)$. Then, for each $n \in \mathbb{N}$, there exists

$$
u^{\varepsilon,0}_{i,n}(x) := \sum_{j=1}^{n} \alpha_{i,j}^{0,n} \xi_j(x) \text{ such that } u^{\varepsilon,0}_{i,n} \to u^{\varepsilon,0}_i \text{ in } H^1(\Omega^\varepsilon) \text{ as } n \to \infty.
$$

(44)

We denote by $u^{\varepsilon}_{i,n}$ the Galerkin approximation of $u^{\varepsilon}_i$, that is:

$$
u^{\varepsilon}_{i,n}(t, x) := \sum_{j=1}^{n} \alpha_{i,j}^{n} \xi_j(x) \quad \text{for all } (t, x) \in (0, T) \times \Omega^\varepsilon.
$$

(45)

$u^{\varepsilon}_{i,n}$ must satisfy (40), and hence,

$$
\int_{\Gamma^\varepsilon} \partial_t u^{\varepsilon}_{i,n} \psi_i + \int_{\Omega^\varepsilon} d^\varepsilon \nabla u^{\varepsilon}_{i,n} \cdot \nabla \psi_i + \varepsilon \int_{\Gamma^\varepsilon} (a_i u^{\varepsilon}_{i,n} - b_i v^{\varepsilon}_i) \psi_i

= \int_{\Omega^\varepsilon} \delta^\varepsilon \nabla \hat{\theta} \cdot \nabla u^{\varepsilon}_{i,n} \psi_i + \int_{\Gamma^\varepsilon} R^M_{i} (u^{\varepsilon}_{i,n}) \psi_i, \quad \text{for all } \psi_i \in \text{span}\{\xi_j\}_{j=1}^{n}.
$$

(46)

Accordingly, let $\{\eta_j\}$ – an orthonormal basis of $L^2(\Gamma^\varepsilon)$. Then for each $n \in \mathbb{N}$ there exists

$$
u^{\varepsilon,0}_{i,n}(x) := \sum_{j=1}^{n} \beta_{i,j}^{0,n} \eta_j(x) \text{ such that } \nu^{\varepsilon,0}_{i,n} \to \nu^{\varepsilon,0}_i \text{ in } L^2(\Gamma^\varepsilon) \text{ as } n \to \infty.
$$

(47)

We denote by $v^{\varepsilon}_{i,n}$ the Galerkin approximation of $v^{\varepsilon}_i$, that is:

$$
u^{\varepsilon}_{i,n}(t, x) := \sum_{j=1}^{n} \beta_{i,j}^{n} \eta_j(x), \quad \text{for all } (t, x) \in (0, T) \times \Gamma^\varepsilon.
$$

(48)

$v^{\varepsilon}_{i,n}$ must satisfy (42), and hence,

$$
\int_{\Gamma^\varepsilon} \partial_t v^{\varepsilon}_{i,n} \varphi_i = \int_{\Gamma^\varepsilon} (a_i u^{\varepsilon}_{i,n} - b_i v^{\varepsilon}_{i,n}) \varphi_i, \quad \text{for all } \varphi_i \in \text{span}\{\eta_j\}_{j=1}^{n}.
$$

(49)
\( \alpha_{i,j}^n(t) \) and \( \beta_{i,j}^n(t) \) can be found by substituting \( u_{i,n}^\varepsilon \) and \( v_{i,n}^\varepsilon \) into (40) – (43) and using \( \xi_k \) and \( \eta_k \) for \( k \in \{1, \ldots, n\} \) as test functions:

\[
\partial_t \alpha_{i,k}^n(t) + \sum_{j=1}^{n} (A_{ijk} + C_{ijk} - D_{ijk}) \alpha_{i,j}^n(t) - \sum_{j=1}^{n} E_{ijk} \beta_{i,j}^n(t) = \int_{\Gamma^e} \sum_{a=1}^{n} \alpha_{i,a}^n(t) \xi_a \sigma_M \left( \frac{\partial C_{i,j}^M}{\partial \xi_a} \right) \quad (50)
\]

\[
- \int_{\Gamma^e} \sum_{a=1}^{n} \beta_{i,a} \sigma_M \left( \frac{\partial C_{i,j}^M}{\partial \xi_a} \right) \quad (51)
\]

\[
\alpha_{i,j}^n(0) = \alpha_{i,j}^0 \quad (52)
\]

\[
\beta_{i,j}^n(0) = \beta_{i,j}^0 \quad (53)
\]

The coefficients arising in (50) are defined by:

\[
A_{ijk} := \int_{\Gamma^e} d_i \nabla \xi_j \cdot \nabla \xi_k,
\]

\[
C_{ijk} := \varepsilon a_i \int_{\Gamma^e} \xi_j \xi_k, \quad D_{ijk} := \int_{\Gamma^e} \delta_i \nabla \theta \cdot \nabla \xi_j \xi_k,
\]

\[
E_{ijk} := \varepsilon b_i \int_{\Gamma^e} \xi_j \eta_j, \quad G_{ijk} := a_i \int_{\Gamma^e} \xi_j \eta_j,
\]

\[
H_{ijk} := b_i \int_{\Gamma^e} \eta_j \eta_k.
\]

The left-hand side of this system of ODEs is linear, while the right-hand side is globally Lipschitz. Thus there exists a unique solution \( \alpha_{i,j}^n(t), \beta_{i,j}^n(t) \in H^1(0,T) \) to (50) - (53) for \( t \in (0,T) \).

To show uniform estimates in \( n \) for \( u_{i,n}^\varepsilon \) and \( v_{i,n}^\varepsilon \), we take \( \psi_i = u_{i,n}^\varepsilon \) and \( \varphi_i = v_{i,n}^\varepsilon \) in (46) and (49) respectively. We get the inequality:

\[
\frac{1}{2} \frac{\partial}{\partial t} \| u_{i,n}^\varepsilon \|^2 + d_0 \| \nabla u_{i,n}^\varepsilon \|^2 + \varepsilon a_0 \| u_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2 \\
\leq \varepsilon b_1 \int_{\Gamma^e} \| \nabla u_{i,n}^\varepsilon \| + \varepsilon \delta_1 \sigma_M \| \nabla u_{i,n}^\varepsilon \| + \int_{\Gamma^e} R_{i}^M (u_{i,n}^\varepsilon) u_{i,n}^\varepsilon \\
\leq \eta \| u_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2 + C \eta \| \nabla u_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2 + \eta \| \nabla u_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2 \\
+ C\eta \| \theta \|_{L^2(\Gamma^e)}^2 + C \| u_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2,
\]

\[
\frac{1}{2} \frac{\partial}{\partial t} \| v_{i,n}^\varepsilon \|^2 + b_1 \| v_{i,n}^\varepsilon \|^2 + \varepsilon d_1 \sigma_M \| v_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2 \\
\leq \eta \| v_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2 + C \eta \| v_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2 + C \eta \| v_{i,n}^\varepsilon \|_{L^2(\Gamma^e)}^2
\]

for \( \eta > 0 \).
After taking a small $\eta$ and adding the two inequalities, Gronwall’s lemma gives:

$$\|u_{i,n}^\epsilon\|^2 + d_0 \int_0^t \|\nabla u_{i,n}^\epsilon\|^2 + \|v_{i,n}^\epsilon\|^2 \leq C$$

for all $t \in (0, T)$, \hspace{1cm} (54)

where $C > 0$ depends on $\delta, M$ and $T$, but is independent of $n$ and $\epsilon$, which ensures:

$$\{u_{i,n}^\epsilon\} \text{ is bounded in } L^\infty(0, T; L^2(\Omega^\epsilon)) \cap L^2(0, T; H^1(\Omega^\epsilon)), \hspace{1cm} (55)$$

$$\{v_{i,n}^\epsilon\} \text{ is bounded in } L^\infty(0, T; L^2(\Gamma^\epsilon)). \hspace{1cm} (56)$$

To show uniform estimates for $\partial_t u_{i,n}^\epsilon$ and $\partial_t v_{i,n}^\epsilon$ with respect to $n$, we take $\psi_i = \partial_t u_{i,n}^\epsilon$ and $\varphi_i = \partial_t v_{i,n}^\epsilon$ in (46) and (49) respectively, noticing that they are in $\operatorname{span}\{\xi_j\}_{j=1}^n$. We obtain:

$$\|\partial_t u_{i,n}^\epsilon\|^2 + \int_{\Omega^\epsilon} \frac{d_0}{2} \partial_t (\nabla u_{i,n}^\epsilon)^2 + \frac{\epsilon a_i}{2} \partial_t \|u_{i,n}^\epsilon\|^2 \leq \int_{\Omega^\epsilon} \int_t^0 \|\nabla \delta^\epsilon \hat{\theta} \cdot \nabla u_{i,n}^\epsilon \partial_t u_{i,n}^\epsilon + \int_{\Omega^\epsilon} R_i^M (u_{i,n}^\epsilon) \partial_t u_{i,n}^\epsilon$$

$$= \epsilon b_i \int_{\Omega^\epsilon} \int_t^0 \|\nabla \delta^\epsilon \hat{\theta} \cdot \nabla u_{i,n}^\epsilon \partial_t u_{i,n}^\epsilon + \int_{\Omega^\epsilon} R_i^M (u_{i,n}^\epsilon) \partial_t u_{i,n}^\epsilon$$

$$\|\partial_t v_{i,n}^\epsilon\|^2 \leq \frac{b_i}{2} \|\partial_t \|v_{i,n}^\epsilon\|^2 \leq a_i \int_{\Omega^\epsilon} \int_t^0 \|\nabla \delta^\epsilon \hat{\theta} \cdot \nabla u_{i,n}^\epsilon \partial_t u_{i,n}^\epsilon $$

Adressing them, and finally integrating the result over $(0, t)$, we get:

$$\int_0^t \|\partial_t u_{i,n}^\epsilon\|^2 + \int_0^t \|\partial_t v_{i,n}^\epsilon\|^2$$

$$+ \frac{d_0}{2} \|\nabla u_{i,n}^\epsilon(t)\|^2 + \frac{\epsilon a_0}{2} \|u_{i,n}^\epsilon(t)\|^2 + \frac{b_i}{2} \|v_{i,n}^\epsilon(t)\|^2 \leq b_* \|u_{i,n}^\epsilon(0)\|^2 + b_* \|v_{i,n}^\epsilon(0)\|^2$$

$$+ \eta \int_0^t \|\partial_t u_{i,n}^\epsilon\|^2 + \epsilon^2 c^2 \int_0^t \|u_{i,n}^\epsilon\|^2 + \frac{d_0}{2} \|\nabla u_{i,n}^\epsilon(0)\|^2$$

$$+ \frac{\epsilon a_0}{2} \|u_{i,n}^\epsilon(0)\|^2 + \frac{b_i}{2} \|v_{i,n}^\epsilon(0)\|^2$$

$$+ \eta \int_0^t \|\partial_t u_{i,n}^\epsilon\|^2 + \delta^2 c^2 \|\hat{\theta}\| \int_0^t \|\nabla u_{i,n}^\epsilon\|^2$$

$$+ C^M C^\eta + \eta a_* \int_0^t \|\partial_t u_{i,n}^\epsilon\|^2 \text{ for } t \in (0, T) \text{ and } \eta > 0.$$

Denoting the initial condition terms on the right as $C_0$ and using (55) and (56), we get:

$$\int_0^t (1 - 2\eta) \|\partial_t u_{i,n}^\epsilon\|^2 + \int_0^t (1 - \eta) \|\partial_t v_{i,n}^\epsilon\|^2 + \frac{d_0}{2} \|\nabla u_{i,n}^\epsilon(t)\|^2$$

$$\leq C_0 + a_* \delta^2 c^2 \|\hat{\theta}\| \int_0^T \|\nabla u_{i,n}^\epsilon\|^2 + C^M C^\eta \text{ for } t \in (0, T). \hspace{1cm} (59)$$
Then by using (55), again, we have:

\[ \|\nabla u_{i,n}^\varepsilon(t)\|^2 + \int_0^T \|\partial_t u_{i,n}^\varepsilon\|^2 + \int_0^T \|\partial_t v_{i,n}^\varepsilon\|^2 \leq C \quad \text{for } t \in (0,T), \]

where \( C \) depends on \( \delta, M \) and \( T \), but is independent of \( n \) and \( \varepsilon \). Namely, this gives:

\[ \{u_{i,n}^\varepsilon\} \text{ is bounded in } H^1(0,T;L^2(\Omega^\varepsilon)) \cap L^\infty(0,T;H^1(\Omega^\varepsilon)), \quad (60) \]
\[ \{v_{i,n}^\varepsilon\} \text{ is bounded in } H^1(0,T;L^2(\Gamma^\varepsilon)). \quad (61) \]

Hence, we can choose subsequences \( u_{i,n_j}^\varepsilon \to u_i^\varepsilon \) in \( H^1(0,T;L^2(\Omega^\varepsilon)) \) and \( u_{i,n_j}^\varepsilon \to u_i^\varepsilon \) in \( C([0,T],L^2(\Omega^\varepsilon)) \) and weakly* in \( L^\infty(0,T;H^1(\Omega^\varepsilon)) \) and \( v_{i,n_j}^\varepsilon \to v_i^\varepsilon \) in \( H^1(0,T;L^2(\Gamma^\varepsilon)) \) as \( j \to \infty \). Since \( R_i^M \) is Lipschitz continuous, the rest of the proof follows the same line of arguments as in Lemma 3.2.

\[ \square \]

**Lemma 3.5. Positivity and boundedness of solutions to (P2).** Let \( \bar{\theta} \in K(T,M), \) \( M > 0 \) and assume \((A_1)-(A_2)\). Then \( 0 \leq u_i^\varepsilon \leq M_i(T+1) \) a.e. in \((0,T) \times \Omega^\varepsilon, \) \( 0 \leq v_i^\varepsilon \leq M_i(T+1) \) a.e. on \((0,T) \times \Gamma^\varepsilon, \) where \( M_i > 0 \) and \( M_i > 0 \) are independent of \( M \).

**Proof.** Testing (40) with \( \psi_i = -u_i^{\varepsilon_-} \) and the definition of \( R_i^M \) give:

\[ \frac{1}{2} \partial_t \|u_i^{\varepsilon_-}\|^2 + d_0 \|\nabla u_i^{\varepsilon_-}\|^2 + g_i \|u_i^{\varepsilon_-}\|_{L^2(\Gamma^\varepsilon)}^2 + \varepsilon \alpha_0 \|u_i^{\varepsilon_-}\|^2_{L^2(\Gamma^\varepsilon)} + \varepsilon \int_{\Omega^\varepsilon} b_i v_i^{\varepsilon_-} u_i^{\varepsilon_-} \]

\[ \leq \delta_i \|\bar{\theta}\|_\infty \int_{\Omega^\varepsilon} |\nabla u_i^{\varepsilon_-} - u_i^{\varepsilon_-}| - \int_{\Omega^\varepsilon} \sum_{j=1}^{n} \beta_{j,i-j} u_j^{\varepsilon_-} u_i^{\varepsilon_-} + \int_{\Omega^\varepsilon} \sum_{j=1}^{N} \beta_{i,j} u_i^{\varepsilon_-} u_j^{\varepsilon_-} + \nu_i^{\varepsilon_-}. \]

The second term on the right is always negative, while the third is always zero. We can discard them and apply Cauchy-Schwarz and Young’s inequalities to the first term on the right, as well as discard the positive terms on the left to obtain:

\[ \frac{1}{2} \partial_t \|u_i^{\varepsilon_-}\|^2 + (d_0 - \eta) \|\nabla u_i^{\varepsilon_-}\|^2 \leq \delta_i \|\bar{\theta}\|_\infty \|u_i^{\varepsilon_-}\|^2 + b_i \int_{\Gamma^\varepsilon} v_i^{\varepsilon_-} u_i^{\varepsilon_-} \quad \text{for } \eta > 0. \quad (62) \]

Testing (42) with \( \varphi_i = -v_i^{\varepsilon_-} \) gives:

\[ \frac{1}{2} \partial_t \|v_i^{\varepsilon_-}\|_{L^2(\Gamma^\varepsilon)}^2 \leq b_i \|v_i^{\varepsilon_-}\|^2_{L^2(\Gamma^\varepsilon)} + a_i \int_{\Gamma^\varepsilon} v_i^{\varepsilon_-} u_i^{\varepsilon_-}. \quad (63) \]

We rely on Cauchy-Schwarz, Young’s and trace inequalities to estimate the last term. We obtain:

\[ \int_{\Gamma^\varepsilon} v_i^{\varepsilon_-} u_i^{\varepsilon_-} \leq \|v_i^{\varepsilon_-}\|_{L^2(\Gamma^\varepsilon)} \|u_i^{\varepsilon_-}\|_{L^2(\Gamma^\varepsilon)} \leq c^0 \|v_i^{\varepsilon_-}\|^2_{L^2(\Gamma^\varepsilon)} + \eta \|u_i^{\varepsilon_-}\|^2_{L^2(\Gamma^\varepsilon)} \]

\[ \leq c^0 \|v_i^{\varepsilon_-}\|^2_{L^2(\Gamma^\varepsilon)} + \eta C(\|u_i^{\varepsilon_-}\|^2 + \|\nabla u_i^{\varepsilon_-}\|^2) \quad \text{for } \eta > 0. \]
Adding \((62)\) and \((63)\) and choosing \(\eta + \eta C < d_0\) and taking into account that \(u_i^\varepsilon(0) \equiv 0\) and \(v_i^\varepsilon(0) \equiv 0\), Gronwall’s lemma gives \(\|u_i^\varepsilon - u_i\|^2 + \|v_i^\varepsilon - v_i\|^2 \leq 0\), that is \(u_i^\varepsilon \geq 0\) a.e. in \(\Omega^\varepsilon\) and \(v_i^\varepsilon \geq 0\) a.e. in \(\Gamma^\varepsilon\) for all \(t \in (0,T)\).

Next, let \(i = 1\) and \(\psi_1 := (u_1^\varepsilon - M_1)^+\) in \((40)\) and \(\varphi_1 := (v_1^\varepsilon - \bar{M}_1)^+\) in \((42)\). Apply \((3)\) for the cross-diffusion term to get:

\[
\frac{1}{2} \partial_t \|u_1^\varepsilon - M_1\|^2 + d_0 \|\nabla(u_1^\varepsilon - M_1)^+\|^2 + \varepsilon a_0 \|u_1^\varepsilon - M_1\|^2_{L^2(\Gamma^\varepsilon)} \\
+ \varepsilon \int_{\Gamma^\varepsilon} (a_1 M_1 - b_1 \bar{M}_1) (u_1^\varepsilon - M_1)^+ + \varepsilon \int_{\Gamma^\varepsilon} b_1 (v_1^\varepsilon - \bar{M}_1) (u_1^\varepsilon - M_1)^+ \\
\leq \varepsilon \int_{\Gamma^\varepsilon} b_1 (v_1^\varepsilon - \bar{M}_1)^+ (u_1^\varepsilon - M_1)^+ + \delta \varepsilon c^\varepsilon \|\vartheta\|_\infty \|\nabla(u_1^\varepsilon - M_1)^+ (u_1^\varepsilon - M_1)^+\|_{L^1(\Omega^\varepsilon)} \\
+ \int_{\Omega^\varepsilon} R_1^M (\varepsilon) (u_1^\varepsilon - M_1)^+, \\
\frac{1}{2} \partial_t \|v_1^\varepsilon - \bar{M}_1\|^2_{L^2(\Gamma^\varepsilon)} + b_1 \|\nabla(v_1^\varepsilon - \bar{M}_1)^+\|^2 + \int_{\Gamma^\varepsilon} a_1 (u_1^\varepsilon - M_1)^+ (v_1^\varepsilon - \bar{M}_1)^+ \\
\leq \int_{\Gamma^\varepsilon} a_1 (u_1^\varepsilon - \bar{M}_1)^+ (u_1^\varepsilon - M_1)^+ + \int_{\Gamma^\varepsilon} (a_1 M_1 - b_1 \bar{M}_1) (u_1^\varepsilon - \bar{M}_1)^+.
\]

Here, by the definition we note that \(R_1^M (\varepsilon) \leq 0\). Also, we choose \(M_1\) and \(\bar{M}_1\) such that \(a_1 M_1 - b_1 \bar{M}_1 = 0\) and add the two inequalities, while dropping the two inequalities on the left and using Cauchy-Schwarz and Young’s inequalities on the right to obtain:

\[
\frac{1}{\varepsilon} \partial_t \|u_1^\varepsilon - M_1\|^2 + \|\nabla(u_1^\varepsilon - M_1)^+\|^2 + \varepsilon a_0 \|u_1^\varepsilon - M_1\|^2_{L^2(\Gamma^\varepsilon)} \\
+ \frac{1}{\varepsilon} \partial_t \|v_1^\varepsilon - \bar{M}_1\|^2_{L^2(\Gamma^\varepsilon)} \\
\leq (a_1 + \varepsilon b_0) \varepsilon \|u_1^\varepsilon - M_1\|^2_{L^2(\Gamma^\varepsilon)} + c_\eta \|v_1^\varepsilon - \bar{M}_1\|^2_{L^2(\Gamma^\varepsilon)} \\
+ c_\eta \delta c^\varepsilon \|\vartheta\|_\infty^2 \|u_1^\varepsilon - M_1\|^2 \text{ for } \eta > 0.
\]

Then by taking a small \(\eta > 0\) Gronwall’s lemma gives:

\[
\|(u_1^\varepsilon - M_1)^+(t)\|^2 + \|(v_1^\varepsilon - \bar{M}_1)^+\|^2_{L^2(\Gamma^\varepsilon)} \\
\leq \|(u_1^\varepsilon - M_1)^+(0)\|^2 + \|(v_1^\varepsilon - \bar{M}_1)^+\|^2_{L^2(\Gamma^\varepsilon)} \exp (C(\delta_\varepsilon, \bar{\theta}, \delta, M)t).
\]

Since we choose \(M_1 > 0\) to satisfy \(\|(u_1^\varepsilon - M_1)^+(0)\| = 0\), and \(\bar{M}_1 > 0\) to satisfy \(\|(v_1^\varepsilon - \bar{M}_1)^+(0)\|_{L^2(\Gamma^\varepsilon)} = 0\), we get \(0 \leq u_1^\varepsilon \leq M_1\) and \(0 \leq v_1^\varepsilon \leq \bar{M}_1\).

Let \(i = 2\) and \(\psi_2 := (u_2^\varepsilon - M_2(t+1))^+\) in \((40)\) and \(\varphi_2 := (v_2^\varepsilon - \bar{M}_2(t+1))^+\) in \((42)\) with \(a_2 M_2 = b_2 M_2:\)

\[
\frac{1}{\varepsilon} \partial_t \|u_2^\varepsilon - M_2(t+1)\|^2 + \|\nabla(u_2^\varepsilon - M_2(t+1))^+\|^2_{L^2(\Gamma^\varepsilon)} \\
+ \frac{d_0}{\varepsilon} \|\nabla(u_2^\varepsilon - M_2(t+1))^+\|^2 \\
+ \varepsilon a_2 \|u_2^\varepsilon - M_2(t+1)^+\|^2_{L^2(\Gamma^\varepsilon)} + b_2 \|\nabla(u_2^\varepsilon - M_2(t+1))^+\|^2_{L^2(\Gamma^\varepsilon)}
\]
\[ \leq C\|u_2^k - M_2(t + 1)^+\|^2 + \int_{\Omega^c} R_2^M(u^\varepsilon)(u_2^k - M_2(t + 1)^+) \]
\[ - M_2 \int_{\Omega^c} (u_2^k - M_2(t + 1)^+) - \bar{M}_2 \int_{\Gamma^c} (v_2^k - \bar{M}_2(t + 1)^+). \]

Here, we note that
\[ R_2^M(u^\varepsilon) \leq \frac{1}{2} \beta_{11} |M(u^\varepsilon)|^2 \leq \frac{1}{2} \beta_{11} |u^\varepsilon|^2. \]

Similarly, we have:
\[ \frac{1}{2} \beta_{11} |(u_2^k - M_2(t + 1)^+)|^2 + |(v_2^k - M_2(t + 1)^+)|^2 \]
\[ \leq C\|u_2^k - M_2(t + 1)^+\|^2 + \left( \frac{1}{2} \beta_{11} |u^\varepsilon|^2 - M_2 \right) \int_{\Omega^c} (u_2^k - M_2(t + 1)^+) \]
\[ \leq C\|u_2^k - M_2(t + 1)^+\|^2. \]

By applying Gronwall's lemma with \( \frac{1}{2} \beta_{11} |M|^2 \leq M_2 \), we see that \( u_2^k \leq M_2(T + 1) \)
\( (0, T) \times \Omega^c \) and \( v_2^k \leq M_2(T + 1) \) on \( (0, T) \times \Gamma^c \). Recursively, we can obtain the
same estimates for \( u_2^k \) and \( v_2^k \) for \( i \geq 3 \).

**Lemma 3.6.** The boundedness of the concentration gradient for \((P_2)\). Let \( \theta \in K(T, M_0) \) and assume \((A_1)-(A_2)\) to hold. Then there exists a positive constant
\( C(M_0) \) such that \( \|\nabla u^\varepsilon(t)\| \leq C(M_0) \) and \( \int_0^T \|\partial_t u^\varepsilon(t)\|^2 dt \leq C(M_0) \) for \( t \in (0, T) \).

**Proof.** Let \( u_{i,n}^\varepsilon \) be an approximate solution defined in the proof of Lemma 3.4 for each \( n \). Then from (59) there exists a positive constant \( C(M_0) \) depending on \( M_0 \) such that
\[ \int_0^T \|\partial_t u_{i,n}^\varepsilon\|^2 \leq C(M_0), \quad \text{for each } n. \] (64)

By letting \( n \to \infty \) we have proved this Lemma.

**Lemma 3.7.** The boundedness of the temperature gradient for \((P_1)\). Let \( \bar{u}_i \in K(T, M_0) \) and assume \((A_1)-(A_2)\) to hold. Then there exists a positive constant
\( C(M_0) \) such that \( \|\nabla \theta(t)\| \leq C(M_0) \) and \( \int_0^T \|\partial_t \theta(t)\|^2 dt \leq C(M_0) \) for \( t \in (0, T) \).

**Proof.** From (35) we can prove this lemma in the similar way to that of Lemma 3.6.

**Theorem 3.8.** Existence and uniqueness of weak solutions \((P^\varepsilon)\). Let \((A_1)-(A_2)\) hold. Then there exists a unique solution to \((P^\varepsilon)\).

**Proof.** For any \( M > 0, X_M := K(M, T) \times K(M, T)^N \) is a closed set of \( X := L^2(0, T; L^2(\Omega^c))^N \). Let \( \theta_1, \theta_2, \bar{u}_{i,1}, \bar{u}_{i,2} \in K(M, T), \) for \( i \in \{1, \ldots, N\} \), and put \( \theta := \theta_1 - \theta_2, \bar{u}_i := \bar{u}_{i,1} - \bar{u}_{i,2}, \quad (\bar{u}_{i,1}^\varepsilon, \bar{u}_{i,2}^\varepsilon) = T(\theta_1, \bar{u}_{i,1}) \) and \( (\theta_2, \bar{u}_{i,2}^\varepsilon) = T(\theta_2, \bar{u}_{i,2}) \). Moreover, we define \( \theta^\varepsilon = \theta_1^\varepsilon - \theta_2^\varepsilon \) and \( \bar{u}_{i,1}^\varepsilon = \bar{u}_{i,1}^\varepsilon - \bar{u}_{i,2}^\varepsilon \) and \( \bar{u}_{i,2}^\varepsilon = \bar{v}_{i,1}^\varepsilon - \bar{v}_{i,2}^\varepsilon \).

By Lemma 3.3 and Lemma 3.5, \( T : X_M \to X_M \) for \( M > \max(\|\theta^\varepsilon\|_{L^\infty(\Omega^c)}, M_1, M_2(T + 1), \ldots, M_N(T + 1)) \). Hence, we want to prove the existence of a positive constant \( C < 1 \) such that
\[ \|T(\theta_1, \bar{u}_{i,1}) - T(\theta_2, \bar{u}_{i,2})\|_X \leq C\|\theta_1 - \theta_2\|_X. \]
for small $T > 0$. Substituting $\theta_1^e, \theta_2^e, u_{i,1}^e, u_{i,2}^e, v_1^e, v_2^e$ into the formulation:

$$\int_{\Omega^e} \frac{\partial \theta_1^e}{\partial t} (\theta_1^e - \theta_2^e) + \int_{\Omega^e} \kappa^e \nabla \theta_1^e \nabla (\theta_1^e - \theta_2^e) + \varepsilon g_0 \int_{\Gamma^e} \frac{\theta_1^e}{\theta_1^e - \theta_2^e}$$

$$= \sum_{i=1}^{N} \int_{\Omega^e} \tau^e \nabla^2 \bar{u}_{i,1} \frac{\nabla \theta_1^e}{\theta_1^e - \theta_2^e},$$

$$\int_{\Omega^e} \frac{\partial \theta_2^e}{\partial t} (\theta_2^e - \theta_1^e) + \int_{\Omega^e} \kappa^e \nabla \theta_2^e \nabla (\theta_2^e - \theta_1^e) + \varepsilon g_0 \int_{\Gamma^e} \theta_2^e (\theta_2^e - \theta_1^e)$$

$$= \sum_{i=1}^{N} \int_{\Omega^e} \tau^e \nabla^2 \bar{u}_{i,2} \frac{\nabla \theta_1^e}{\theta_1^e - \theta_2^e}.$$
We also test the deposition equation with \( v_\epsilon^i \) to obtain:
\[
\frac{1}{2} \partial_t ||v_\epsilon^i||^2_{L^2(\Gamma^*)} = \int_{\Gamma^*} a_i v_\epsilon^i u_\epsilon^i - b_i ||v_\epsilon^i||^2_{L^2(\Gamma^*)}.
\]

After adding the three above equations, we obtain:
\[
\frac{1}{2} \partial_t ||u_\epsilon^i||^2 + \frac{1}{2} \partial_t ||v_\epsilon^i||^2_{L^2(\Gamma^*)} + d_0 ||\nabla u_\epsilon^i||^2 + \varepsilon a_0 ||u_\epsilon^i||^2_{L^2(\Gamma^*)}
\leq (a_\ast + \varepsilon b_\ast) \int_{\Gamma^*} |v_\epsilon^i u_\epsilon^i| + \int_{\Omega^*} |(\nabla^\delta \tilde{\theta}_1 \cdot \nabla u_\epsilon^i - \nabla^\delta \tilde{\theta}_2 \cdot \nabla u_\epsilon^i) u_\epsilon^i| + \int_{\Omega^*} |(R_\ell(u_1) - R_\ell(u_2)) u_1|,
\]
\[
\frac{1}{2} \partial_t ||u_\epsilon^i||^2 + \frac{1}{2} \partial_t ||v_\epsilon^i||^2_{L^2(\Gamma^*)} + d_0 ||\nabla u_\epsilon^i||^2 + \varepsilon a_0 ||u_\epsilon^i||^2_{L^2(\Gamma^*)}
\leq \frac{(a_\ast + \varepsilon b_\ast)^2}{4 \varepsilon} ||v_\epsilon^i||^2_{L^2(\Gamma^*)} + \delta_\ast \int_{\Omega^*} |\nabla^\delta \tilde{\theta}_1 \cdot \nabla u_\epsilon^i| + \int_{\Omega^*} |(R_\ell(u_1) - R_\ell(u_2)) u_1|,
\]
where the sub-expressions can be estimated as:
\[
B_1 \leq \eta ||\nabla u_\epsilon^i||^2 + \frac{1}{4 \eta} c_\ast ||\tilde{\theta}_1||_{L^2(\Omega^*)}^2 ||u_\epsilon^i||^2 \quad \text{for } \eta > 0,
\]
\[
B_2 \leq c_\ast C(M) ||\tilde{\theta}||^2 + C(M) ||u_\epsilon^i||^2.
\]

Note that with the boundedness of \( u_\epsilon^i \) we can treat \( R_\ell^M \) as a Lipschitz continuous function with the Lipschitz constant \( C_L \):
\[
B_3 \leq C_L ||u_\epsilon^i||^2.
\]

Adding up the estimates for the temperature and concentrations:
\[
\frac{d}{dt} (||u_\epsilon^i||^2 + ||v_\epsilon^i||^2 + ||\theta^\epsilon||^2) + d_0 ||\nabla u_\epsilon^i||^2 + \kappa_0 ||\nabla \theta^\epsilon||^2
\leq c_1 ||u_\epsilon^i||^2 + c_2 ||v_\epsilon^i||^2 + c_3 ||\theta^\epsilon||^2 + c_4 M (||\bar{u}_i||^2 + ||\bar{\theta}||^2).
\]

Gronwall’s lemma gives the estimate:
\[
||\theta^\epsilon(t)||^2 + ||u_\epsilon^i(t)||^2 \leq C \left( ||\tilde{\theta}||_{L^2(0,T;L^2(\Omega^*)))}^2 + ||\bar{u}_i||_{L^2(0,T;L^2(\Omega^*)))}^2 \right).
\]
Integrating over \((0, T)\), we have:
\[
\int_0^T \left( \|\theta^\varepsilon(t)\|^2 + \|u_\varepsilon^\varepsilon(t)\|^2 \right) \leq CT \left( \|\tilde{\theta}\|_{L^2(0, T; L^2(\Omega^\varepsilon)))}^2 + \|\tilde{u}\|_{L^2(0, T; L^2(\Omega^\varepsilon)))}^2 \right).
\]

Accordingly, \(T\) is a contraction mapping for \(T'\) such that \(CT' < 1\). Then the Banach fixed point theorem shows that \((P^*\varepsilon)\) admits a unique solution in the sense of Definition 1 on \([0, T']\). Next, we consider \((P^\varepsilon)\) on \([T', T]\). Then we can solve uniquely this problem on \([T', 2T']\). Recursively, we can construct a solution of \((P^\varepsilon)\) one the whole interval \([0, T]\). \(\blacksquare\)

4. Passing to \(\varepsilon \to 0\) (the homogenization limit).

4.1. Preliminaries on periodic homogenization. Now that the well-posedness of our microscopic system is available, we can investigate what happens as the parameter \(\varepsilon\) vanishes. Recall that \(\varepsilon\) defines both the microscopic geometry and the periodicity in the model parameters.

**Definition 2.** (Two-scale convergence [21],[1]). Let \((u^\varepsilon)\) be a sequence of functions in \(L^2(0, T; L^2(\Omega))\), where \(\Omega\) is an open set in \(\mathbb{R}^n\) and \(\varepsilon > 0\) tends to 0. \((u^\varepsilon)\) two-scale converges to a unique function \(u_0(t, x, y) \in L^2((0, T) \times \Omega \times Y)\) if and only if for all \(\phi \in C_c^\infty((0, T) \times \Omega, C_{\#}^\infty(Y))\) we have:
\[
\lim_{\varepsilon \to 0} \int_0^T \int_\Omega u^\varepsilon \phi(t, x, \frac{x}{\varepsilon}) dx dt = \frac{1}{|Y|} \int_0^T \int_Y \int_\Omega u_0(t, x, y) \phi(t, x, y) dy dx dt. \tag{65}
\]

We denote (65) by \(u^\varepsilon \rightharpoonup u_0\).

The space \(C_{\#}^\infty(Y)\) refers to the space of all \(Y\)-periodic \(C^\infty\)-functions. The spaces \(H_{\#}^1(Y)\) and \(C_{\#}^\infty(\Gamma)\) have a similar meaning; the index \(\#\) is always indicating that is about \(Y\)-periodic functions.

**Theorem 4.1.** (Two-scale compactness on domains)

(i) From each bounded sequence \((u^\varepsilon)\) in \(L^2(0, T; L^2(\Omega))\), a subsequence may be extracted which two-scale converges to \(u_0(t, x, y) \in L^2((0, T) \times \Omega \times Y)\).

(ii) Let \((u^\varepsilon)\) be a bounded sequence in \(L^2(0, T; H^1(\Omega))\), then there exists \(\tilde{u} \in L^2((0, T) \times \Omega; H_{\#}^1(Y))\) such that up to a subsequence \((u^\varepsilon)\) two-scale converges to \(u_0 \in L^2((0, T; L^2(\Omega))\) and \(\nabla u^\varepsilon \overset{2-\text{a}}{\rightharpoonup} \nabla_x u_0 + \nabla_y \tilde{u}\).

**Proof.** See e.g. [21],[1]. \(\blacksquare\)

**Definition 3.** (Two-scale convergence for \(\varepsilon\)-periodic hypersurfaces [20]). A sequence of functions \((u^\varepsilon) \in L^2((0, T) \times \Gamma_\varepsilon)\) is said to two-scale converge to a limit \(u_0 \in L^2((0, T) \times \Omega^\varepsilon \times \Gamma)\) if and only if for all \(\phi \in C_c^\infty((0, T) \times \Omega^\varepsilon; C_{\#}^\infty(\Gamma))\) we have
\[
\lim_{\varepsilon \to 0} \int_0^T \int_{\Gamma_\varepsilon} u^\varepsilon \phi(t, x, \frac{x}{\varepsilon}) = \frac{1}{|Y|} \int_0^T \int_\Gamma \int_\Omega u_0(t, x, y) \phi(t, x, y) d\gamma_y dx dt. \tag{66}
\]

**Theorem 4.2.** (Two-scale compactness on surfaces)

(i) From each bounded sequence \((u^\varepsilon) \in L^2((0, T) \times \Gamma_\varepsilon)\) one can extract a subsequence \(u^\varepsilon\) which two-scale converges to \(u_0 \in L^2((0, T) \times \Omega \times \Gamma)\).
(ii) If a sequence \((u^\varepsilon)\) is bounded in \(L^\infty((0,T) \times \Gamma_\varepsilon)\), then \(u^\varepsilon\) two-scale converges to a \(u_0 \in L^\infty((0,T) \times \Omega \times \Gamma)\).

**Proof.** See [20] for proof of (i), and [17] for proof of (ii). \(\square\)

**Lemma 4.3.** Let \((A_1)-(A_2)\) hold. Denote by \(u^\varepsilon_i\) and \(\theta^\varepsilon\) the Bochner extensions\(^1\) in the space \(L^2(0,T;H^1(\Omega))\) of the corresponding functions originally belonging to \(L^2(0,T;H^1(\Omega^\varepsilon))\). Then the following statement holds:

(i) \(u^\varepsilon_i \rightharpoonup u_i\) and \(\theta^\varepsilon \rightharpoonup \theta\) in \(L^2(0,T;H^1(\Omega))\),

(ii) \(u^\varepsilon_i \rightharpoonup u_i\) and \(\theta^\varepsilon \rightharpoonup \theta\) in \(L^\infty((0,T) \times \Omega)\),

(iii) \(\partial_i u^\varepsilon_i \rightharpoonup \partial_i u_i\) and \(\partial_i \theta^\varepsilon \rightharpoonup \partial_i \theta\) in \(L^2(0,T;L^2(\Omega))\),

(iv) \(u^\varepsilon_i \to u_i\) and \(\theta^\varepsilon \to \theta\) strongly in \(L^2(0,T;H^2(\Omega))\) for \(\frac{1}{2} < \beta < 1\) and \(\sqrt{\varepsilon}\|u^\varepsilon_i - u_i\|_{L^2((0,T) \times \Gamma_\varepsilon)} \to 0\) as \(\varepsilon \to 0\),

(v) \(u^\varepsilon_i \overset{2}{\rightharpoonup} u_i, \nabla u^\varepsilon_i \overset{2}{\rightharpoonup} \nabla u_i + \nabla_y u_1\) where \(u_1^\varepsilon \in L^2((0,T) \times \Omega; H^1_{\#}(Y))\),

(vi) \(\theta^\varepsilon \overset{2}{\rightharpoonup} \theta, \nabla \theta^\varepsilon \overset{2}{\rightharpoonup} \nabla \theta + \nabla_y \theta^1\) where \(\theta^1 \in L^2((0,T) \times \Omega; H^1_{\#}(Y))\),

(vii) \(v^\varepsilon_i \overset{2}{\rightharpoonup} v_i \in L^\infty((0,T) \times \Omega \times \Gamma)\) and \(\partial_i v^\varepsilon_i \overset{2}{\rightharpoonup} \partial_i v_i \in L^2((0,T) \times \Omega \times \Gamma)\).

**Proof.** We obtain (i) and (ii) as a direct consequence of the fact that \(u^\varepsilon_i\) and \(\theta^\varepsilon\) are uniformly bounded in \(L^\infty(0,T;H^1(\Omega)) \cap L^\infty((0,T) \times \Omega)\). A similar argument gives (iii). We get (iv) using the compact embedding \(H^\alpha(\Omega) \hookrightarrow H^\beta(\Omega)\) for \(\beta \in (\frac{1}{2},1)\) and \(0 < \beta < \alpha \leq 1\), since \(\Omega\) has Lipschitz boundary. Note that (iv) implies the strong convergence of \(u^\varepsilon_i\) up to the boundary.

Denote \(W := \{w \in L^2(0,T;H^1(\Omega))\} \cup L^2(0,T;L^2(\Omega))\). We have \(u^\varepsilon_i, \theta^\varepsilon \in W\). Using Lions-Aubin lemma [16] we see that \(W\) is compactly embedded in \(L^2(0,T;H^\beta(\Omega))\) for \(\beta \in [0.5,1]\). We then use the trace inequality for perforated medium from [13], namely for all \(\phi \in H^1(\Omega^\varepsilon)\) there exists a constant \(C\) independent of \(\varepsilon\) such that:

\[
\varepsilon\|\phi\|_{L^2(\Gamma^\varepsilon)} \leq C(\|\phi\|_{L^2(\Omega^\varepsilon)}^2 + \varepsilon^2\|\nabla \phi\|_{L^2(\Gamma^\varepsilon)}^2).
\] (67)

Applying (67) to \(u^\varepsilon_i - u_i\), we get:

\[
\sqrt{\varepsilon}\|u^\varepsilon_i - u_i\|_{L^2((0,T) \times \Gamma^\varepsilon)}^2 \leq C\|u^\varepsilon_i - u_i\|_{L^2((0,T;H^\beta(\Omega^\varepsilon)))}^2 \leq C\|u^\varepsilon_i - u_i\|_{L^2((0,T;H^\beta(\Omega)))}^2,
\] (68)

where \(\|u^\varepsilon_i - u_i\|_{L^2((0,T;H^\beta(\Omega)))} \to 0\) as \(\varepsilon \to 0\). As for the rest of the statements (v)-(vii), since \(u^\varepsilon_i\) are bounded in \(L^\infty(0,T;H^1(\Omega))\), up to a subsequence we have that \(u^\varepsilon_i \overset{2}{\rightharpoonup} u_i\) in \(L^2(0,T;L^2(\Omega))\), and \(\nabla u^\varepsilon_i \overset{2}{\rightharpoonup} \nabla u_i + \nabla_y u_1\), where \(u_1^\varepsilon \in L^2((0,T) \times \Omega; H^1_{\#}(Y))\).

By Theorem 4.2, \(v^\varepsilon_i \overset{2}{\rightharpoonup} v_i \in L^\infty((0,T) \times \Omega \times \Gamma^\varepsilon)\) and \(\partial_i v^\varepsilon_i \overset{2}{\rightharpoonup} \partial_i v_i \in L^2((0,T) \times \Omega \times \Gamma^\varepsilon)\). \(\square\)

4.2. Two-scale homogenization procedure.

**Theorem 4.4.** Let \((A_1)-(A_2)\) hold. The limit functions \(\theta, u_i, v_i, \theta^1\) and \(u_1^\varepsilon\) satisfy (72), (73) and (74) for any \(\alpha \in C^\infty((0,T) \times \Omega)\) and \(\beta \in C^\infty((0,T) \times \Omega; H^\infty_{\#}(Y))\).

\(^1\)For our choice of microstructure, the interior extension from \(H^1(\Omega^\varepsilon)\) into \(H^1(\Omega)\) exists and the corresponding extension constant is independent of the choice of \(\varepsilon\); see the standard extension result reported in Lemma 5 from [13].
Proof. Testing \((P')\) with oscillating functions \(\phi(t,x) = \alpha(t,x) + \varepsilon \beta(t,x,\frac{y}{\varepsilon})\), where \(\alpha \in C^\infty((0,T) \times \Omega)\) and \(\beta \in C^\infty((0,T) \times \Omega; C_\#(Y))\), we obtain:

\[
\int_\Omega \partial_t \theta^\varepsilon (\alpha + \varepsilon \beta) + \int_\Omega \kappa^\varepsilon \left( \frac{X}{\varepsilon} \right) \nabla \theta^\varepsilon \left( \nabla_x \alpha + \varepsilon \nabla_x \beta + \nabla_y \beta \right)
+ g_0 \varepsilon \int_{\Gamma^\varepsilon} \theta^\varepsilon (\alpha + \varepsilon \beta) = \sum_{i=1}^N \int_{\Omega^\varepsilon} \tau^\varepsilon \left( \frac{X}{\varepsilon} \right) \nabla^\delta u_i^\varepsilon \cdot \nabla \theta^\varepsilon (\alpha + \varepsilon \beta), \tag{69}
\]

\[
\int_\Omega \partial_t u_i^\varepsilon (\alpha + \varepsilon \beta) + \int_\Omega d_i^\varepsilon \left( \frac{X}{\varepsilon} \right) \nabla u_i^\varepsilon (\nabla_x \alpha + \varepsilon \nabla_x \beta + \nabla_y \beta)
+ \varepsilon \int_{\Gamma^\varepsilon} (a_i u_i^\varepsilon - b_i v_i^\varepsilon) (\alpha + \varepsilon \beta)
= \int_{\Omega^\varepsilon} \delta_i^\varepsilon \left( \frac{X}{\varepsilon} \right) \nabla^\delta \theta^\varepsilon \cdot \nabla u_i^\varepsilon (\alpha + \varepsilon \beta) + \int_{\Omega^\varepsilon} R_i (u^\varepsilon) (\alpha + \varepsilon \beta), \tag{70}
\]

\[
\varepsilon \int_{\Gamma^\varepsilon} \partial_t v_i^\varepsilon (\alpha + \varepsilon \beta) = \varepsilon \int_{\Gamma^\varepsilon} (a_i u_i^\varepsilon - b_i v_i^\varepsilon) (\alpha + \varepsilon \beta). \tag{71}
\]

Using the concept of two-scale convergence for \(\varepsilon \to 0\) in (69), (70) and (71) yields:

\[
\int_\Omega \partial_t \theta^1 + \frac{1}{|Y|} \int_\Omega \int_\Omega \kappa(y) (\nabla \theta + \nabla_y \theta^1) (\nabla_x \alpha + \nabla_y \beta(x,y))
+ g_0 \left| \frac{\Gamma}{|Y|} \right| \int_\Omega \int \theta^1 = \sum_{i=1}^N \frac{1}{|Y|} \int_\Omega \int \tau(y) \nabla^\delta u_i \cdot (\nabla \theta + \nabla_y \theta^1) \alpha, \tag{72}
\]

\[
\int_\Omega \partial_t u_i^1 + \frac{1}{|Y|} \int_\Omega \int_\Omega d_i(y) (\nabla u_i + \nabla_y u_i^1) (\nabla_x \alpha + \nabla_y \beta)
+ \frac{1}{|Y|} \int_\Gamma \int (a_i u_i - b_i v_i) \alpha
= \frac{1}{|Y|} \int_\Omega \int \delta_i(y) \nabla^\delta \theta \cdot (\nabla u_i + \nabla_y u_i^1) \alpha + \int_\Omega R_i (u^1) \alpha, \tag{73}
\]

\[
\int_\Gamma \int \partial_t v_i^1 = \frac{1}{|Y|} \int_\Gamma \int (a_i u_i - b_i v_i) \alpha. \tag{74}
\]

Note that we have used strong convergence for passing to the limit in the aggregation term in (73).

Now we just need to find \(\theta^1\) and \(u_i^1\).

**Lemma 4.5.** The limit functions \(\theta^1\) and \(u_i^1\) depend linearly on \(\theta\) and \(u_i\) as follows:

\[
\theta^1 := \sum_{j=1}^3 \partial_{x_j} \theta \tilde{\theta}^j, \tag{75}
\]

\[
U_i^1 := \sum_{j=1}^3 \partial_{x_j} u_i \tilde{u}_i^j. \tag{76}
\]
Moreover, $\bar{\theta}^i$ and $\bar{u}^i_1$ solve the elliptic problems on the cell: (77) and (78), respectively:

\[
\begin{align*}
-\nabla_y \cdot (\kappa(y)\nabla_y \bar{\theta}^j) &= \frac{\partial \kappa}{\partial y_j} \quad \text{in } Y_1, \\
\kappa \nabla_y \bar{\theta}^j \cdot \nu &= -\kappa \nu_j \quad \text{on } \Gamma, \\
\bar{\theta}^j \text{ is periodic in } Y,
\end{align*}
\]

(77)

\[
\begin{align*}
-\nabla_y \cdot (d_i(y)\nabla_y \bar{u}^i_1) &= \frac{\partial d_i}{\partial y_j} \quad \text{in } Y_1, \\
d_i \nabla_y \bar{u}^i_1 \cdot \nu &= -d_i \nu_j \quad \text{on } \Gamma, \\
\bar{u}^i_1 \text{ is periodic in } Y,
\end{align*}
\]

(78)

Proof. To do this we choose $\alpha = 0$ in (72) and (73). This gives for all $\beta \in C^\infty((0, T) \times \Omega; C^\infty(\Gamma))$ a system of decoupled equations:

\[
\begin{align*}
\int_\Omega \int_{Y_1} \kappa(y)(\nabla \theta + \nabla \bar{\theta}^1) \nabla_y \beta(x, y) &= 0, \\
\int_\Omega \int_{Y_1} d_i(y)(\nabla u_i + \nabla \bar{u}^1_i) \nabla_y \beta(x, y) &= 0.
\end{align*}
\]

(79) (80)

From these equations we can easily get the assertion of this lemma. □

4.3. Strong formulation for the limit functions. Here, we give the strong formulation ($P^0$) for limit functions $\theta, u_i$ and $v_i$ obtained by Lemma 4.3.

Lemma 4.6. (Strong formulation). Assume $(A_1)$-$(A_2)$ to hold. Then the triplet $(\theta, u_i, v_i)$ of limit functions of weak solutions to the microscopic model is a the weak solution of the following macroscopic problem:

\[
\frac{\partial \theta}{\partial t} - \nabla \cdot (\mathbb{K} \nabla \theta) + \frac{\Gamma}{|Y_1|} \theta = \sum_{i=1}^N (\mathbb{T} \nabla^i u_i) \cdot \nabla \theta \text{ in } (0, T) \times \Omega,
\]

\[
-(\mathbb{K} \nabla \theta) \cdot \nu = 0 \text{ on } (0, T) \times \partial \Omega,
\]

where $\mathbb{K}$ and $\mathbb{T}^i$ are matrices given by $\mathbb{K} = K_0 \mathbb{I} + (K_{ij})_{ij}$ and $\mathbb{T} = T_0 \mathbb{I} + (T^i_{jk})_{jk}$, respectively, $\mathbb{I}$ is the identity matrix,

\[
K_0 = \frac{1}{|Y_1|} \int_{Y_1} \kappa \, dy, \quad K_{ij} = \frac{1}{|Y_1|} \int_{Y_1} \kappa \frac{\partial \bar{\theta}^j}{\partial y_i} \, dy,
\]

\[
T_0 = \frac{1}{|Y_1|} \int_{Y_1} \tau \, dy, \quad T^i_{jk} = \frac{1}{|Y_1|} \int_{Y_1} \tau_i \frac{\partial \bar{\theta}^j}{\partial y_k} \, dy,
\]

and

\[
\frac{\partial u_i}{\partial t} - \nabla \cdot (\mathbb{D}^i \nabla u_i) + A_i u_i - B_i v_i = (\mathbb{F}^i \nabla u_i) \cdot \nabla \delta \theta + R_i(u) \text{ in } (0, T) \times \Omega,
\]

\[
-(\mathbb{D}^i \nabla u_i) \cdot \nu = 0 \text{ on } (0, T) \times \partial \Omega,
\]

where $\mathbb{D}^i$ and $\mathbb{F}^i$ are matrices defined by $\mathbb{D}^i = D_i \mathbb{I} + D^i_0$ and $\mathbb{F}^i = F_i \mathbb{I} + F^i_0$,

\[
D_i = \frac{1}{|Y_1|} \int_{Y_1} d_i \, dy, \quad D^i_0 = \frac{1}{|Y_1|} \int_{Y_1} d_i \partial_{y_k} \bar{u}^i_1 \, dy, \\
F_i = \frac{1}{|Y_1|} \int_{Y_1} \delta_i \, dy, \quad F^i_0 = \frac{1}{|Y_1|} \int_{Y_1} \delta_i \partial_{y_k} \bar{u}^i_1 \, dy,
\]

\[
A_i = \frac{1}{|Y_1|} \int_{\Gamma} a_i, \quad B_i = \frac{1}{|Y_1|} \int_{\Gamma} b_i,
\]
and initial conditions:

\[ \theta(0, x) = \theta^0(x) \quad \text{in } \Omega, \]  
\[ u_i(0, x) = u_i^0(x) \quad \text{in } \Omega, \]  
\[ v_i(0, x) = v_i^0(x) \quad \text{on } \Gamma. \]  

Proof. First, choose \( \alpha \in C^\infty((0, T) \times \Omega) \) and \( \beta = 0 \) in (72) to obtain:

\[ \int_{\Omega} \partial_t \theta \alpha + \frac{1}{|Y_1|} \int_{\Omega} \int_{Y_1} \kappa(y)(\nabla \theta + \nabla_y(\sum_{j=1}^3 \partial_{x_j} \theta \bar{\theta}^j)) \nabla_x \alpha(x) \]
\[ + g_0 \frac{|\Gamma_R|}{|Y_1|} \int_{\Omega} \theta \alpha = \sum_{i=1}^N \frac{1}{|Y_1|} \int_{\Omega} \int_{Y_1} \tau(y) \nabla^\delta u_i \cdot (\nabla \theta + \nabla_y(\sum_{j=1}^3 \partial_{x_j} \theta \bar{\theta}^j)) \alpha. \]  

Integrating (84) w.r.t. \( y \) leads to:

\[ \int_{\Omega} \partial_t \theta \alpha + \int_{\Omega} K \nabla \theta \nabla_x \alpha + g_0 \frac{1}{|Y_1|} \int_{\Omega} \int_{Y_1} \theta \alpha = \sum_{i=1}^N \int_{\Omega} \nabla^\delta u_i \cdot \nabla \theta \alpha. \]  

We can similarly derive from (73) that:

\[ \int_{\Omega} \partial_t u_i \alpha + \int_{\Omega} \nabla^\delta u_i \nabla_x \alpha + \int_{\Omega} (A_i u_i - B_i v_i) \alpha = \int_{\Omega} \nabla^\delta \theta \cdot \nabla u_i \alpha + \int_{\Omega} R_i(u) \alpha, \]

\[ \int_{\Omega} \partial_t v_i \alpha = \int_{\Omega} (A_i u_i - B_i v_i) \alpha. \]

See also [17] and [9] for a similar application of the two-scale convergence method.

Acknowledgments. AM and OK gratefully acknowledge financial support by the European Union through the Initial Training Network Fronts and Interfaces in Science and Technology of the Seventh Framework Programme (grant agreement number 238702).

REFERENCES


