

WickedXmas : designing and verifying on-chip communication
fabrics
Citation for published version (APA):
Joosten, S. J. C., Verbeek, F., & Schmaltz, J. (2014). WickedXmas : designing and verifying on-chip
communication fabrics. In Proceedings of the 3rd International Workshop on Design and Implementation of
Formal Tools and Systems (DIFTS'14, Lausanne, Switzerland, October 20, 2014) (pp. 1-8)

Document status and date:
Published: 01/01/2014

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 03. Nov. 2024

https://research.tue.nl/en/publications/a2efcabc-aa73-449b-9284-dca6b551a7e0

WickedXmas: Designing and Verifying
on-chip Communication Fabrics

Sebastiaan J.C. Joosten
Eindhoven University of Technology

Radboud University Nijmegen
Email: s.j.c.joosten@tue.nl

Freek Verbeek
Open University of The Netherlands

Radboud University Nijmegen
Email: freek.verbeek@ou.nl

Julien Schmaltz
Eindhoven University of Technology

Email: j.schmaltz@tue.nl

Abstract—In modern chip architectures, the increase in par-
allelisation brings about highly complex on-chip communication
fabrics. We present WickedXmas, a tool that facilitates the design
and formal verification of such interconnects. The tool is based
on the language xMAS, which is a high level design language
for communication fabrics, originally proposed by Intel. The
use of xMAS ensures that many common modelling errors such
as unintended loss of data or dangling wires are prevented
by construction. Therefore, the major challenge in verifying
xMAS models is establishing deadlock freedom. WickedXmas
can automatically detect deadlocks or prove their absence. If
a deadlock is found, it is presented to the user for further
analysis. Experimental evaluation on a range of interconnects
shows good performance and scalability of WickedXmas in
contrast to verification from scratch, or using existing model
checking techniques. Using WickedXmas, a user can draw a
communication fabric and formally verify it automatically.

Keywords—Communication Fabrics, Deadlock Detection, For-
mal Verification Tools

I. INTRODUCTION

The field of computing is experiencing a major change.
Improvements in integration capabilities bring more transistors
on a piece of silicon. As power dissipation prevents these
transistors from running faster, the current trend to gain perfor-
mance out of these additional transistors is to go parallel [9].
Massively parallel architectures are slowly becoming available
to the masses. In this realm of multi-core computing, the
communication fabrics connecting the cores become a key
component for design and validation. Ensuring correctness of
these on-chip networks is crucial to system correctness.

Communication fabrics are complex structures. To achieve
performance and to support simultaneous transactions between
agents, complex credit-counting mechanisms, virtual channels,
or flow-control mechanisms are needed. The verification of
communication fabrics is a challenge. Distributed control
makes abstraction difficult and the large number of queues
needed to store messages at their intermediate hops induces a
large state-space. To ease design and verification, researchers
at Intel recently proposed xMAS – for eXecutable Micro-
Architectural Specifications – as a language to represent
micro-architectural models of communication fabrics [6], [7].
This language captures high-level descriptions for designers’
intents, easing the understanding of complex designs. From
this high-level model, invariants can be derived and input
to a hardware model-checker, e.g. ABC [3], to speed-up
verification.

In this paper, we present WickedXmas, a toolset for the
design and analysis of communication fabrics1. Our tool is
publicly available and provides designers with a graphical user
interface. WickedXmas integrates several analysis techniques,
in particular for invariant generation and deadlock verification.
Some of these techniques were previously published, but
not publicly available. It implements the invariant generation
method proposed by Intel [5] and an efficient deadlock de-
tection algorithm developed by Verbeek [14]. Invariants are
written in separate files in the SMT format [2]. These invariants
can therefore easily be used by related techniques.

A key feature of WickedXmas is compositional design. A
user can draw subnetworks or design common structures such
as scoreboards, virtual channels, processing nodes or routers.
WickedXmas enables the user to parameterize such designs
and save them in such a way that they can be reused to
build larger fabrics. Parameters can influence among others
the types of packets that are injected, the routing behavior
of the switches and even the structure of the subnetwork.
This facilitates, e.g., the design of a network in which certain
nodes are masters and others are slaves, or the design of a
processing node that transmits packets only to a restricted
set of destinations. Most importantly, it facilitates the design
of recursive structures. We illustrate this capability with the
design of a Spidergon ring [8]. We provide experimental results
on two network elements previously studied in several papers.
These show that WickedXmas is able to detect routing dead-
locks, message-dependent deadlocks, on-chip synchronization
deadlocks, and incorrectly sized credit counters.

Other than WickedXmas, there is no publicly available tool
that supports xMAS or a similar high-level design language.
Poliakov et al. have developed Workcraft, which is a tool that
can model and detect deadlocks in a family of concurrent
system design languages such as Petri Nets or gate-level
circuits [12]. Workcraft, however, cannot directly be used for
design and verification of xMAS.

The next section discusses background theory on xMAS
and communication fabric deadlocks. Section III presents
the architecture of WickedXmas. We explain the usage of
WickedXmas in Section IV. Some non-trivial case studies are
presented in Section V. We conclude in Section VI.

1WickedXmas and the examples in this paper are available at:
http://www.cs.ru.nl/∼freekver/algo xmas/index.html

II. BACKGROUND THEORY

The xMAS language can be used to model and verify on-
chip communication networks at the microarchitectural level.
Consisting of only eight primitives, the language is expressive
enough to model many different aspects of communication
fabrics, such as message dependencies, virtual channels, cache
coherency protocols, master/slave protocols, credit-based flow
controls, and broadcasting. We introduce the eight primitives
of xMAS and their semantics. We illustrate how xMAS is typ-
ically used and how WickedXmas improves this methodology.

A. The xMAS language

An xMAS model is a network of primitives connected via
channels. A channel is connected to an initiator and a target.
Each channel consists of three signals. Channel signal x .irdy
indicates whether the initiator is ready to write to channel x.
Channel signal x .trdy indicates whether the target is ready to
read channel x. Channel signal x .data contains data that is
transferred from the initiator output to the target input if and
only if both signals x .irdy and x .trdy are set to true.

Figure 2 shows the eight primitives of the xMAS language.
A queue stores data and is the state holding element. A
function primitive manipulates data. Its parameter is a function
that produces an outgoing packet from an incoming packet.
Typically, functions are used to convert message types and
represent message dependencies inside the fabric or in the
model of the environment. Messages are non-deterministically
produced and consumed at sources and sinks. A source may
process multiple message types. We assume sources and sinks
are fair, i.e., they will always eventually be ready to transmit
(in case of the source) or receive (in case of the sink). A
fork duplicates an incoming packet to its two outputs. Such a
transfer takes place if and only if the input is ready to send
and the two outputs are both ready to read. A join is the dual
of a fork. The function parameter determines how the two
incoming packets are combined. A transfer takes place if and
only if the two inputs are ready to send and the output is ready
to read. A switch uses its function parameter to determine to
which output an incoming packet must be routed. It models
deterministic routing; adaptive routing is not yet supported. A
merge is an arbiter. It grants its output to one of its inputs. We
assume that merges are fair, e.g., round-robin or FIFO.

A configuration represents the current occupation of
queues, i.e., the current state. Configurations are updated when
messages are produced, consumed, or moved to one or more
next queues.

Example 1: Consider the xMAS model in Figure 1. Two
agents are communicating via a fabric. Each agent injects re-
quests at a source. A join synchronizes the source with a credit
counting mechanism, ensuring that at most k requests can be
enroute in the network at all times. The stream of injected
requests is merged with the stream of responses that have been
generated as result of receiving requests from the other agent.
The combined stream flows to the communication fabric, i.e.,
queue dx1. Arriving at the other agent, the streams are split:
ingress queue iq1 receives requests, queue iq2 receives the
responses. When packets leave these queues to be sent back
as a response or to be consumed, the forks ensure that tokens
are sent back for correct bookkeeping by the credit counters.

kk

kk kk

kk

~ ~

~~
k k

k k

agent Q

agent P

x � x = req

x � x = req

req

req

x � rsp

x � rsp

fabric2 2 2 2 2 2

cq1 cq2

cx2cx1

cc1 cc2iq1 iq2

dx1

~ ~ Łi o i o
k

i o o
k

iŁ

token

(a) Two Agents

kk

kk kk

kk

~ ~

~~

k k

k k

agent Q

agent P

x � x = req

x � x = req

req

req

x � rsp

x � rsp

fabric2 2 2 2 2 2

cq1 cq2

cx2cx1

cc1 cc2iq1 iq2

dx1

~ ~ Łi o i o
k

i o o
k

iŁ

token

kk

kk kk

kk

~ ~

~~
k k

k k

agent Q

agent P

x � x = req

x � x = req

req

req

x � rsp

x � rsp

fabric2 2 2 2 2 2

cq1 cq2

cx2cx1

cc1 cc2iq1 iq2

dx1

~ ~ Łi o i o
k

i o o
k

iŁ

token

(b) Macro’s

Fig. 1: Example of network [11]

The credit counters are modelled in a macro block, which can
be considered as an open xMAS model, i.e., an xMAS model
with unconnected in- and outputs.

B. Deadlocks

One of the properties most hard to verify for xMAS fabrics
is the absence of deadlocks. A deadlock is a configuration in
which at least one packet is enroute towards its destination but
is permanently blocked. Since both sinks and merges are fair,
deadlocks occur because of design flaws in the combinatorial
logic between queues. Some packet is stored in a queue
and ready to be transmitted, but since its targetted queues
are permanently unable to accept it, the packet is stuck. We
therefore detect dead queues, i.e., queues that contain a packet
that is permanently blocked.

We use Linear Temporal Logic (LTL) to formally define
deadlocks [1]. LTL provides the Globally operator to express
that some property is always true, and the Finally operator
which expresses that some property is eventually true. The
channel that is connected to queue q is referred to with q.out.

Definition 1: A deadlock is a configuration in which some
queue q is ready to send data, but is permanently unable to
transmit it.

Dead(q) = F(q.out.irdy ∧G¬q.out.trdy)

Fig. 2: Eight primitives of the xMAS language [7]. Italicized letters indicate parameters. Gray letters indicate ports.

Eventually, a configuration is reached in which q.out.irdy
is high, meaning that queue q contains a packet. However,
q.out.trdy is permanently low, meaning that the packet will
never leave the queue. Such a situation can arise due to
starvation or a – possibly local – deadlock. Since we assume
fair merges, no starvation can occur. Therefor, this definition
identifies deadlocks.

Example 2: We have modelled the communication fabric
in Figure 1 in WickedXmas, but with oversized credit counters.
Due to this oversizing, the network has a deadlock. This dead-
lock occurs when the source of agent P injects requests into
queue dx1 which are then routed to queue Qiq1. The oversized
credit counting mechanism allows at most 10 requests in these
two queues. Since queue Qiq1 has size 9, it is possible that
queue Qiq1 is full and queue dx1 contains 1 request. This
request can block a response that wants to travel from dx1
to queue Qiq2. In such a configuration, queue dx1 is full and
cannot accept incoming packets. If the exact same happens
at the right-hand side of the fabric, a deadlock occurs. The
deadlock configuration is the following assignment of packets
to queues:

dx1.req = 1 dx2.req = 1
dx1.rsp = 1 dx2.rsp = 1
Piq1.req = 9 Qiq1.req = 9

Note that this deadlock is prevented by correct credit counting
mechanisms: if at most 9 requests are allowed in queues dx1

and Qiq1, then a configuration in which a request in dx1

permanently blocks responses would not be possible.

C. Usage of xMAS

Currently, xMAS is used for design and verification of
microarchitectural communication fabrics at Intel’s Strategic
CAD Labs. At Intel, designers manually build a representation
of an xMAS diagram in C++ [6]. The C++ description is
compiled down to a hardware language (synchronous, single
clock, edge-triggered Verilog [4], [5]). The Verilog is model
checked using ABC. Inductive invariants are generated from
the C++ description which are used for the verification of the
model. Their purpose is to facilitate the model checking by
providing speed-up and hints for verification.

WickedXmas has three major advantages on this method-
ology. First, it provides completely automatic verification and
compilation to a representation in C++. This saves significant
time, as the main part of the modelling effort is in sketching
the diagram and converting it to C++ [6]. During this manual
process, modelling bugs can occur such as demux conditions
which are not mutually exclusive, build errors, or dangling
channels. Even though these are often easily corrected, a

graphical editor such as WickedXmas is much better tailored
for designing models in the graphical language xMAS. Any
drawing in WickedXmas is correct by construction when it
comes to these kinds of modelling bugs.

Secondly, WickedXmas does not verify on a low-level of
abstraction such as Verilog. It directly verifies the xMAS model
using a dedicated algorithm [14]. This approach leads to better
scalability.

Thirdly, WickedXmas is able to visualize deadlocks in the
communication fabrics. The deadlock described in Example 2
and its visualization have both been produced automatically
by WickedXmas. The tool finds deadlocks and shows the user
which queues are filled with which kinds of messages. This
graphical feedback can help in understanding and evaluating
the design.

III. TOOL ARCHITECTURE

A network designer only interacts with a graphical user
interface for WickedXmas. To verify that a network contains
no deadlocks, several modules are executed sequentially. Upon
verification, the network is stored into a single file. The net-
work is then inspected, and an executable to perform deadlock
detection is generated, along with the network information it
needs. Should any deadlock configurations be found, one such
configuration is presented to the user. Figure 3 presents an
overview of this architecture of WickedXmas.

A. User interface

The user interface to WickedXmas is an executable in
which networks can be composed out of primitives and macros.

Network Inspection

Deadlock Detection

WiCKeD xMAS UI

Network

Components
Flat JSON

Network
as C

Library

Packet Type
Information

Flatten
fJSON
to C

Simulate Invariant
Generation Invariants

Deadlock
Detection

Simplify

Invariants
SMT

Solver
(Z3)

Deadlock
Configuration

Fig. 3: Tool Architecture

Each macro can be stored into a separate file, to enable
modular design. Upon starting the verification process, a single
file is generated containing a flattened description of the
network. This file, like the original network, is stored in a
JSON structure (for: Java Script Object Notation). We call this
structure ‘flat’ since it fully describes the network in terms of
primitives, that is: it does not contain any macros.

In the user interface, a designer can click through the
various steps of the deadlock detection. Should a deadlock be
found, its configuration is presented to the user. More details
can be read in Section IV.

B. Network inspection

The first step to detect deadlocks from a flattened descrip-
tion of a network, is performing an analysis on the network.
In contrast to the user interface, these analysis tools are
cross-platform, and written in various languages. The tasks
performed are:

• Parsing the flattened network, generating C++ code.

• Performing a simulation on the network to obtain
packet type information.

• Generating invariants that hold for the network.

• Simplifying these invariants.

• Finding deadlocks.

To parse the JSON structure, we use a JavaScript file, which
is executed through phantomjs. The output of this file is
C++ code describing a network, in which xMAS functions
become C++ functions. This allows a compiler to perform
optimization on these functions when they are compiled into
several executables.

The first executable generated performs a simulation that
assigns packet types to sources and queues. This information
on packet types is stored in a separate file, which is used
for generating invariants and finding deadlocks. It is obtained
by a forward simulation without any assumptions on timing.
Initially, the algorithm assumes no packets can arrive at any
queue. Starting at the sources, for every packet type it can emit,
its path is followed through the network to the next queue. That
queue is then updated: the packet which just arrived there is
added to the list of packet types that may arrive at that queue.
The algorithm is repeated for all queues and corresponding
types, until a fixed point is reached. Since we only allow for a
finite number of packet types, we are guaranteed to reach this
state.

The generation of invariants occurs in two steps. In the first
step, invariants concerning all message types are generated,
according to the technique described in [4], [5].

Example 3: Consider again the network in Figure 1. Four
credit counting mechanisms are regulating the flow of packets
arriving at the agents. Credit counter cc1 ensures that invari-
ably at all times the number of requests in queues dx1 and
Qiq1 is less than or equal to k. This is an invariant that is
found automatically:

dx1.req +Qiq1.req ≤ k

Another invariant, that is induced from the typing information,
states that invariably queue dx1 contains requests or responses,
whereas queue Qiq1 contains requests only:

dx1 = dx1.req + dx1.rsp
Qiq1 = Qiq1.req

These invariants rule out the deadlock described in Example 2.

During and after invariant generation, the set of found
invariants is simplified. This simplification may cause the
deadlock detection to perform its analysis independently of
packet types, reducing the time it takes to verify a network.
The initial generation of invariants requires knowledge about
the network, which is obtained from the C++ library. The
simplification part does not require this knowledge. It is a
precompiled Haskell program which returns the invariants in
SMT2 format, which allows us to parse it more easily.

The final executable generated with the C++ description of
the network is that of the deadlock detection. This executable
uses the previously derived packet type information, along with
the generated invariants.

C. Deadlock detection

The deadlock detection is an implementation of the al-
gorithm described in [14]. This algorithm may find many
deadlock configurations. In generating these configurations, it
ignores most invariants. For each such deadlock configuration,
the SMT solver Z3 [10] is queried to determine whether that
configuration is actually in compliance with the generated
invariants. If deadlocks exists, it is guaranteed that the tool will
find one. If none of the deadlock configurations can occur, the
network is guaranteed to be live. Should there be a deadlock
configuration which cannot be excluded by the invariants, it
is returned for closer inspection by the network designer. The
designer may then decide to fix his network, or add (unverified)
properties about the network in the invariants file manually in
order to exclude the configuration found.

IV. TOOL USAGE

Figure 4 shows the main interface of WickedXmas. We
detail the actions involved in drawing and making a complete
design.

Defining packet types: The first step in designing a
communication fabric is defining the contents of the packets.
WickedXmas assumes homogeneous packet types. Each packet
consists of one or more fields. Consider, for example, a 10×10
2D mesh with request/response packets. Each packet contains
the destination coordinates, the message type (i.e., request
or response) and the coordinates of the source. To provide
this information to WickedXmas, the packet type window is
opened. For each field a line is inserted of the following form:

f < n

Here f is the name of the field and n represents its range. A
request (response) is modelled by a packet whose type is 0 (1).
This example will be used as running example in this section.

Fig. 4: The user interface

Adding components: The tool allows for placing, rotat-
ing and dragging components as the user would expect. Also,
copy/paste behavior is implemented. Aside from the regular
components, there is a specific ‘input’ and ‘output’ component,
to allow for the creation of macro blocks. All these components
are available both from the ‘Shape’ menu and from the toolbar.

Some components require extra information. For example,
sources require information about the type of packet that is in-
jected and queues require a known queue size. All components
that need extra information feature a bullet alongside it. When
the bullet is red, the corresponding component still requires
more information. By right clicking the component, fields can
be edited. When the bullet is green, the component is ‘done’.

All components can be named by given them a label.
This is optional, but naming the queues is recommended for
readable feedback.

Connecting components: The layout of components is
given by the user, by dragging and placing them. The layout
of connecting wires is automatic, only a start and endpoint
have to be given. The tool prevents connections from outputs
to outputs or inputs to inputs.

Verifying the design: A design is complete only when
1.) the bullets of all components are green and 2.) all compo-
nents are connected. When the design is complete, a user can
click through the process of deadlock verification. The first step
verifies that the design is complete. It then creates a JSON file
containing a flattened description of the network as explained
in Section III-A. Step 2 generates all verification tools. If the
user wants to inspect the invariants that have been generated,
it can execute Step 3. Inspecting the invariants is optional, but
it can be very useful to get insight into the design. The final
step runs deadlock detection. Should there be a deadlock, this
information will be presented to the user.

The major part of the design effort is in adding components.
We provide details on how the user can finish each component:

queue: When adding a queue, the user must provide its
size. Currently, this has to be a natural number. Our verification

tools can deal with parametric queue sizes, but before we allow
this some technical details in the tool flow have to be dealt
with.

function: A function component requires the user to
specify the packet transformation that is executed by the
function. The transformation takes as input a packet p and
outputs a packet ret. Initially, packet ret is a copy of p. If
nothing is entered, the function will be the identity function.
The user can edit the fields of packet ret. Revisiting the 2D
mesh example, let’s say that a function transforms an incoming
request to a response and sends it back to the source node. The
user can specify this transformation as follows:

ret Xdst = p Xsrc; ret Y dst = p Y src; ret type = 1;

A language of basic compare operators and mathematical
functions is supported.

source: When adding a source, information must be
added on the set of packets that are inject by that source.
WickedXmas accepts a set comprehension for this. The set of
all packets can be accessed through variable PacketDomain.
The following line must be inserted when adding a source:

{p in PacketDomain | f(p)}

Here f is predicate that returns true if and only if the given
packet is injected at the source. Reconsider 2D-mesh with
requests/response. Say we want to model that the source of
node (0, 0) injects packets that are destined for all nodes in
the other columns (i.e., not for the left-most column) and
that are not responses. WickedXmas requires the following
specification:

{p in PacketDomain |
p Xsrc == 0 && p Ysrc == 0 &&

p Xdst > 0 && p type != 1}

Besides “and” and “not”, the logical “or” can be used as well.

sink: We assume sinks to be fair. Therefore, a sink
requires no extra information from the user.

fork: Without loss of generality, we assume forks
without functions on the output channels [11]. Therefore, forks
require no additional information.

join: For efficient verification, we assume that one of
the inputs of a join is a token that is consumed by the join and
one input is the packet that is to be transferred [11], [14]. The
user has to specify which is which. Figure 4 shows a join in
which the left input transmits packets, whereas the right input
consumes tokens.

switch: A switch requires the specification of its routing
logic. The user has to provide a function s that takes as input
a packet p and returns true if and only if the packet is routed
to the upper output channel of the switch. For example, say a
switch has to route all packets destined for node (1, 1) and all
response packets to the upper output channel. The user adds
the following specification:

return(p Xdst == 1 && p Ydst == 1) || p type == 1;

merge: We assume that merges are fair. Therefore, the
arbitration policy that is applied within the merge (e.g., FIFO
or round-robin) is irrelevant for verification. A merge requires
no extra information from the user.

composite object: In WickedXmas, composite objects
are the key components to achieve scalable design. They
are the components that implement macros. To create a new
composite object, the user just has to save his file. When
inserting a composite object, a dialog pops up asking what file
to open. An input and output port will be created for every ‘In
connector’ and ‘Out connector’ object in the original file.

Composite objects can be parameterized. Functions,
switches and queue sizes may depend on these parameters.
Most importantly, the parameter can be used to decide the
layout of a composite object. By clicking ‘add tab’, a case
distinction can be made based on a parameter, effectively
allowing a parameter to influence the implementation of an
object. We allow composite objects to contain other composite
objects, which enables a hierarchical design flow. Most impor-
tantly, we allow composite objects to contain themselves. The
combination of parametric and hierarchical composite objects
allows recursive design of communication fabrics.

V. CASE STUDIES

In this section, we show that our tool can verify deadlock
freedom of various examples from industry and academia. As
mentioned in section III-C, our tool is guaranteed to find a
deadlock in case deadlocks exist. To give a sense of the size of
the networks, we give the number of queues. Readers interested
in the state space of such networks can use 2qdw as an estimate,
where q is the number of queues, d the queue depth, and w is
the data width.

A. Spidergon

We first consider a case study concerning the Spidergon of
STMicroElectronics [8]. The Spidergon is a ring with ‘across’
channels. Packets move via the shortest path towards their
destination (see Figure 5a). Without further modification, the
chip suffers from routing deadlocks. A deadlock can occur

if each clockwise channel going out of processing node n is
filled with messages destined for node n + 2 mod p with p
the total number of processing nodes (see Figure 5b).

(a) Spidergon ring topology (b) A deadlock. Each channel has ca-
pacity to store two packets.

Fig. 5: Spidergon of STMicroElectronics

Our aim is to formalize this design in WickedXmas and
confirm this deadlock. Then, we will experiment with alter-
native versions to see how this influences the existence of
deadlocks.

Figure 6a shows the design of the processing nodes. The
figures are hard to read, but they are just intended to give
an impression of a WickedXmas design. There are three
inputs for messages coming in from the across, clockwise, or
counter-clockwise direction. Similarly, there are three outputs.
Messages are injected by the sources. The combination of
wires, switches and merges implements a crossbar, routing
messages in the right direction. If messages arrive at their
destination, they are sent to the local out queue, where they
are consumed by a sink. Note that this design is parametric.
The routing logics at the switches base their decisions on the
incoming packet p n, but also on parameter $n (indicating
which node it is) and $p (the total number of processing
nodes). Consider, for example, a newly injected packet at the
source. The first switch decides whether the packet has to be
routed across. The routing logic is formulated as follows:

(p n+ $p− $n)%$p > $p/4 &&
(p n+ $p− $n)%$p < $p− $p/4;

The relative address (p n+$p− $n)%$p is computed. If it is
greater than $p/4 (i.e., outside the quadrant reached clockwise)
but less than $p−($p/4) (i.e., outside of the counter-clockwise
quadrant), the packet is routed across.

We use this design to recursively build a ring (see Figure 7).
The base case, for $i = 0, is an “empty ring” where ins outs
are simply connected. The inductive case, for $i > 0, consists
of three composite objects. Two of them are processing nodes
UP and DOWN, which are across of each other. These nodes
are, e.g., nodes 0 and 4 in Figure 5a. The third is a ring object
with $i = $i − 1. This ring object will – during flattening
– recursively unfold itself to two new nodes (i.e., the next
two will be 1 and 5, then 2 and 6, etc.). There are in- and
outputs for sending packets clockwise and counter-clockwise.
Ultimately, this yields a composite object named ring that
requires a parameter $i that dictates how many processing
nodes the ring should contain.

When executing deadlock detection, the deadlock in Fig-
ure 5b is found instantaneously. We experiment with different

(a) Processing Node (master) (b) Processing Node (slave)

Fig. 6: Processing nodes

(a) Base case

(b) Recursive case

Fig. 7: Recursive design of the Spidergon

approaches to resolving this deadlock (see Table I). First
we consider two types of processing nodes: masters (see
Figure 6a) and slaves (see Figure 6b). Slaves are processing
nodes that consume messages, but do no produce any. Masters
produce messages for all other nodes. Depending on parameter
$n, a node is a master or a slave. We consider the case
where the right upper quadrant consists of slaves. This resolves
the deadlock for $p = 8 (i.e., when the size of the ring is
8). However, for larger rings the deadlock – surprisingly –
reappears.

We then change the behavior of master nodes in such a way
that they send out messages to slaves only. This eliminates all
deadlocks. WickedXmas is able to prove this for a 64 ring in
approximately 15 minutes. A final experiment adds message
dependencies to the network: masters send out requests, which
when arriving at slaves are transformed into responses and sent
back. WickedXmas proves that adding message dependencies
does introduce deadlocks to this particular configuration of
masters and slaves, but only for rings with more than eight
nodes. Adding message dependencies significantly increases
running time, since packets become larger (they now store their
original source and a message type).

Size 8 16 32 64
Number of queues 32 64 128 256
Verification Time 1 sec. 7 sec. 45 sec. ± 15 min.
Spidergon × × × ×
+ 1 quadrant slaves X × × ×
+ packets to slaves only X X X X
Verification Time 58 sec. N/A N/A N/A
+ requests/responses X × × ×

TABLE I: Experimental results with variations of the Spider-
gon architecture.
X= deadlock-free, × = deadlock

B. Virtual Channels and Scoreboards

Figure 8a shows a network from a paper by Ray and
Brayton [13]. The switch is configured such that packets
coming from A1 are routed to B3, and packets coming from the
bottom half are routed to B4. The figure shows a configuration
in a deadlock situation which can be explained as follows:
Buffer B3 is full and permanently blocked, as the arbiter is
in a state that gives priority to the top channel. Packets in the
top channel, however, are destined for B3, which is full. For
this reason, the arbiter will not give the turn to the bottom
channel, since it can only do so after a transfer. It is critical
to this deadlock that there is a packet in B1, and a packet
entering at A1. Should either of these packets be missing, the
arbiter cannot give priority to the top channel.

There are two invariants for the network shown in Fig-

B1 B2

B3

B5 B6

B4

A1

flp

(a) Deadlocking virtual channel

B6B5 B7 B8 B9

B14B13B12B11B10

B1 B2

B3 B4

(b) Two entry scoreboard

Fig. 8: xMAS examples from [13]

ure 8a, namely:

B2 = B1 +B3

B6 = B5 +B4

The deadlock can be prevented by reducing the size of B2,
such that B1 is empty whenever B3 is full. In other words:
B2 can be as large as B3, but no larger. Our tool finds both
invariants. It finds the deadlock if the queue sizes are such that
there is one.

A second network from the same paper is a two entry
scoreboard, as shown in Figure 8b. In this example, a workload
gets assigned a token from the top half of the network.
Depending on this token, the packet traverses queues B5 to
B9, or queues B10 to B14. There are two phases in which
‘work’ is done on the packet: one phase happens while the
packet is in queue B6 or B11, and the other while it is in B8
or B13. In our tool, the two phases of the scoreboard were
modeled by single queues, giving a total of 16 queues. Of the
two methods proposed in the paper, only one of them was able
to prove what the authors call a ‘response property’, taking
38 seconds to verify after adding several properties about the
network manually. This property is similar to the property we
verify in our tool. Our tool verifies the network to be deadlock
free in a few seconds.

VI. CONCLUSION

We presented WickedXmas, a toolset supporting the graph-
ical design of communication fabrics. The toolset includes the
generation of inductive invariants and an efficient deadlock
checker. The design language is the xMAS language origi-
nally proposed by Intel. We illustrated the applicability and
performance of WickedXmas on variations of the Spidergon
by STMicroElectronics. Once the design was drawn, we could
tweak it to study the effects of different layouts of masters
and slaves, or adding message dependencies. We also tackled
a few tricky examples from the literature.

We envision many possible extension of WickedXmas. Al-
lowing parametric queue sizes and parametric macro’s would
significantly increase the tools’ ability to deal with large
repetitive structures such as meshes and rings. Adding support
for hierarchical structures could increase scalability. Most of
all, we aim at providing compilers from xMAS to Verilog.
WickedXmas can then be used to model and verify at a high

level of abstraction, but to generate correct low-level hardware
designs.

Acknowledgements: This research is supported by an
NWO/EW project Effective Layered Verification of Networks-
on-Chip (ELVeN) under grant no. 612.001.108. This research
is supported by a grant from Intel Corporation.

REFERENCES

[1] Baier, C., Katoen, J.P.: Principles of model checking. The MIT Press
(2008)

[2] Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org (2010)

[3] Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength
verification tool. In: Computer Aided Verification, pp. 24–40. Lecture
Notes in Computer Science, Springer Berlin Heidelberg (2010)

[4] Chatterjee, S., Kishinevsky, M.: Automatic generation of inductive
invariants from high-level microarchitectural models of communication
fabrics. In: 22nd International Conference on Computer Aided Verifi-
cation (CAV’10) (July 2010)

[5] Chatterjee, S., Kishinevsky, M.: Automatic generation of inductive
invariants from high-level microarchitectural models of communication
fabrics. Formal Methods in System Design 40(2), 147–169 (2012)

[6] Chatterjee, S., Kishinevsky, M., Ogras, Ü.Y.: Quick formal modeling
of communication fabrics to enable verification. In: Proceedings of the
IEEE International High Level Design Validation and Test Workshop
(HLDVT’10). pp. 42–49 (2010)

[7] Chatterjee, S., Kishinevsky, M., Ogras, Ü.Y.: xMAS: Quick formal
modeling of communication fabrics to enable verification. IEEE Design
& Test of Computers 29(3), 80–88 (2012)

[8] Coppola, M., Grammatikakis, M., Locatelli, R., Mariuccia, G., Pieralisi,
L.: Design of interconnect processing units Spidergon STNoC. CRC
Press (2009)

[9] Dally, W.: The end of denial architecture. Keynote at DAC’09 (2009)
[10] De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and

Algorithms for the Construction and Analysis of Systems, pp. 337–340.
Springer (2008)

[11] Gotmanov, A., Chatterjee, S., Kishinevsky, M.: Verifying deadlock-
freedom of communication fabrics. In: Verification, Model Checking,
and Abstract Interpretation (VMCAI ’11), vol. 6538, pp. 214–231
(2011)

[12] Poliakov, I., Khomenko, V., Yakovlev, A.: Workcraft – a framework for
interpreted graph models. In: Applications and Theory of Petri Nets,
pp. 333–342 (2009)

[13] Ray, S., Brayton, R.K.: Scalable progress verification in credit-based
flow-control systems. In: DATE. pp. 905–910 (2012)

[14] Verbeek, F., Schmaltz, J.: Hunting deadlocks efficiently in microarchi-
tectural models of communication fabrics. In: Proceedings of the In-
ternational Conference on Formal Methods in Computer-Aided Design.
pp. 223–231. Austin, TX (2011)

