Communication and co-operation in building

Citation for published version (APA):

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 11. Sep. 2020
Communication and Co-operation in Building

This issue of OPEN HOUSE is covering models for communication and cooperation in architectural education and design in actual practice. Two dimensions are broached: an international dimension and a local one fixed on the activities of design teams.

The first contribution by Thijs Bax and Henk Trum is based on the taxonomy of architectural domains that has been being developed since 1979. The education taxonomy of Bloom from 1968 has been combined with architectural terms here and further adapted, extended and restructured. The taxonomy is the framework for communication at a European level. The application developed here is focussed on education for various architectural bodies within an international context and the requirements they demand.

The exchange of architectural concepts between individuals in a group or between groups cannot be achieved without agreement on the meanings attached to these concepts. Cherif N. E. Branki takes a closer look at this problem, studies the conditions for shared ontologies and makes his model more concrete with computer linguistic instruments (agents in particular) focussing on the cooperative architectural design environments.

This theme is continued by Wassim M. Jabi, who analyses the real situation in practice using a case study. One important contribution made by his study is the communicative role that objects relevant to design (artefacts) play in the design environment (sketches, documentation, screen images). From this we may conclude that a lot more attention has to be paid to specific situational aspects within an architectural firm than has been customary up to now, as well as to the interface of the CSCW systems (Computer Supported Cooperative Work) within specific fields. In contrast to the present supply of CSCW hard and software, it is not the verbal and non-verbal expression of partners that is essential, but the versatility and quality of the communication through graphic information.

New, computer supported instruments are being offered that are focussed on graphic communication. Roel Daru and Wim Adams indicate how an interactive data graphic matrix can support communication and co-operation between partners by matching the structure of organisations and buildings. Via discrepancy matrixes incompatibilities and conflicts are quickly and clearly expressed at an early stage. An acceptable solution can be found for the various parties through negotiation (made possible by rapid feedback). The structures agreed upon can easily be translated into layouts.

This brings us to a subject that deserves a better place in future developments. Instruments for CSCW must take fractions and dysfunctions into account. The question is how conflicts, or missing, fuzzy or skewed information has to be dealt with including domination by one of the partners (in short all events) in cooperative design environments, to achieve a proper cooperative process. To this purpose there is a growing need for negotiation models next to communication models.

— Prof. M. E. T. Bax