Optical and acoustic characterization of freeze-thawed polyvinyl alcohol phantoms
Arabul, M.Ü.; Rutten, M.C.M.; van de Vosse, F.N.; Lopata, R.G.P.

Published: 01/01/2014

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Optical and acoustic characterization of freeze-thawed polyvinyl alcohol phantoms

M.U. Arabul, M.C.M Rutten, F. N. van de Vosse, R.G.P. Lopata

Introduction

- Preclinical validation of non-invasive photoacoustic imaging of carotid artery atherosclerosis requires vessel phantoms that imitate optical, acoustic and mechanical properties of vascular tissue.
- In this study, we investigated the relation between acoustic scatterers and optical absorbers to quantify optical and acoustic properties of the polyvinyl alcohol (PVA) phantoms.

Material and Methods

The PVA gel was molded in cylindrical vessel molds to get vessel shaped samples with a wall thickness of 1 mm. After each freeze-thaw (F-T) cycle, pieces of vessel wall were taken out to fit inside 96-well plate slots as seen in Figure 1. The absorbance measurements of the samples were performed using a plate reader with 3 nm increment from 400 nm to 990 nm.

![Optical characterization setup](image1)

Figure 1: The optical characterization setup

Planewave ultrasound system is used to measure the speed of sound and the attenuation. The demineralized water was used as a reference as in Eqn. (1). The attenuation of acoustic energy through the sample was calculated based on the amplitude change in the wave reflected from the acoustic reflector as in Eqn. (2) and Eqn. (3).

\[
\frac{1}{c_s} = \frac{1}{c_w} \frac{\Delta t}{2d_s}
\]

\[
\alpha_s = \frac{1}{d_s} \ln \left(\frac{A_M}{A_W} \right) + \frac{2}{d_s} \ln (1 - R_{PVA}) + \alpha_w
\]

\[
R_{PVA} = R_{Stef} \frac{A_{PVA}}{A_{Stef}}
\]

![Acoustic characterization setup](image2)

Figure 2: The acoustic characterization setup

Results

Figure 3: The highest concentration of dye resembles the spectral behavior of pure dye after the first F-T cycle. However, after the fifth cycle scattering becomes more dominant and the difference between four samples diminishes. On the other hand, overall absorbance increases by 30% from the first cycle to the fifth cycle.

![Absorbance vs Wavelength](image3)

Figure 4: (A) The speed of sound values vary in the range of 1528 - 1535 m/sn and (B) attenuation increases from 0.1 to 1.4 dB/cm with F-T cycles. (C, D) Orgasol alters acoustic properties significantly; however, optical absorbers does not.

Discussion

- Freezing and thawing targets to imitate stiffness of the soft tissue; however, it introduces acoustic and optical scattering.
- Multi-layer vessel phantoms with different inclusions, photoacoustic analysis of phantoms is planned for in future work.

Acknowledgement

This project is funded by the EU (FP7 FULLPHASE) project.

Reference:
Arabul, M.U. et al., doi: 10.1109/ULTSYM.2014.060