Cancer metastasis-on-a-chip

Eslami Amirabadi, H.; Luttge, R.; den Toonder, J.M.J.

Published: 01/01/2013

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Aim of the project
The aim is to create microfluidic devices that can be used to model and study (in vitro and real time) cancer metastasis from a primary tumor to a secondary site as happens in the human body.

Introduction
Cancer:
- number one cause of death in the Netherlands
- 12 million new cancer cases in 2008 globally
- WHO: this number will be doubled by 2030

urgent clinical need for new treatment options

Organ-on-chips: Creating a microenvironment inside a microfluidic chip where "mini-organs" can grow within their own specified microenvironment, and function and interact as in intact organs.1 Lung-on-a-chip (fig. 1) is one of the first examples in this field.

Fig. 1 – Lung-on-a-chip device developed by Huh et al.2 at Harvard University. Using a stretchable and porous membrane in the device the alveolar-capillary interface in the human lung is modeled.

Cancer metastasis-on-a-chip device
Conceptual design:
The device contains a microchannel representing a blood vessel (bottom block) and organ micro-chambers (top block) where tumor cells and cells of the metastatic site are cultured. A porous membrane is also sandwiched between the blocks. In this configuration, the membrane is used as a substrate to culture cells on both sides, and forms the interface between the organs and the blood vessel.

As shown in fig. 3, the chip is designed to study the invasiveness of the tumor cells and also the metastasis of the circulating tumor cells into a second organ.

Fig. 3 – Schematic representation of the desired microfluidics system after the cells are seeded.

What is new?
• Mimicking the contact between the blood vessel cellular layer and the tumor cell cultures
• Having different cell types in the organ chamber co-cultured in a structured and realistic manner
• Including static/dynamic stimulating elements for tumor cell migrations: chemical, mechanical and geometrical.

Collaborations:
Philips Research, Eindhoven, the Netherlands
Erasmus Medical Center, Rotterdam, the Netherlands

References:

*Email: h.eslami.amirabadi@tue.nl