On the Riemannian rationale for diffusion tensor imaging

Fuster, A.; Dela Haije, T.C.J.; Florack, L.M.J.

Published in:

Published: 01/01/2013

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 26. Nov. 2018
On the Riemannian Rationale for Diffusion Tensor Imaging
Andrea Fuster, Tom Dela Haije, and Luc Florack
Imaging Science & Technology Eindhoven (IST/e), Eindhoven University of Technology, The Netherlands

Abstract—One of the approaches in the analysis of brain diffusion MRI data is to consider white matter as a Riemannian manifold, with a metric given by the inverse of the diffusion tensor. Such a metric is used for white matter tractography and connectivity analysis. Although this choice of metric is heuristically justified it has not been derived from first principles. We propose a modification of the metric tensor motivated by the underlying mathematics of diffusion.

I. INTRODUCTION

A possible approach to study white matter from diffusion MRI is to consider a geometric framework in which quantities of interest, such as connectivity measures, are derived from a Riemannian metric. In this way white matter is represented as a Riemannian manifold, and candidate neural fibres are postulated to coincide with such a metric. In this way white matter is represented as a Riemannian manifold, and candidate neural fibres are postulated to coincide with a Riemannian metric given by the inverse of the diffusion tensor. Such a metric can be introduced, where \(g_{ij} = D^{-1}_{ij} \) and \(D_{ij} \) is the determinant of the diffusion tensor. Inhomogeneous anisotropic diffusion is commonly described by the generator

\[
\mathcal{L} = \partial_i (D^{ij} \partial_j) = D^{ij} \partial_i \partial_j + (\partial_j D^{ij}) \partial_i
\]

where \(i, j = 1, 2, 3 \), \(D^{ij} \) is the diffusion tensor, \(\partial_i = \partial/\partial x^i \), and in which we use Einstein’s summation convention. A Riemannian metric \(g_{ij} = D_{ij} \) can be introduced, where \(D_{ij} \) is the inverse diffusion tensor.

The generator (1) can then be expressed as

\[
\mathcal{L} = \Delta_g - \sqrt{d} \left(\partial_i \frac{1}{\sqrt{d}} D^{ij} \partial_j \right)
\]

where \(d \) is the determinant of the diffusion tensor \(D^{ij} \) and \(\Delta_g \) is the Laplace-Beltrami operator

\[
\Delta_g = \frac{1}{\sqrt{g}} \partial_j (\sqrt{g} g^{ij} \partial_i)
\]

Here, \(g = \det g_{ij} \). In our case, \(g_{ij} = D_{ij} \), we have

\[
\Delta_g = D^{ij} \partial_i \partial_j + \sqrt{d} \partial_j \left(\frac{1}{\sqrt{d}} D^{ij} \right) \partial_i
\]

From Eq. (2) we see that the usual identification \(g = D^{-1} \) does not lead to Brownian motion on the manifold \((M, g)\) since the diffusion generator \(\mathcal{L} \) is not an intrinsic Laplacian. This is only the case when the second term on the right-hand side of Eq. (2) vanishes, which occurs for \(d = \det D^{ij} \) constant. Clearly, this cannot be assumed in general.

II. DISCREPANCY

Consider now the diffusion generator given by

\[
\tilde{\mathcal{L}} = d^{-1} \mathcal{L} = d^{-1} D^{ij} \partial_i \partial_j + d^{-1}(\partial_i D^{ij}) \partial_i
\]

where we use the same notation as in section II. Again a Riemannian metric can be introduced, namely, \(\tilde{g}_{ij} = dD_{ij} \). It can be shown that

\[
\tilde{\mathcal{L}} = \Delta_{\tilde{g}}
\]

The generator (5) is therefore an intrinsic Laplacian, and the proposed choice of metric results in Brownian motion on the manifold \((M, \tilde{g})\).

IV. DISCUSSION

We propose a new Riemannian metric in the context of diffusion tensor imaging, motivated by first principles. In future work experiments will be performed to assess whether our modified metric leads to improved results for tractography and connectivity analysis in comparison to the usual choice of metric. It would also be very interesting to clarify the relation to other modified Riemannian metrics, such as the one in [4].

REFERENCES