On the Riemannian rationale for diffusion tensor imaging

Fuster, A.; Dela Haije, T.C.J.; Florack, L.M.J.

Published in:

Published: 01/01/2013

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
On the Riemannian Rationale for Diffusion Tensor Imaging
Andrea Fuster, Tom Dela Haije, and Luc Florack
Imaging Science & Technology Eindhoven (IST/e), Eindhoven University of Technology, The Netherlands

Abstract—One of the approaches in the analysis of brain diffusion MRI data is to consider white matter as a Riemannian manifold, with a metric given by the inverse of the diffusion tensor. Such a metric is used for white matter tractography and connectivity analysis. Although this choice of metric is heuristically justified it has not been derived from first principles. We propose a modification of the metric tensor motivated by the underlying mathematics of diffusion.

I. INTRODUCTION
A possible approach to study white matter from diffusion MRI is to consider a geometric framework in which quantities of interest, such as connectivity measures, are derived from a Riemannian metric. In this way white matter is represented as a Riemannian manifold, and candidate neural fibres are postulated to coincide with geodesic curves. The common choice in the literature is to consider a Riemannian metric given by the inverse of the diffusion tensor \(D \). The intuitive idea behind this choice is to transform Brownian motion on the manifold \((M, g)\) to Brownian motion on the manifold \((M, D^{-1}) \) since the diffusion generator \(L \) is not an intrinsic Laplacian. This is only the case when the second term on the right-hand side of Eq. (2) vanishes, which occurs for \(d = \det D^{-1} \) constant. Clearly, this cannot be assumed in general.

III. PROPOSAL
Consider now the diffusion generator given by

\[
\tilde{L} = d^{-1}L = d^{-1}D^{ij} \partial_i \partial_j + d^{-1}(\partial_i D^{ij}) \partial_i
\]

where we use the same notation as in section II. Again a Riemannian metric can be introduced, namely, \(\tilde{g}_{ij} = dD_{ij} \). It can be shown that \(\tilde{L} = \Delta_{\tilde{g}} \).

IV. DISCUSSION
We propose a new Riemannian metric in the context of diffusion tensor imaging, motivated by first principles. In future work experiments will be performed to assess whether our modified metric leads to improved results for tractography and connectivity analysis in comparison to the usual choice of metric. It would also be very interesting to clarify the relation to other modified Riemannian metrics, such as the one in [4].

REFERENCES

