Robust time-domain source stepping for DC-solution of circuit equations

ter Maten, E.J.W.; Beelen, T.G.J.; Vries, de, A.; Beurden, van, M.

Published in:
Scientific Computing in Electrical Engineering (SCEE 2012), September 11-14, 2012, Zurich, Switzerland

Published: 01/01/2012

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Robust time-domain source stepping for DC-solution of circuit equations

E. Jan W. ter Maten1,2, Theo G.J. Beelen3, Alex de Vries4, and Maikel van Beurden

1 Eindhoven University of Technology, Dept. Mathematics and Computer Science, CASA, P.O. Box 513, 5600 MB Eindhoven, the Netherlands, E.J.W.ter.Maten@tue.nl
2 Chair of Applied Mathematics / Numerical Analysis, Fachbereich C, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany, Jan.ter.Maten@math.uni-wuppertal.de
3 NXP Semiconductors, High Tech Campus 46, 5656 AE Eindhoven, the Netherlands, {Theo.G.J.Beelen,Maikel.van.Beurden}@nxp.com
4 NewHer Systems, Steenovenweg 5, 5708 HN Helmond, the Netherlands, Alex.de.Vries@gmail.com

Summary. Most analyses of circuit equations start with solving the steady-state (DC) solution. In several cases this can be very hard. We present a novel time domain source stepping procedure to obtain a DC solution of circuit equations. The source stepping procedure is automatically adaptive. Controlled sources can be elegantly dealt with. The method can easily be combined with existing pseudo-transient procedures. The method is robust and efficient.

1 Introduction

The circuit equations can be written as [5, 10]

\[\frac{d}{dt} q(x) + j(x) + s(t, x) = 0 \] \hspace{1cm} (1)

Here \(s(t, x) \) represents the specifications of the sources. The unknown \(x = x(t) \) consists of nodal voltages and of currents through voltage defined elements. We assume that \(q(0) = 0 \), and \(j(0) = 0 \). The steady state solution, which is called DC-solution (Direct Current solution), \(x_{DC} \), satisfies

\[j(x_{DC}) + s(0, x_{DC}) = 0. \] \hspace{1cm} (2)

Usually, and already hinted by setting \(t = 0 \) in [2], the DC-solution provides the initial value for the transient problem [1]. In general, the problem [2] is non-linear. How to solve this problem is the subject of this note. The importance of the DC-problem lies in the fact that the DC-solution is crucial as starting solution for a number of next analyses (transient analysis, AC analysis, Harmonic Balance analysis, Periodic Steady-State analysis). In general, [1] forms a system of Differential-Algebraic Equations (DAEs). With \(G = \frac{d q(x)}{dx} \) \hspace{1cm} and \hspace{1cm} \(f = \frac{d j(x)}{dx} \) \hspace{1cm} \hspace{1cm} [\begin{array}{l} \lambda \end{array} \ G + \ f] \), we assume that \(\lambda \ G + \ f \) is non-singular for \(\lambda \) in some neighbourhood of 0 (may be excluding \(\lambda = 0 \)). To solve the equations Newton’s method, or variants, may be applied [3, 5, 8], which can be combined with \(g_{\min} \)-stepping, in which linear conductors \(g \) are placed parallel to the non-linear part inside each transistor (device). Iteratively \(g \downarrow g_{\min} \) after which the Newton counter is increased.

Another approach is Pseudo-Transient [2]. In Pseudo-Transient (PT) one can use relaxed tolerances for the Newton process and for the time step control procedure. Also this can be combined with \(g_{\min} \)-stepping during each time step. In PT one has to provide a non-trivial initial solution. A new procedure is described in the next section. Other methods are: temperature stepping, source stepping (the sources are iteratively increased to their final value), homotopy methods, or optimization [1, 4, 7, 9–12].

2 Time-domain Source Stepping

Usually, in Source Stepping one introduces a parameter \(\lambda \) and considers the problem

\[j(x(\lambda)) + \lambda s(0, x(\lambda)) = 0. \] \hspace{1cm} (3)

In this case it is assumed that for \(\lambda = 0 \) the problem [3] is easily solved so that in the end the original problem is solved. The same parameter \(\lambda \) is applied to all sources \(s \) in the circuit. In general, for each value of \(\lambda \) a nonlinear problem has to be solved.

We introduce a time-domain variant (SSPT) that offers an automatic continuation process, based on PT and adapting the transient stepsize and the \(\lambda \) stepsize at the same time.

We define a time \(t = T \) at which we want to have solved the original DC-problem. We also introduce a time \(T_{\alpha} = \alpha T \) (by default \(\alpha = 0.5 \)) at which ordinary PT will start simulation using the sources as in the original DC-problem, i.e. using \(\lambda = 1 \) and where PT integrates from \(T_{\alpha} \) to \(T' \), where \(T' \leq T \) is the point where all transient effects have become negligible (see also Fig. [1]).

On the interval \([0, T_{\alpha}]\), a special PT integration is performed with the function \(\lambda(t) = t / T_{\alpha} \). Hence, at each time step, also the actual applied source values change. The interval \([0, T_{\alpha}]\) is the switch-on interval, the interval \([T_{\alpha}, T]\) is the interval to damp-out transient effects. On both intervals PT uses an automatic time step determination procedure. On the interval \([T_{\alpha}, T]\) an ordinary PT procedure is executed. Hence,
if, at some time point, the Newton iterative process does not converge, a re-integration will be done with a smaller stepsize. Recursion in controlled sources asks for a modification in \(\psi \). An expression for a controlled voltage source \(E_I(0,1) \) may look like

\[
V(E_I) = 5 + 4(E_I) + 6V(R_I) + 7I(E_I) + 12^2
\]

It is controlled by the controlling "ev’s" (electrical variables) \(I(E_I), V(R_I), \) and \(I(E_2) \). We write the expression for the applied value \(V(E_I) \) as

\[
V(E_I) = \psi(ev_1, ev_2, \ldots, ev_n)
\]

As value during the source stepping at time \(t \) on \([0,T_a]\) we propose to take

\[
\psi(ev_1, \ldots, ev_n) = \psi(ev_1, \ldots, ev_n) + \lambda (t) - 1 \psi(0, \ldots, 0).
\]

Note that in (4), \(\psi(0, \ldots, 0) = 149 \). This value has to be calculated once. When in \(E_2 \) is a controlled voltage source too, contributions to the Jacobian matrix are calculated by \(\frac{\partial \psi}{\partial x} = \frac{\partial \psi}{\partial ev} \frac{\partial ev}{\partial x} \), which gives recursion. Note that \(\lambda \) does not occur in the matrix. Clearly, for \(\lambda = 0 \) the applied voltage is zero (assuming starting from the zero solution, which implies that all ev’s are zero), which makes the zero solution the exact solution. When \(\lambda = 1 \) the original voltage expression is used. Since our equations (1) are DAEs we remark that for all \(t \) the generated solution is consistent for the problem at hand. Because of the switch-on and the ramp-out phase the process mimics a real physical process.

3 Results

We tested the SSPT on a set of difficult problems where parameters were swept (temperature, and statistics). The SSPT was always convergent (without needing \(g_{min} \)-iteration). It was 1-13 times faster than Newton-Raphson (that sometimes needed internal \(g_{min} \)-iteration). Normal PT was less robust than SSPT. Further improvements in the time-domain integrations, after starting with a proper \(x_{DC} \), have been tuned to fault analysis [3].

References