On stability and stabilization of periodic discrete-time systems with an application to satellite attitude control

Athanasopoulos, N.; Lazar, M.; Bohm, C.; Allgöwer, F.

Published in:
Automatica

DOI:
10.1016/j.automatica.2014.10.028

Published: 01/01/2014

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 07. Dec. 2018
Brief paper
On stability and stabilization of periodic discrete-time systems with an application to satellite attitude control

Nikolaos Athanasopoulos a,1, Mircea Lazar a, Christoph Böhm b, Frank Allgöwer b

a Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
b Institute of Systems Theory and Automatic Control, University of Stuttgart, Germany

ARTICLE INFO
Article history:
Received 11 July 2013
Received in revised form 13 April 2014
Accepted 15 July 2014
Available online 26 October 2014

Keywords:
Periodic systems
Periodic control
Lyapunov functions
Constrained control
Satellite attitude control

ABSTRACT
An alternative stability analysis theorem for nonlinear periodic discrete-time systems is presented. The developed theorem offers a trade-off between conservativeness and complexity of the corresponding stability test. In addition, it yields a tractable stabilizing controller synthesis method for linear periodic discrete-time systems subject to polytopic state and input constraints. It is proven that in this setting, the proposed synthesis method is strictly less conservative than available tractable synthesis methods. The application of the derived method to the satellite attitude control problem results in a large region of attraction.

1. Introduction
This work deals with stability and stabilization of periodically time-varying systems, or shortly, periodic systems. Stability analysis and stabilization of periodic systems are typically handled by means of periodically time-varying standard Lyapunov functions (LFs), see Jiang and Wang (2002) for the nonlinear case and Bittanti and Colaneri (2009) for the linear case. For most of the available controller synthesis methods for periodic systems, existence of a periodically time-varying LF for the closed-loop dynamics can be derived, either directly or by the converse result in Jiang and Wang (2002). Consider methods based on the periodic Riccati equation Bittanti, Colaneri, and De Nicolao (1991) and Varga (2008), output feedback schemes De Souza and Trofino (2000), H_2 synthesis for the case of linear periodic systems with polytopic uncertainties Farges, Peaucelle, Arzelier, and Daafouz (2007), eigenvalue assignment Brunovsky (1970), Kabamba (1986) controllability Longhi and Zulli (1995), model predictive control Böhm (2011), Gondhalekar and Jones (2011), and control with saturation Zhou, Zheng, and Duan (2011). In the monograph (Bittanti & Colaneri, 2009, Chapter 13), a thorough exposition of existing results on stabilization techniques, including also frequency domain considerations or lifting techniques, is presented.

In the presence of constraints, however, stability analysis based on periodically time-varying standard LFs can yield a conservative region of attraction, as shown recently in Böhm, Lazar, and Allgöwer (2012). Therein, a relaxed stability analysis theorem was derived for autonomous nonlinear periodic systems. The main idea behind this relaxation is that the Lyapunov function is not required to decrease at each time instant, as in Bittanti and Colaneri (2009) or in Jiang and Wang (2002) for the linear case, but at each period. This paper considers stabilization of linear periodic systems with inputs, subject to polytopic state and input constraints, by means of linear periodic state-feedback control laws. The presence of input constraints further motivates the need for a relaxation of the classical stability analysis theorems Bittanti and Colaneri (2009) and Jiang and Wang (2002). For the case of periodic systems with inputs, however, the relaxed periodic Lyapunov conditions in Böhm et al. (2012) lead to a nonlinear and non-convex optimization problem which is not tractable.

Motivated by the current status, we propose an alternative stability analysis theorem for nonlinear periodic systems. This new result allows the establishment of a tractable constrained synthesis
Existing results on Lyapunov stability for periodic systems are optimization problems is formally proven. The method is applied the original non-convex problem and the set of semi-definite optimization problems is formally proven. The developed synthesis method yields a large region of attraction for the resulting closed-loop system while providing non-trivial performance guarantees.

The remaining part of this paper is structured as follows. Existing results on Lyapunov stability for periodic systems are briefly discussed in Section 2. The problem formulation as well as solutions from existing approaches are presented in Section 3. The main results are established in Section 4. Application of the established results to the satellite attitude control problem is presented in Section 5, while conclusions are drawn in Section 6.

Notation and basic definitions: Let \mathbb{R}, \mathbb{R}_+, \mathbb{Z}, and \mathbb{Z}_+ denote the field of real numbers, the set of non-negative reals, the set of integer numbers and the set of non-negative integers, respectively. For every $c \in \mathbb{R}$ and $\Pi \subseteq \mathbb{R}$ we define $\Pi_{\geq c} := \{x \in \Pi \mid x \geq c\}$, and similarly $\Pi_{< c}$, $\Pi_{\leq c} := \Pi$ and $\Pi_{> c} := \Pi \cap \Pi$. For $N \in \mathbb{Z}_{\geq 1}$, $N^m := \Pi \times \cdots \times \Pi$. For a vector $x \in \mathbb{R}^n$, $[x]$ denotes the ith element of x and $\|x\|$ denotes its 2-norm, i.e., $\|x\| := \sqrt{\sum_{i=1}^{n} |x_i|^2}$. The transpose of a matrix $X \in \mathbb{R}^{n \times m}$ is denoted by X^\top. For a symmetric matrix $Z \in \mathbb{R}^{n \times n}$ let $\lambda_{\min}(Z)$ denote its smallest (largest) eigenvalue. Moreover, for a block symmetric matrix $Z = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$, where a, b, c are matrices of appropriate dimensions, the symbol \star is used to denote the symmetric part, i.e., $\begin{pmatrix} a & b \\ b & c \end{pmatrix} \star = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$. For the definition of functions of class \mathcal{K}, \mathcal{K}_∞ and \mathcal{K}_L, refer to Böhm et al. (2012).

2. Preliminaries

Let n, $m \in \mathbb{Z}_+$ be integers and let $X : \mathbb{Z}_+ \to \mathbb{R}^n$ and $U : \mathbb{Z}_+ \to \mathbb{R}^m$ be maps that assign to each $k \in \mathbb{Z}_+$, a subset of \mathbb{R}^n and a subset of \mathbb{R}^m respectively, which contain the origin in their interior. We consider time-varying nonlinear systems of the form

$$x(k+1) = f(k, x(k), u(k)), \quad k \in \mathbb{Z}_+,$$

where $f : \mathbb{Z}_+ \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is an arbitrary nonlinear map such that $f(k, 0, 0) = 0$, for all $k \in \mathbb{Z}_+$. The vector $x(k)$ is the state at time $k \in \mathbb{Z}_+$ and $u(k)$ is the system input at time $k \in \mathbb{Z}_+$.

Definition 1. The system (1) is called periodic if there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for all $k \in \mathbb{Z}_+$ it holds (i) $X(k) = X(k + N)$; (ii) $U(k) = U(k + N)$; (iii) $f(k, x, u) = f(k + N, x, u)$ for all $x \in X(k)$, for all $u \in U(k)$. Furthermore, the smallest such $N \in \mathbb{Z}_{\geq 1}$ is called the period of system (1).

We consider a periodically time-varying state feedback control law $g : \mathbb{Z}_+ \times \mathbb{R}^n \to \mathbb{R}^m$ such that $g(k, 0) = 0$, for all $k \in \mathbb{Z}_+$, $g(k, x) = g(k + N, x)$, for all $k \in \mathbb{Z}_+$, and $g(k, x(k)) \in U(k)$, for all $k \in \mathbb{Z}_+$ and for all $x(k) \in X(k)$. We assume, for simplicity, that the period of the control law is equal to the period of system (1). The corresponding closed-loop system is

$$x(k+1) = f(k, x(k), g(k, x(k))), \quad k \in \mathbb{Z}_+.$$

System (2) is periodic with period N, since $f(k + N, x, g(k + N, x)) = f(k, x, g(k, x))$. In what follows, let $\mathbb{X}_0 := \{0\}$ and define $\mathbb{X} := \bigcup_{k \geq 0} X(k)$. As such, all state trajectories of system (2) with $x(0) \in \mathbb{X}_0$ satisfy $x(k) \in \mathbb{X}$, for all $k \in \mathbb{Z}_+$. For clarity of exposition, we will consider constant input and state dimensions for all modes of the periodic system. The classical time-invariant unconstrained state-space and input domain is recovered by setting $X(k) = \mathbb{R}^n$, $U(k) = \mathbb{R}^m$, for all $k \in \mathbb{Z}_+$.

We adopt the notions of asymptotic stability in a set \mathbb{X}_0 (AS(\mathbb{X}_0)), exponential stability in a set \mathbb{X}_0 (ES(\mathbb{X}_0)) and region of attraction (ROA) for system (2) from Böhm et al. (2012). Next, the notion of a periodically positively invariant (PPI) sequence of sets is recalled. Let $\{D(\pi)\}_{\pi \in \mathbb{Z}_0[N:1]}$ be a sequence of sets with $D(\pi) \subseteq \pi(\pi)$ for all $\pi \in \mathbb{Z}_0[N:1]$.

Definition 2. The sequence $\{D(\pi)\}_{\pi \in \mathbb{Z}_0[N:1]}$ is called periodically positively invariant for system (2) if for each $\pi \in \mathbb{Z}_0[N:1]$, each $k \in \{\pi N + i \mid 0 \leq i < 1\}$ and $x(\pi) \in D(\pi)$, it holds that $x(k + N) \in D(\pi)$ and $x(k + j) \in D(k + j)$, for all $j \in \mathbb{Z}_1[N:1]$.

The following stability theorems correspond to Böhm et al. (2012) and Jiang and Wang (2002) respectively. These results are adapted for system (2) and modified appropriately in order to provide a framework compatible with the results established in this article.

Theorem 1 (Jiang & Wang, 2002). Let $\{X(k)\}_{k \in \mathbb{Z}_0[N:1]}$ be a PPI sequence of sets w.r.t. (2). Let $\alpha_1, \alpha_2, \beta : \mathbb{R}_+ \to \mathbb{R}(0, 1)$ and let $x(0)$ be a solution to (2) with $x(0) := \xi \in \mathbb{X}(0)$. Let $V : \mathbb{Z}_+ \times \mathbb{X} \to \mathbb{R}_+$ be a function, such that $V(k, x) = V(k + N, x)$, for all $k \in \mathbb{Z}_+$, and moreover, for all $k \in \mathbb{Z}_+$, it holds that

$$\alpha_1(\|\xi\|) \leq V(k, \xi) \leq \alpha_2(\|\xi\|), \quad \forall \xi \in \mathbb{X}(k)$$

$$V(k + 1, f(k, x(k), u(k))) \leq \beta V(k, x(k)), \quad \forall \xi \in \mathbb{X}(0).$$

Then, system (2) is AS(\mathbb{X}_0).

Theorem 2 (Böhm et al., 2012). Let $\{X(k)\}_{k \in \mathbb{Z}_0[N:1]}$ be a PPI sequence of sets w.r.t. (2). Let $\alpha_1, \alpha_2, \beta : \mathbb{R}_+ \to \mathbb{R}(0, 1)$ be \mathcal{K}_∞ functions, $\eta : \mathbb{R}(0, 1)$ and $x(0)$ be a solution to (2) with $x(0) := \xi \in \mathbb{X}(0)$. Let $V : \mathbb{Z}_+ \times \mathbb{X} \to \mathbb{R}_+$ be a function, such that $V(k, x) = V(k + N, x)$, for all $k \in \mathbb{Z}_+$, and moreover, for all $k \in \mathbb{Z}_+$, for all $j \in \mathbb{Z}_1[N:1]$, it holds that

$$\|x(j)\| \leq \beta \|x(j - 1)\|, \quad \forall \xi \in \mathbb{X}(0)$$

$$\alpha_1(\|\xi\|) \leq V(k, \xi) \leq \alpha_2(\|\xi\|), \quad \forall \xi \in \mathbb{X}(k)$$

$$V(k + N, x(k + N)) \leq \eta V(k, x(k)), \quad \forall \xi \in \mathbb{X}(0).$$

Then, system (2) is AS(\mathbb{X}_0).

3. Problem formulation

We consider non-autonomous linear periodic systems

$$x(k+1) = A(k)x(k) + B(k)u(k),$$

where $A(k) \in \mathbb{R}^{n \times n}$, $B(k) \in \mathbb{R}^{n \times m}$, and $A(k) = A(k + N), B(k) = B(k + N)$, for all $k \in \mathbb{Z}_+$. Equivalently to the nonlinear case, by choosing a linear periodic state-feedback control law with period N, i.e.,

$$u(k) = g(k, x(k)) := K(k)x(k),$$

with $K(k) = K(k + N)$, the closed-loop system is

$$x(k+1) = (A(k) + B(k)K(k))x(k).$$

Next, we consider that system (5) is subject to polytopic state periodic constraints

$$X(k) := \{x \in \mathbb{R}^n : c_i(k)x \leq 1, \forall (i, k) \in \mathbb{Z}_1[N:1] \times \mathbb{Z}_+\}.$$
where \(p(k) \in \mathbb{Z}_{\geq 1} \), for all \(k \in \mathbb{Z}_+ \), is the number of hyperplanes that define set \(\mathcal{X}(k) \), and \(c_i(k+N) = c_i(k) \), for all \(i, k \in \mathbb{Z}_{[1,p(k)]} \times \mathbb{Z}_+ \). Similarly, we consider polytopic input constraints
\[
U(k) := \{ u \in \mathbb{R}^m : d_i(k)u \leq 1, \forall (i, k) \in \mathbb{Z}_{[1,q(k)]} \times \mathbb{Z}_+ \},
\]
where \(q(k) \in \mathbb{Z}_+ \), for all \(k \in \mathbb{Z}_+ \), and \(d_i(k+N) = d_i(k) \in \mathbb{R}^{1 \times n} \), for all \((i, k) \in \mathbb{Z}_{[1,q(k)]} \times \mathbb{Z}_+ \).

We are now ready to state the problem of interest.

Problem 1. Given system (5), state and input constraints \(\mathcal{X}(k) \) (8) and \(U(k) \) (9) respectively, determine a stabilizing linear periodic state-feedback control law (6) and a corresponding PPI sequence of sets \(\{ \mathcal{E}(k) \}_{k \in \mathbb{Z}_{[0,N-1]}} \) with respect to the closed-loop system (7).

3.1. Solutions based on existing stability analysis theorems

To solve Problem 1, consider quadratic periodic Lyapunov function candidates
\[
V(k, x) = x^T P(k)x,
\]
where \(P(k) \in \mathbb{S}^n_{+} \), with \(P(k+N) = P(k) \) for all \(k \in \mathbb{Z}_+ \). The candidate Lyapunov function (10) is upper and lower bounded by \(\alpha_1, \alpha_2 \in \mathcal{K}_\infty \).

\[
\alpha_1(y) := \min_{i \in [0,N-1]} |\lambda_{\min}P(i)||y|^2, \tag{11}
\]
\[
\alpha_2(y) := \max_{i \in [0,N-1]} |\lambda_{\max}P(i)||y|^2, \tag{12}
\]
i.e.,
\[
\alpha_1(\|x\|) \leq V(k, x) \leq \alpha_2(\|x\|), \tag{13}
\]
for all \(x \in \mathbb{R}^n \). In this setting, one can apply Theorem 1, which results in the periodic Lyapunov lemma (PLL), as formally stated next.

Lemma 1 (Bittanti & Colaneri, 2009). Consider system (7). Let \(\rho(k) \in \mathbb{R}_{[0,1]}, k \in \mathbb{Z}_{[0,N-1]} \), and \(P(k) \in \mathbb{S}^n_{+} \), \(k \in \mathbb{Z}_{[0,N]} \) be positive definite matrices, with \(P(N) := P(0) \), which define sets \(\mathcal{E}(k) = \{ x \in \mathbb{R}^n : x^T P(k)x \leq 1 \} \) such that \(\mathcal{E}(k) \subseteq \mathcal{X}(k) \), for all \(k \in \mathbb{Z}_{[0,N-1]} \).

If the matrix inequalities
\[
(A(k) + B(k)K(k))^T P(k) + P(k) (A(k) + B(k)K(k)) - \rho(k)P(k) \leq 0, \tag{14}
\]
hold for all \(k \in \mathbb{Z}_{[0,N-1]} \), then system (7) is ES(\(E(0) \)).

Next, it is shown how Theorem 2 could be applied to solve Problem 1. To this end, for all \(k \in \mathbb{Z}_{[0,N-1]} \) define the monodromy matrices Bittanti and Colaneri (2009)
\[
\Phi(k) := \prod_{i=0}^{N-1} (A(k+i) + B(k+i)K(k+i)).
\]

Lemma 2. Consider system (7). Let \(\eta \in \mathbb{R}_{[0,1]} \), and \(P(k) \in \mathbb{S}^n_{+} \), \(k \in \mathbb{Z}_{[0,N]} \) be positive definite matrices, with \(P(N) := \rho(0) \), which define sets \(\mathcal{E}(k) = \{ x \in \mathbb{R}^n : x^T P(k)x \leq 1 \} \) such that \(\mathcal{E}(k) \subseteq \mathcal{X}(k) \), for all \(k \in \mathbb{Z}_{[0,N-1]} \). If the matrix inequalities
\[
\Phi(k)^T P(k) \Phi(k) - \eta P(k) \leq 0, \tag{15a}
\]
\[
(A(k) + B(k)K(k))^T P(k) + P(k + 1)(A(k) + B(k)K(k)) - P(k) \leq 0, \tag{15b}
\]
hold for all \(k \in \mathbb{Z}_{[0,N-1]} \), then system (7) is AS(\(E(0) \)).

Remark 1. The closed-loop system (7) is a time-varying linear system with a finite number of time-invariant subsystems. Also, the corresponding periodic Lyapunov function (10) is periodically time-varying. Since the upper and lower \(\mathcal{K}_\infty \) bounds (11), (12) of the Lyapunov function (10) are time-invariant, exponential stability of the closed-loop system (7) can be deduced following the proof of Böhm et al. (2012, Theorem 9), by exploiting the specific form of (11) and (12). Consequently, if conditions (15a), (15b) of Lemma 2 hold, then the system (7) is ES(\(E(0) \)). The formal details of this straightforward derivation are omitted for brevity.

Remark 2. Lemma 2 is a strict relaxation of the result stated in Lemma 1. Indeed, a feasible set of matrices \(P(k), k \in \mathbb{N}_{[0,N-1]} \), and periodic state feedback gains \(K(k), k \in \mathbb{N}_{[0,N-1]} \), that satisfies (14), satisfies relations (15) as well, but the converse is not true. Regarding computational aspects, the conditions (14) of Lemma 1 can be reformulated as an equivalent semidefinite program, while finding a solution to the conditions (15) of Lemma 2 requires solving a non-convex and nonlinear program. Therefore, it is of interest to establish a trade-off between the additional degree of freedom introduced by Lemma 2 and the tractability of the conditions of Lemma 1.

4. Main results

The first main result of this paper is an alternative stability analysis theorem for periodic nonlinear systems, which provides a trade-off between Theorems 1 and 2, as formally stated next.

Theorem 3. Let \(\{ \mathcal{E}(k) \}_{k \in \mathbb{Z}_{[0,N-1]}} \) be a PPI sequence of sets w.r.t. (2). Let \(\alpha_1, \alpha_2 \in \mathcal{K}_\infty \), scalars \(\rho(j) \in \mathbb{R}_{[0,1]}, j \in \mathbb{N}_{[0,N-1]} \), and \(x(0) \) be a solution to (2) with \(x(0) := \xi \in \mathcal{X}(0) \). Let \(V : \mathbb{R} \times \mathcal{X} \to \mathbb{R}_+ \) be a function, such that \(V(k, x) = V(k+N, x), \forall k \in \mathbb{Z}_+ \), and moreover, for all \(j \in \mathbb{N}_{[0,N-1]} \), it holds that
\[
V(k+1, x(j+1)) \leq \rho(j)V(k, x(j)), \quad \forall x \in \mathcal{X}(0) \tag{16a}
\]
\[
\alpha_1(\|\xi\|) \leq V(k, \xi) \leq \alpha_2(\|\xi\|), \quad \forall \xi \in \mathcal{X}(k) \tag{16b}
\]
\[
0 \leq \prod_{i=0}^{N-1} \rho(i) < 1. \tag{16c}
\]
Then, system (2) is AS(\(\mathcal{X}_0 \)).

Proof. From (16a) and (16b), for any \(j \in \mathbb{Z}_{[1,N]} \), it holds that
\[
\alpha_1(\|x(j)\|) \leq V(k, x(j)) \leq \rho(j-1)V(j-1, x(j-1)) \leq \rho(j-1)\alpha_2(\|x(j-1)\|), \quad \forall x \in \mathcal{X}(k) \tag{16a}
\]
or
\[
\|x(j)\| \leq \alpha_1^{-1}(\rho(j-1)\alpha_2(\|x(j-1)\|)).
\]

Thus, relation (4a) of Theorem 2 is satisfied with \(\tilde{\alpha}_j(s) := \alpha_1^{-1}(\rho(j-1)\alpha_2(s)), \forall j \in \mathbb{Z}_{[1,N-1]} \).

Moreover, from (16a), for any \(k \in \mathbb{Z}_+ \) and for any \(x(k) \in \mathcal{X}(k) \), it holds that
\[
V(k+N, x(j+N)) \leq \rho(N-1)V(j+N-1, x(j+N-1)).
\]
Applying the previous inequality successively, it holds that
\[
V(k+N, x(j+N)) \leq \rho(N-1)\rho(N-2)V(k+N-2, x(k+N-2)) \leq \cdots \leq \prod_{i=0}^{N-1} \rho(i)V(k, x(k)).
\]
Taking into account (16c), relation (4c) of Theorem 2 is satisfied with \(\eta := \prod_{i=0}^{N-1} \rho(i) \in \mathbb{R}_{[0,1]} \), thus, by Theorem 2, system (2) is AS(\(\mathcal{X}_0 \)).
Remark 3. To compare the available stability analysis theorems observe the following: (i) Theorem 1 requires $V(\cdot)$ to decrease at every time instant $k \in \mathbb{Z}_+$; (ii) Theorem 3 requires $V(\cdot)$ not to increase at every time instant $k \in \mathbb{Z}_+$ and to decrease at every N time instants, i.e., at every period; (iii) Theorem 2 requires $V(\cdot)$ to decrease at every period. Furthermore, notice that condition (16c) does not fix a particular time instant when the decrease should take place, within each period.

Remark 4. While existence of a function $V(\cdot)$ that satisfies conditions of Theorems 1–3 is necessary and sufficient \(^2\) for the system \((2)\) to be AS(\(X_0\)), the feasible solution sets of the underlying conditions are ordered as follows: A function $V(\cdot)$ satisfying conditions \((3)\) of Theorem 1 satisfies conditions \((16)\) of Theorem 3, which in turn satisfies conditions \((15)\) of Theorem 2. The opposite is not true.

Since Theorem 3 still provides a strict relaxation of Theorem 1, it is of further interest to utilize Theorem 3 for solving Problem 1. To this end, consider the following result.

Theorem 4. Consider system \((5)\) and constraints $X(k) \in \mathcal{X}(k) \cup \mathcal{U}(k)$. Let $\rho(k) \in \mathbb{R}_{[0,1]}$, $X(k) \in \mathbb{S}^n_{++}$, $Y(k) \in \mathbb{R}^{m \times n}$, for all $k \in \mathbb{Z}_{[0,N-1]}$, where $X(N) := X(0)$, $Y(N) := Y(0)$, be a feasible solution to the following set of matrix inequalities, for all $k \in \mathbb{Z}_{[0,N-1]}$, for all $i \in \mathbb{Z}_{1, \rho(k)}$ and all $j \in \mathbb{Z}_{1, q(k)}$:

\[
\begin{bmatrix}
\rho(k) X(k) \\
A(k) X(k) + B(k) Y(k) & X(k) + 1
\end{bmatrix} \succeq 0,
\]

\[
0 \leq \sum_{i=0}^{N-1} \rho(i) < N,
\]

\[
\begin{bmatrix}
1 \\
x(k) X(k) \end{bmatrix} \succeq 0,
\]

\[
\begin{bmatrix}
1 \\
y(k) d_j(k) X(k) \end{bmatrix} \succeq 0.
\]

Then, the sequence \((\mathbb{E}(k))_{k \in \mathbb{Z}_{[0,N-1]}}\), where $\mathbb{E}(k) := \{x \in \mathbb{R}^n : x^T X(k)^{-1} x \leq 1\}$, $k \in \mathbb{Z}_{[0,N-1]}$, is PPI for the closed-loop system \((7)\) with linear periodic state feedback control $u(k, x) = Y(k) X(k)^{-1} x$, where $u(k + N, x) = u(k, x)$ for all $k \in \mathbb{Z}_+$. Moreover, system \((7)\) is ES(\(\mathbb{E}(0)\)).

Proof. First, we show that the sets $\mathbb{E}(k)$, $k \in \mathbb{Z}_{[0,N-1]}$, are contained in $\mathcal{X}(k)$ and $\mathcal{U}(k)$ for all $k \in \mathbb{Z}_{[0,N-1]}$, where

$\mathcal{U}_x(k) := \{x \in \mathbb{R}^n : d_j(k) Y(k) X(k)^{-1} x \leq 1\}$, $\forall (i, k) \in \mathbb{Z}_{1, q(k)}$, $\forall (j, k) \in \mathbb{Z}_{1, p(k)} \times \mathbb{Z}_+$.

for all $k \in \mathbb{Z}_{[0,N-1]}$. Applying the Schur complement in \((17c)\) and exploiting the periodicity of $\mathbb{X}(k)$ we obtain

\[
c_i(k)^T X(k) c_i(k) \leq 1, \quad \forall (i, k) \in \mathbb{Z}_{1, p(k)} \times \mathbb{Z}_+.
\]

From Athanasopoulos, Lazar, Böhm, and Allgöwer (2013, Lemma 12), inequality \((18)\) implies $\mathbb{E}(k) \subseteq \mathbb{X}(k)$, for all $k \in \mathbb{Z}_+$. Equivalently, applying the Schur complement in \((17d)\) we obtain

\[
d_j(k)^T Y(k) X(k)^{-1} Y(k)^T d_j(k) \leq 1,
\]

for all $(j, k) \in \mathbb{Z}_{1, p(k)} \times \mathbb{Z}_+$. From Athanasopoulos et al. (2013, Lemma 12), inequality \((19)\) implies $\mathbb{E}(k) \subseteq \mathcal{U}_x(k)$ for all $k \in \mathbb{Z}_+$.

Next, we show that $V(k, x) = x^T X(k)^{-1} x$ is a periodic Lyapunov function that satisfies Theorem 3 for the closed-loop system \((7)\). The matrix inequality \((17a)\) is equivalent to

\[
(A(k) X(k) + B(k) Y(k))^T X(k + 1)^{-1} (A(k) X(k) + B(k) Y(k)) - \rho(k) x(k) \leq 0.
\]

Pre-multiplying and post-multiplying by $X(k)^{-1}$, the previous inequality becomes

\[
(A(k) + B(k) Y(k) X(k)^{-1})^T X(k + 1)^{-1} (A(k) + B(k) Y(k) X(k)^{-1}) - \rho(k) X(k)^{-1} \leq 0.
\]

Thus, condition \((16a)\) of Theorem 3 is satisfied with $V(k, x) = x^T X(k)^{-1} x$. Also, condition \((16b)\) holds with

\[
\alpha_1(y) = \min_{i \in \mathbb{E}_{[0,N-1]}} |\lambda_{\min}(X(i) - 1)| y^2
\]

\[
\alpha_2(y) = \max_{i \in \mathbb{E}_{[0,N-1]}} |\lambda_{\max}(X(i) - 1)| y^2.
\]

Lastly, since $\rho(k) \in \mathbb{R}_{[0,1]}$, from \((17b)\) it necessarily holds that

\[
0 \leq \prod_{i=0}^{N-1} \rho(i) < 1,
\]

Thus, condition \((16c)\) of Theorem 3 is also satisfied. Thus, from \((17a)\), \((20)\), \((23)\), Theorem 3 is satisfied, system \((7)\) is AS(\(\mathbb{E}(0)\)) and \((\mathbb{E}(k))_{k \in \mathbb{Z}_{[0,N-1]}}\) is a PPI sequence of sets w.r.t. system \((7)\). Moreover, taking into account Remark 1, the system \((7)\) is ES(\(\mathbb{E}(0)\)).

Still, conditions \((17)\) of Theorem 4 cannot be used directly to form a tractable synthesis method that solves Problem 1, since \((17a)\) consists of N products between the scalars $\rho(k)$ and matrices $X(k)$, $k \in \mathbb{N}_{[0,N-1]}$. In specific, condition \((17a)\) is a special case of a bilinear matrix inequality that will be denoted in what follows as a bilinear scalar matrix inequality (BSMI). Although $\rho(k)$ is a scalar for each $k \in \mathbb{N}_{[0,N-1]}$, finding a solution to the N joint BSMI conditions corresponding to \((17a)\) is challenging, since the bisection method cannot be used. The second main result of this paper provides an equivalent formulation of the conditions \((17)\) that can be solved by semidefinite programming. To this end, first, consider the following problem.

Problem 2. Given system \((5)\), constraints $X(k) \in \mathcal{X}(k) \cup \mathcal{U}(k)$, and a fixed $\bar{k} \in \mathbb{Z}_{[0,N-1]}$, solve the feasibility problem

\[
\text{find } \mathcal{X}(\bar{k}), Y(\bar{k}), \mathcal{P}, X(k), Y(k), \quad k \in \mathbb{Z}_{[0,N-1]} \setminus \{\bar{k}\}
\]

subject to

\[
\begin{bmatrix}
X(k) \\
A(k) X(k) + B(k) Y(k) & X(k + 1)
\end{bmatrix} \succeq 0,
\]

\[
\begin{bmatrix}
\mathcal{P} X(k) \\
A(k) X(k) + B(k) Y(k)
\end{bmatrix} \succeq 0,
\]

\[
0 \leq \mathcal{P} < 1,
\]

\[
\begin{bmatrix}
1 \\
x(k)^T c_i(k)
\end{bmatrix} \succeq 0,
\]

\[
\begin{bmatrix}
1 \\
y^T d_j(k)
\end{bmatrix} \succeq 0,
\]

with $X(N) := X(0)$, for all $k \in \mathbb{Z}_{[0,N-1]} \setminus \{\bar{k}\}$, $I \in \mathbb{Z}_{[0,N-1]}$, $i \in \mathbb{Z}_{1, p(k)}$, $j \in \mathbb{Z}_{1, q(k)}$.
Lemma 3. Consider system (5), constraints \(X(k) \) (8) and \(\mathcal{U}(k) \) (9). Then, the matrix inequalities (17) define a nonempty feasible solution set if and only if there exists an index \(k^* \in \mathbb{Z}_{[0,N-1]} \) such that Problem 2 is feasible with \(\tilde{k} = k^* \).

Proof. Suppose Problem 2 is feasible for a \(\tilde{k} = k^* \in \mathbb{Z}_{[0,N-1]} \). Then, relations (17) are also feasible setting \(\rho(k) = 1 \), for all \(k \in \mathbb{Z}_{[0,N-1]} \). The solution to Problem 2 is the nonempty feasible solution set. Then, there exists at least one \(k^* \in \mathbb{Z}_{[0,N-1]} \) such that \(\rho(k^*) < 1 \). Setting \(\tilde{k} = k^* \) and \(\mathcal{P} := \rho(k^*) \) the corresponding matrix inequalities (25b) in Problem 2 are satisfied. Moreover, for any \(k \in \mathbb{Z}_{[0,N-1]} \) such that \(\rho(k) < 1 \), relation (17a) implies

\[
\begin{bmatrix}
X(\tilde{k}) \\
A(\tilde{k})X(\tilde{k}) + B(\tilde{k})Y(\tilde{k}) \\
X(\tilde{k} + 1)
\end{bmatrix} \geq (1 - \rho(\tilde{k}))X(\tilde{k}) \geq 0.
\]

Thus, (25a) is also satisfied, and consequently, Problem 2 has a solution for \(\tilde{k} = k^* \). □

Remark 5. Comparison of conditions (17a) of Theorem 4 with condition (25b) in Problem 2, reveals the significance of the previous result. Lemma 3 shows that existence of a feasible solution to the constraint set (17), which involves \(N \) BSIs, is equivalent to existence of a solution in (at least) one of the \(N \) feasibility problems (24)–(25), which involves a single bilinear term, i.e., the product of the scalar \(\mathcal{P} \) and the matrix \(X(k) \) in (25b). Furthermore, since the single bilinear term in (25b) consists of a matrix and the constrained nonnegative scalar \(\mathcal{P} \in \mathbb{R}_{[0,1]} \), solution of Problem 2 is equivalent to solving a series of LMs via bisection, which is guaranteed to converge to a feasible solution, if a feasible solution exists. Still, it is worth noting that the computational burden induced by the proposed method is higher than the one stemming from the application of the PLL synthesis method, which involves fewer decision variables and strict LMs, see e.g. Zhou et al. (2011). This is the price to be paid for exploiting the less conservative results of Theorem 4.

4.1. Additional synthesis objectives

In constrained synthesis, together with computing a stabilizing control law, it is of relevance to aim for a large basin of attraction \(\mathcal{E}(0) \subseteq \mathcal{R}(0) \), where \(\mathcal{E}(0) = \{ x \in \mathbb{R}^n : x^T X(0)^{-1} x \leq 1 \} \). To this end, a semi-definite optimization problem that is solved for every \(k \in \mathbb{Z}_{[0,N-1]} \), maximizes the volume of \(\mathcal{E}(0) \) and solves Problem 1, i.e.,

\[
\min_{\mathcal{E}(0), Y(k), X(k), \mathcal{P}(k), k \in \mathbb{Z}_{[0,N-1]}} \text{trace}(X(0)),
\]

subject to (25). Alternative optimization criteria that describe the size of \(\mathcal{E}(0) \) can be chosen as well (e.g. Boyd, El Ghaoui, Feron, & Balakrishnan, 1994).

Moreover, the quantities \(\sum_{l=0}^{N-1} \rho(l) \), where \(\rho(k) \), \(k \in \mathbb{Z}_{[0,N-1]} \), obtained from Theorem 4, and \(\tilde{\rho} \), obtained from Problem 2, represent the exponential decrease of the corresponding periodic Lyapunov functions at each period, and consequently the speed of convergence of the closed-loop system trajectories. Thus, the proposed method offers the possibility to embed performance specifications in the synthesis procedure. In order to achieve a desired decrease \(\hat{\rho} \in [0,1] \) at each period for the closed-loop system, it is sufficient to replace (25d) with 0 \(\leq \rho(l) \leq \hat{\rho} \), Similarly, in Theorem 4, relation (17b) can be replaced by 0 \(\leq \sum_{l=0}^{N-1} \rho(l) \leq N \sqrt{\hat{\rho}} \).

An additional relevant problem is computation of a PPI sequence of sets \(\mathcal{E}(k) \) \(k \in \mathbb{Z}_{[0,N-1]} \) that includes a given set of initial conditions \(X_0 \subseteq \mathcal{X}(0) \). To this end, Problem 2 can be modified such that the first element \(\mathcal{E}(0) \) of the PPI sequence includes \(X_0 \).

Lemma 4. Let \(E \in \mathbb{R}^q_{++} \) and \(v_i \in \mathbb{R}^n \), for all \(i \in \mathbb{Z}_{[1,q]} \), with \(q \in \mathbb{Z}_2 \).

The polytope \(\mathcal{X} := \text{convhull}\{v_i, i \in \mathbb{Z}_{[1,q]}\} \) is contained in the ellipsoid \(\mathcal{E} := \{ x \in \mathbb{R}^n : x^T X \leq 1 \} \) if and only if \(v_i^T E v_i \leq 1 \), \(\forall i \in \mathbb{Z}_{[1,q]} \).

Then, a stabilizing linear periodic state-feedback control law (6) and a PPI sequence of sets \(\{ \mathcal{E}(k) \}_{k \in \mathbb{Z}_{[1,N-1]}} \) such that \(X_0 \subseteq \mathcal{X}(0) \) can be computed from the solution of Problem 2 having the additional constraint

\[
\begin{bmatrix}
1 \\
v_i \\
X(0)
\end{bmatrix} \geq 0, \quad \forall i \in \mathbb{Z}_{[0,q]}.
\]

5. Satellite attitude control

A detailed comparison of the established results with the synthesis method that corresponds to the PLL Bitantti and Colaneri (2009) was provided in Athanasopoulos et al. (2013) for an illustrative, two dimensional academic example. In order to also illustrate the applicability of the results to challenging real-life control problems, we consider the problem (see for example, Böhm, 2011; Lovera & Astolfi, 2004 and references therein) of attitude control of a low Earth orbit satellite via magnetic actuators. The linearized continuous-time attitude dynamics of the satellite can be described Böhm (2011) by the following time-varying differential equation

\[
\dot{x}(t) = A(x(t) + B(t)u(t)),
\]

where \(A_3 \in \mathbb{R}^{6 \times 6} \), \(A_{13} = 1 - s \), \(A_{14} = -4s \), \(A_{15} = -3000s^2 \), \(A_{13} = -(1 + s) \), \(A_{16} = s \), \(A_{14} = A_{15} \), \(A_{16} = 1 \), \(A_{17} = 0 \) for all the other index pairs \((i,j)\). Furthermore, \(B(t) \in \mathbb{R}^{3 \times 6} \), \(B(t)_{12} = -b_{12}(t) \), \(B(t)_{11} = b_{11}(t) \), \(B(t)_{12} = -b_{13}(t) \), \(B(t)_{13} = b_{13}(t) \), \(B(t)_{14} = -b_{14}(t) \), \(B(t)_{24} = b_{14}(t) \), \(B(t)_{15} = 0 \) for all the other index pairs \((i,j)\). In detail, \(s_1 := \dot{\theta}_1 \), \(s_2 := \dot{\theta}_2 \), \(s_3 := \dot{\theta}_3 \), where the constants \(J_i \in \mathbb{Z}_{[1,3]} \) are the moments of inertia, with values \(J_1 = 1250 \text{ kg m}^2 \), \(J_2 = 2800 \text{ kg m}^2 \), \(J_3 = 2600 \text{ kg m}^2 \). The input matrix \(B(t) \) depends on the components \(b_i(t), \ i \in \mathbb{Z}_{[1,3]} \), of the Earth’s magnetic field, which are approximated by the trigonometric functions

\[
b_i(t) = \alpha_i \cos(o_0 t) + \beta_i \sin(o_0 t) + \gamma_i, \quad \forall i \in \mathbb{Z}_{[1,3]}.
\]

The satellite follows a circular orbit with an altitude of 600 km and an inclination angle of 77°. A full rotation around the Earth requires \(T_0 = 96.7 \text{ min} \), resulting in the frequency of \(\omega_0 = 0.0649 \frac{\text{rad}}{\text{sec}} \). The relevant coefficients that describe sufficiently the components of the Earth’s magnetic field are \(\alpha_1 = 2.2365 \cdot 10^{-4} \), \(\alpha_2 = -8.2537 \cdot 10^{-8}, \alpha_7 = 7.7377 \cdot 10^{-6}, \beta_1 = -3.9411 \cdot 10^{-6}, \beta_2 = -3.8422 \cdot 10^{-7}, \beta_3 = 4.4820 \cdot 10^{-5}, \gamma_1 = -2.8863 \cdot 10^{-6}, \gamma_2 = -4.5491 \cdot 10^{-6}, \gamma_3 = -1.4166 \cdot 10^{-7} \). Thus, the input matrix \(B(t) \) is periodic with period \(T_0 \) such that \(B(t + T_0) = B(t), \) for all \(t \in \mathbb{R}_+ \). The state vector \(x \in \mathbb{R}^6 \) consists of the three angular rates \(o_i, i \in \mathbb{Z}_{[1,3]} \) and the three angles of the pointing error \(\phi_i, i \in \mathbb{Z}_{[1,3]} \) with respect to...
each principal axis (referred to as roll, pitch, and yaw angle), i.e.,
\[x = [\omega_1 \omega_2 \omega_3 \phi_1 \phi_2 \phi_3]^T. \]

The input vector \(u \in \mathbb{R}^3 \) consists of the magnetic dipole moments which are induced by three coils placed along the axes of the satellite. Each input is subject to hard constraints \(-400 \text{ A m}^2 \leq u_i(t) \leq 400 \text{ A m}^2, i \in \mathbb{Z}_{1,3}\), which can be written in the form (9) with \(d_i = [1 \ 0 \ 0], d_2 = [0 \ 1 \ 0], d_3 = [0 \ 0 \ 1], d_4 = -d_1, d_5 = -d_2, d_6 = -d_3 \). The continuous-time system (28) is discretized with \(N = 10 \) discretization steps at each period, i.e., with a sampling rate \(\delta := \frac{T_0}{N} = 9.67 \text{ min} \). Consequently, the discretized non-autonomous system is of the form (5) with system matrices \(A(k) = e^{A_k} k \in \mathbb{Z}_+, B(k) = \int_{k-1}^{k+1} e^{A(k-l)\delta} B_r(t) \text{ d}r, k \in \mathbb{Z}_{[0,9]} \). The control problem consists of computing a stabilizing state feedback control law and an estimation of the region of attraction of the closed-loop system.

The desired decrease rate at each period of the closed-loop system is set to \(\rho \approx 0.4^{10} \). For the problem under study, each mode \(s \in \mathbb{Z}_{[0,9]} \) of the periodic system, i.e., \(x(k+1) = Ax(k) + B(s)u(k) \), describes the dynamics of the satellite in an area of its orbit. Thus, it is relevant to assume that the initial condition can be applied to any mode of the periodic system (5), which corresponds to all instances of the orbit of the satellite. Furthermore, we consider a preassigned set \(\mathcal{X}_0 \subset \mathbb{R}^6 \) of initial conditions of interest, where \(\mathcal{X}_0 := \{ x \in \mathbb{R}^6 : x_i = 0, -60^\circ \leq x_i \leq 60^\circ, i \in \mathbb{Z}_{[1,3]} \}, j \in \mathbb{Z}_{[4,6]} \}. \) Setting \(\alpha_0 = 0, i \in \mathbb{Z}_{[1,3]} \) in the initial condition set \(\mathcal{X}_0 \) is a reasonable choice since the rotational energy of the satellite can be minimized using a rate damping controller Böhm (2011) and Silani and Lovera (1998). The set \(\mathcal{X}_0 \) is a three dimensional cube in the subspace of the state variables \(x_i, j \in \mathbb{Z}_{[4,6]} \) and can be equivalently written in the form \(\mathcal{X}_0 = \text{convhull}(\{v_i\}_{i \in \mathbb{Z}_{1,3}} \). \) In order to meet the preassigned initial condition set specifications, different linear periodic control laws were computed to cover all the cases where the initial condition is applied. Moreover, in order to satisfy the performance requirements, Problem 2 was modified in order a decrease \(\delta \) of the Lyapunov function to be enforced in five out of the ten modes of the system, with index \(I_s \), resulting in \(\delta = 0.4^2 \). Thus, the decrease rate in one period is \(\rho = (0.4)^2 \). This yields the following optimization problems, which were solved for each \(s \in \mathbb{Z}_{[0,9]} \):

\[
\min_{X(0), Y(0), X(k), Y(k), \text{ s.t. } |X| = 1} -\text{trace}(X(s)) \quad (29)
\]

subject to

\[
\forall k \in \mathbb{Z}_{[0,9]} \setminus I_s : \begin{bmatrix} X(k) & * \\ AX(k) + B(k)Y(k) & X(k+1) \end{bmatrix} \succeq 0, \quad (30a)
\]

\[
\forall k \in I_s : \begin{bmatrix} Y(k) & * \\ AX(k) + B(k)Y(k) & X(k+1) \end{bmatrix} \succeq 0, \quad (30b)
\]

\[
\forall (i,j) \in \mathbb{Z}_{[0,9]} \times \mathbb{Z}_{[1,6]} : \begin{bmatrix} 1 \\ X(i) \end{bmatrix} C(i) = 0, \quad (30c)
\]

\[
\forall i \in \mathbb{Z}_{[1,6]} : \begin{bmatrix} 1 \\ Y(i) \end{bmatrix} d_i = 0, \quad (30d)
\]

\[
\forall i \in \mathbb{Z}_{[1,4]} : \begin{bmatrix} 1 \\ v_i \end{bmatrix} X(s) \geq 0, \quad (30e)
\]

with \(X(N) = X(0) \). The optimization constraints (30b) enforce a decrease \(\delta \) of the Lyapunov function in all modes \(k \in I_s \), while the optimization constraints (30c) guarantee that the initial condition set will be included in the region of attraction, i.e., \(\mathcal{X}_0 \subset \mathbb{E}(s). \) All optimization problems were feasible for each choice of each index set \(I_s \), \(s \in \mathbb{Z}_{[0,9]} \). The solution of problem (29), (30) resulted in ten stabilizing linear periodic state feedback control laws

\[u(k) = K(k)x(k), s \in \mathbb{Z}_{[0,9]} \] and corresponding PPI sequences \(\{E_i(s)\}_{s \in \mathbb{Z}_{[0,9]}} \) and \(\{E_i(s)\}_{s \in \mathbb{Z}_{[0,9]}} \) are depicted for \(\alpha_0 = 0, i \in \mathbb{Z}_{[1,3]} \). The solution of each optimization problem (29), (30) was computed in Matlab R2011b, using the YALMIP interface and the semi-definite quadratic programming solver SDPT3-4.0. The control law is implemented in the following fashion. First, the mode \(s \in \mathbb{Z}_{[0,9]} \) of the periodic system where the initial condition lies is identified. Second, the control strategy \(u(k) = K(s)x(k) \) is applied, for all \(k \in \mathbb{Z}_+ \). The continuous-time closed-loop system was simulated in Matlab R2011b, for the initial condition \(x_0 = [0 \ 0 \ 0 \ 0 \ 0 \ 0] \) applied in mode \(s = 0 \). In Fig. 2, the state response of the state variables \(\phi_i, i \in \mathbb{Z}_{[1,3]} \) is shown.

Remark 6. For the considered problem setting, a comparison with relevant methods was made. To this end, application of the PLL synthesis method (Lemma 1) did not result in a feasible solution, due to the preassigned initial condition set specification. On the other hand, application of the synthesis method that stems from the modification of the stability analysis method (Lemma 2) in Böhm et al. (2012), did not return a solution. In contrast, the computed region of attraction by the developed method spans a range of \([-60, 60] \) in all three angles of the pointing error, which is a significant range, while using only 10
feedback gain matrices. Last, comparing with predictive control approaches, the explicit model predictive control solution of Böhm (2011, Section 5.4), which employs 30 feedback gain matrices, reports a feasible solution for the initial condition $x_0 = [0 \ 0 \ 30^\circ \ 30^\circ \ 30^\circ]^\top$.

6. Conclusions

An alternative stability analysis theorem for nonlinear periodic discrete-time systems was presented. In addition, the derived theorem was used to devise a tractable stabilizing controller synthesis method for linear periodic discrete-time systems subject to polytopic state and input constraints. The application of the derived method to satellite attitude control resulted in a large region of attraction.

References

Nikolaos Athanasopoulos (born in Patras, Greece, 1981) received the Diploma and Ph.D. degrees in Electrical and Computer Engineering from the University of Patras, Greece, in 2004 and 2010, respectively. In 2012, he was the recipient of an IEF Marie Curie Fellowship, hosted at the Eindhoven University of Technology. He is currently a Post-Doctoral Research Associate at the Control Systems group of the Electrical Engineering Department, at the Eindhoven University of Technology. His research interests include set theory methods for stability analysis and controller synthesis, control of constrained systems and polyhedral sets.

Mireea Lazar (born in Iasi, Romania, 1978) received his M.Sc. and Ph.D. in Control Engineering from the Technical University “Gh. Asachi” of Iasi, Romania (2002) and the Eindhoven University of Technology, The Netherlands (2006), respectively. For his Ph.D. thesis he received the EECI (European Embedded Control Institute) Ph.D. award. Since 2006 he has been an Assistant Professor in the Control Systems Group of the Electrical Engineering Faculty at the Eindhoven University of Technology. His research interests lie in stability theory, scalable Lyapunov methods and formal methods, and model predictive control.

Christoph Böhm (born in Kirchheim/Teck, Germany, 1980) graduated from the University of Stuttgart with a Diploma in Engineering Cybernetics in 2006. He was a Research Assistant at the Institute for Systems Theory and Automatic Control at the University of Stuttgart where he received his Ph.D. degree in 2011. From 2011 to 2013 he worked as a Mechatronics Research Engineer and Project Manager for the Hilti Aktiengesellschaft in Schaan, Principality of Liechtenstein. Since 2013, he is Senior Project Manager Mechatronics at the VAT Vakuumventile AG in Haag, Switzerland. His main research interests include control and estimation of mechatronic systems, nonlinear model predictive control, periodic systems, and applications to satellite control.

Frank Allgöwer is the Director of the Institute for Systems Theory and Automatic Control at the University of Stuttgart in Germany. He studied Engineering Cybernetics and Applied Mathematics in Stuttgart and at UCLA respectively and received his Ph.D. degree in Chemical Engineering from the University of Stuttgart. His main areas of interest are in cooperative control, predictive control and nonlinear control with application to a wide range of fields including systems biology. Since 2012 he serves as Vice President of the German Research Foundation DFG and as Vice President of the IEEE Control Systems Society.

Starting in 2014, he is President Elect of the International Federation of Automatic Control (IFAC).