Formal specification of a generic separation kernel

Published in:
Archive of Formal Proofs

Published: 01/01/2014

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
D31.1
Formal Specification of a Generic Separation Kernel

<table>
<thead>
<tr>
<th>Project number:</th>
<th>318353</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project acronym:</td>
<td>EURO-MILS</td>
</tr>
<tr>
<td>Project title:</td>
<td>EURO-MILS: Secure European Virtualisation for Trustworthy Applications in Critical Domains</td>
</tr>
<tr>
<td>Start date of the project:</td>
<td>1st October, 2012</td>
</tr>
<tr>
<td>Duration:</td>
<td>36 months</td>
</tr>
<tr>
<td>Programme:</td>
<td>FP7/2007-2013</td>
</tr>
<tr>
<td>Deliverable type:</td>
<td>R</td>
</tr>
<tr>
<td>Deliverable reference number:</td>
<td>ICT-318353 / D31.1 / 0.0</td>
</tr>
<tr>
<td>Activity and Work package contributing to deliverable:</td>
<td>Activity 3 / WP 3.1</td>
</tr>
<tr>
<td>Due date:</td>
<td>September 2013 – M12</td>
</tr>
<tr>
<td>Actual submission date:</td>
<td>28th August, 2014</td>
</tr>
<tr>
<td>Responsible organisation:</td>
<td>Open University of The Netherlands</td>
</tr>
<tr>
<td>Editors:</td>
<td>Freek Verbeek, Julien Schmaltz</td>
</tr>
<tr>
<td>Dissemination level:</td>
<td>PU</td>
</tr>
<tr>
<td>Revision:</td>
<td>0.0 (r-2)</td>
</tr>
<tr>
<td>Abstract:</td>
<td>We introduce a theory of intransitive non-interference for separation kernels with control. We show that it can be instantiated for a simple API consisting of IPC and events.</td>
</tr>
<tr>
<td>Keywords:</td>
<td>separation kernel with control, formal model, instantiation, IPC, events, Isabelle/HOL</td>
</tr>
</tbody>
</table>
Editors
Freek Verbeek, Julien Schmaltz (Open University of The Netherlands)

Contributors (ordered according to beneficiary numbers)
Sergey Tverdryshev, Oto Havle, Holger Blasum (SYSGO AG)
Bruno Langenstein, Werner Stephan (Deutsches Forschungszentrum für künstliche Intelligenz / DFKI GmbH)
Abderrahmane Feliachi, Yakoub Nemouchi, Burkhart Wolff (Université Paris Sud)
Freek Verbeek, Julien Schmaltz (Open University of The Netherlands)

Acknowledgment
The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318353.
Executive Summary

Intransitive noninterference has been a widely studied topic in the last few decades. Several well-established methodologies apply interactive theorem proving to formulate a noninterference theorem over abstract academic models. In joint work with several industrial and academic partners throughout Europe, we are helping in the certification process of PikeOS, an industrial separation kernel developed at SYSGO. In this process, established theories could not be applied. We present a new generic model of separation kernels and a new theory of intransitive noninterference. The model is rich in detail, making it suitable for formal verification of realistic and industrial systems such as PikeOS. Using a refinement-based theorem proving approach, we ensure that proofs remain manageable.

This document corresponds to the deliverable D31.1 of the EURO-MILS Project http://www.euromils.eu.
D31.1 – Formal Specification of a Generic Separation Kernel

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Binders for the option type 3
2.2 Theorems on lists 4

3 A generic model for separation kernels 6
3.1 K (Kernel) 7
3.1.1 Execution semantics 8
3.2 SK (Separation Kernel) 9
3.2.1 Security for non-interfering domains 10
3.2.2 Security for indirectly interfering domains 21
3.3 ISK (Interruptible Separation Kernel) 35
3.4 CISK (Controlled Interruptible Separation Kernel) 48
3.4.1 Execution semantics 50
3.4.2 Formulations of security 51
3.4.3 Proofs 51

4 Instantiation by a separation kernel with concrete actions 57
4.1 Model of a separation kernel configuration 58
4.1.1 Type definitions 58
4.1.2 Configuration 58
4.2 Formulation of a subject-subject communication policy and an information flow policy, and showing both can be derived from subject-object configuration data 59
4.2.1 Specification 59
4.2.2 Derivation 59
4.3 Separation kernel state and atomic step function 60
4.3.1 Interrupt points 60
4.3.2 System state 61
4.3.3 Atomic step 61
4.4 Preconditions and invariants for the atomic step 63
4.4.1 Atomic steps of SK_IPC preserve invariants 64
4.4.2 Summary theorems on atomic step invariants 65
4.5 The view-partitioning equivalence relation 66
4.5.1 Elementary properties 67
4.6 Atomic step locally respects the information flow policy 68
4.6.1 Locally respects of atomic step functions 68
4.6.2 Summary theorems on view-partitioning locally respects 70
4.7 Weak step consistency 71
4.7.1 Weak step consistency of auxiliary functions 71
4.7.2 Weak step consistency of atomic step functions 73
4.7.3 Summary theorems on view-partitioning weak step consistency 75
4.8 Separation kernel model 75
4.8.1 Initial state of separation kernel model 76
4.8.2 Types for instantiation of the generic model 76
4.8.3 Possible action sequences 77
4.8.4 Control 78
4.8.5 Discharging the proof obligations 78
4.9 Link implementation to CISK: the specific separation kernel is an interpretation of the generic model.

5 Related Work

6 Conclusion

6.0.1 Acknowledgement.
1 Introduction

Separation kernels are at the heart of many modern security-critical systems [23]. With next generation technology in cars, aircrafts and medical devices becoming more and more interconnected, a platform that offers secure decomposition of embedded systems becomes crucial for safe and secure performance. PikeOS, a separation kernel developed at SYSGO, is an operating system providing such an environment [12, 2]. A consortium of several European partners from industry and academia works on the certification of PikeOS up to at least Common Criteria EAL5+, with ”+” being applying formal methods compliant to EAL7. Our aim is to derive a precise model of PikeOS and a precise formulation of the PikeOS security policy.

A crucial security property of separation kernels is intransitive noninterference. This property is typically required for systems with multiple independent levels of security (MILS) such as PikeOS. It ensures that a given security policy over different subjects of the system is obeyed. Such a security policy dictates which subjects may flow information to which other subjects.

Intransitive noninterference has been an active research field for the last three decades. Several papers have been published on defining intransitive noninterference and on unwinding methodologies that enable the proof of intransitive noninterference from local proof obligations. However, in the certification process of PikeOS these existing methodologies could not be directly applied. Generally, the methodologies are based on highly abstract generic models of computation. The gap between such an abstract model and the reality of PikeOS is large, making application of the methodologies tedious and cumbersome.

This paper presents a new generic model for separation kernels called CISK (for: Controlled Interruptible Separation Kernel). This model is richer in details and contains several facets present in many separation kernels, such as interrupts, context switches between domains and a notion of control. Regarding the latter, this concerns the fact that the kernel exercises control over the executions as performed by the domains. The kernel can, e.g., decide to skip actions of the domains, or abort them halfway. We prove that any instantiation of the model provides intransitive noninterference. The model and proofs have been formalized in Isabelle/HOL [21] which are included in the subsequent sections of this document.

We have adopted Rushby’s definition of intransitive noninterference [24]. We first present an overview of our approach and then discuss the relation between our approach and existing methodologies in the next section.

Overview

Generally, there are two conflicting interests when using a generic model. On the one hand the model must be sufficiently abstract to ensure that theorems and proofs remain manageable. On the other hand, the model must be rich enough and must contain sufficient domain-knowledge to allow easy instantiation. Rushby’s model, for example, is on one end of the spectrum: it is basically a Mealy machine, which is a highly abstract notion of computation, consisting only of state, inputs and outputs [24]. The model and its proofs are manageable, but making a realistic instantiation is tedious and requires complicated proofs.

We aim at the other side of the spectrum by having a generic model that is rich in detail. As a result, instantiating the model with, e.g., a model of PikeOS can be done easily. To ensure maintainability of the theorems and proofs, we have applied a highly modularized theorem proving technique.

Figure 1 shows an overview. The initial module “Kernel” is close to a Mealy machine, but has several facets added, including interrupts, context switches and control. New modules are added in such a way that each new module basically inserts an adjective before “Kernel”. The use of modules allows us to prove, e.g., a separation theorem in module “Separation Kernel” and subsequently to reuse this theorem later on when details on control or interrupts are added.

The second module adds a notion of separation, yielding a module of a Separation Kernel (SK). A security policy is added that dictates which domains may flow information to each other. Local proof
obligations are added from which a global theorem of noninterference is proven. This global theorem is
the *unwinding* of the local proof obligations.

In the third module calls to the kernel are no longer considered atomic, yielding an Interruptible
Separation Kernel (ISK). In this model, one call to the kernel is represented by an *action sequence*. Consider, for example, an IPC call (for: Inter Process Communication). From the point of view of
the programmer this is one kernel call. From the point of view of the kernel it is an action sequence
consisting of three stages IPC_PREP, IPC_WAIT, and IPC_SEND. During the PREP stage, it is checked
whether the IPC is allowed by the security policy. The WAIT stage is entered if a thread needs to wait
for its communication partner. The SEND stage is data transmission. After each stage, an interrupt may
occur that switches the current context. A consequence of allowing interruptible action sequences is that
it is no longer the case that any execution, i.e., any combination of atomic kernel actions, is realistic. We
formulate a definition of *realistic execution* and weaken the proof obligations of the model to apply only
to realistic executions.

The final module provides an interpretation of control that allows atomic kernel actions to be aborted
or delayed. Additional proof obligations are required to ensure that noninterference is still provided.
This yields a Controlled Interruptible Separation Kernel (CISK). When sequences of kernel actions are
aborted, error codes can be transmitted to other domains. Revisiting our IPC example, after the PREP
stage the kernel can decide to abort the action. The IPC action sequence will not be continued and
error codes may be sent out. At the WAIT stage, the kernel can delay the action sequence until the
communication partner of the IPC call is ready to receive.

In Section 3 we introduce a theory of intransitive non-interference for separation kernels with con-
trol, based on [31]. We show that it can be instantiated for a simple API consisting of IPC and events
(Section 4). The rest of this section gives some auxiliary theories used for Section 3.

2 Preliminaries

2.1 Binders for the option type

```plaintext
theory Option-Binders
imports Option
begin

The following functions are used as binders in the theorems that are proven. At all times, when a
```
result is None, the theorem becomes vacuously true. The expression “$m \rightarrow \alpha$$” means “First compute m, if it is None then return True, otherwise pass the result to α”. B2 is a short hand for sequentially doing two independent computations. The following syntax is associated to B2: “$m_1||m_2 \rightarrow \alpha$$” represents “First compute m_1 and m_2, if one of them is None then return True, otherwise pass the result to α”.

definition B :: 'a option \rightarrow ('a \Rightarrow bool) \Rightarrow bool (infixl \rightarrow 65)

where B m \alpha \equiv case m of None \Rightarrow True | (Some a) \Rightarrow \alpha a

definition B2 :: 'a option \Rightarrow 'a option \Rightarrow ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow bool

where B2 m1 m2 \alpha \equiv m1 \rightarrow (\lambda a . m2 \rightarrow (\lambda b . \alpha a b))

syntax B2 :: ['a option, 'a option, ('a \Rightarrow 'a \Rightarrow bool)] \Rightarrow bool ((_ \mid _ \rightarrow _ _) [0, 0, 10] 10)

Some rewriting rules for the binders

lemma rewrite-B2-to-cases[simp]:

shows B2 s t f = (case s of None \Rightarrow True | (Some s1) \Rightarrow (case t of None \Rightarrow True | (Some t1) \Rightarrow f s t1))

using assms unfolding B2-def B-def by(cases s,cases t,simp+)

lemma rewrite-B-None[simp]:

shows None \rightarrow \alpha \Rightarrow True

unfolding B-def by(auto)

lemma rewrite-B-m-True[simp]:

shows m \rightarrow (\lambda a . True) = True

unfolding B-def by(cases m,simp+)

lemma rewrite-B2-cases:

shows (case a of None \Rightarrow True | (Some s) \Rightarrow (case b of None \Rightarrow True | (Some t) \Rightarrow f s t))

= (\forall s t . a = (Some s) \land b = (Some t) \rightarrow f s t)

by(cases a,simp,cases b,simp+)

definition strict-equal :: 'a option \Rightarrow 'a \Rightarrow bool

where strict-equal m a \equiv case m of None \Rightarrow False | (Some a') \Rightarrow a' = a

end

2.2 Theorems on lists

theory List-Theorems

imports List

begin

definition lastn :: nat \Rightarrow 'a list \Rightarrow 'a list

where lastn n x = drop ((length x) - n) x

definition is-sub-seq :: 'a \Rightarrow 'a \Rightarrow 'a list \Rightarrow bool

where is-sub-seq a b x \equiv \exists n . Suc n < length x \land x \setminus a \land x!(Suc n) = b

definition prefixes :: 'a list set \Rightarrow 'a list set

where prefixes s \equiv \{ x . \exists n y . n > 0 \land y \in s \land take n y = x \}

lemma drop-one[simp]:

shows drop (Suc 0) x = tl x by(induct x,auto)

lemma length-ge-one:

shows x \not= [] \rightarrow length x \geq 1 by(induct x,auto)

lemma take-but-one[simp]:

shows x \not= [] \rightarrow lastn ((length x) - 1) x = tl x unfolding lastn-def

using length-ge-one[where x=x] by auto

lemma Suc-m-minus-n[simp]:

shows m \geq n \Rightarrow Suc m - n = Suc (m - n) by auto
lemma lastn-one-less:
 shows \(n > 0 \land n \leq \text{length } x \land \text{lastn } n \ x = (a \# y) \rightarrow \text{lastn } (n - 1) \ x = y \) unfolding lastn-def
using drop-Suc[where n=length x - n and xs=x] drop-tl[where n=length x - n and xs=x]
by(auto)
lemma list-sub-implies-member:
 shows \(\forall a \ x \cdot \text{set } (a \# x) \subseteq Z \rightarrow a \in Z \) by auto
lemma subset-smaller-list:
 shows \(\forall a \ x \cdot \text{set } (a \# x) \subseteq Z \rightarrow \text{set } x \subseteq Z \) by auto
lemma second-elt-is-hd-tl:
 shows \(\text{tl } x = (a \# x') \rightarrow a = x!1 \) by (cases x,auto)
lemma length-ge-2-implies-tl-not-empty:
 shows \(\text{length } x \geq 2 \rightarrow \text{tl } x \neq [] \) by (cases x,auto)
lemma length-lt-2-implies-tl-empty:
 shows \(\text{length } x < 2 \rightarrow \text{tl } x = [] \) by (cases x,auto)
lemma first-second-is-sub-seq:
 shows \(\text{length } x \geq 2 \implies \text{is-sub-seq } (\text{hd } x) (x!1) \ x \)
proof
 assume \(\text{length } x \geq 2 \)
 hence 1: \(\text{(Suc } 0) < \text{length } x \) by auto
 hence x\!0 = \text{hd } x by(cases x,auto)
 from this 1 show \(\text{is-sub-seq } (\text{hd } x) (x!1) \ x \) unfolding is-sub-seq-def by auto
qed
lemma hd-drop-is-nth:
 shows \(n < \text{length } x \implies \text{hd } (\text{drop } n \ x) = x!n \)
proof (induct x arbitrary: n)
 case Nil
 thus ?thesis by simp
next
case (Cons a x)
 { have \(\text{hd } (\text{drop } n \ (a \# x)) = (a \# x ! n \n \)
 proof(cases n)
 case 0
 thus ?thesis by simp
 next
case (Suc m)
 from Suc Cons show ?thesis by auto
qed
 thus ?case by auto
qed
lemma def-of-hd:
 shows \(y = a \# x \rightarrow \text{hd } y = a \) by simp
lemma def-of-tl:
 shows \(y = a \# x \rightarrow \text{tl } y = x \) by simp
lemma drop-yields-results-implies-nbound:
 shows \(\text{drop } n \ x \neq [] \rightarrow n < \text{length } x \)
by(induct x,auto)
lemma hd-take[simp]:
 shows \(n > 0 \rightarrow \text{hd } (\text{take } n \ x) = \text{hd } x \)
by(cases x,simp,cases n,auto)
lemma consecutive-is-sub-seq:
 shows \(a \# (b \# x) = \text{lastn } n y \rightarrow \text{is-sub-seq } a \ b \ y \)
proof -
assume 1: \(a \neq (b \neq x) = \text{lastn} n y \)
from 1 drop-Suc (where \(n = (\text{length} y) - n \) and \(xs=y \])
drop-tl (where \(n = (\text{length} y) - n \) and \(xs=y \])
def-of-tl (where \(y = \text{lastn} n y \) and \(a=a \) and \(x = b\#x \])
drop-yields-results-implies-nbound (where \(n = \text{Suc} (\text{length} y - n) \) and \(x=y \])
have 3: \(\text{Suc} (\text{length} y - n) < \text{length} y \) unfolding lastn-def by auto
from 3 1 hd-drop-is-nth (where \(n = (\text{length} y) - n \) and \(x=y \]) def-of-hd (where \(y = \text{drop} (\text{Suc} (\text{length} y - n)) \) and \(x=b\#x \) and \(a=a \])
have 4: \(y! (\text{length} y - n) = a \) unfolding lastn-def by auto
from 3 1 hd-drop-is-nth (where \(n = \text{Suc} ((\text{length} y) - n) \) and \(x=y \]) def-of-hd (where \(y = \text{drop} (\text{Suc} (\text{length} y - n)) \) and \(x=x \) and \(a=b \])
drop-Suc (where \(n = (\text{length} y) - n \) and \(xs=y \])
drop-tl (where \(n = (\text{length} y) - n \) and \(xs=y \])
def-of-tl (where \(y = \text{lastn} n y \) and \(a=a \) and \(x = b\#x \])
have 5: \(y! \text{Suc} (\text{length} y - n) = b \) unfolding lastn-def by auto
from 3 4 5 show ?thesis
unfolding is-sub-seq-def by auto
qed

lemma sub-seq-in-prefixes:
assumes \(\exists y \in \text{prefixes} X. \text{is-sub-seq} a a' y \)
shows \(\exists y \in X. \text{is-sub-seq} a a' y \)
proof -
from assms obtain \(y \) where \(y \in \text{prefixes} X \land \text{is-sub-seq} a a' y \) by auto
then obtain \(n x \) where \(x: n > 0 \land x \in X \land \text{take} n x = y \)
unfolding prefixes-def by auto
from \(y \) obtain \(i \) where \(\text{sub-seq-index}: \text{Suc} i < \text{length} y \land y! i = a \land y ! \text{Suc} i = a' \)
unfolding is-sub-seq-def by auto
from \(\text{sub-seq-index} x \) have \(\text{is-sub-seq} a a' x \)
unfolding is-sub-seq-def using nth-take by auto
from this \(x \) show ?thesis by metis
qed

lemma set-tl-is-subset:
shows \(\text{set} (\text{tl} x) \subseteq \text{set} x \) by (induct x, auto)
lemma x-is-hd-snd-tl:
shows \(\text{length} x \geq 2 \rightarrow x = (\text{hd} x) \# x!1 \# \text{tl}(t l x) \)
proof (induct x)
case Nil
 show ?case by auto
case (Cons a x)
 show ?case by (induct xs, auto)
qed

lemma tl-x-not-x:
shows \(x \neq [] \rightarrow \text{tl} x \neq x \) by (induct x, auto)
lemma tl-hd-x-not-tl-x:
shows \(x \neq [] \land \text{hd} x \neq [] \rightarrow \text{tl}(\text{hd} x) \neq \text{tl} x \neq x \) using tl-x-not-x by (induct x, simp, auto)
end

3 A generic model for separation kernels

This section defines a detailed generic model of separation kernels called CISK (Controlled Interruptible Separation Kernel). It contains a generic functional model of the behaviour of a separation kernel as a transition system,
definitions of the security property and proofs that the functional model satisfies security properties. It is based on Rushby’s approach [25] for noninterference. For an explanation of the model, its structure and an overview of the proofs, we refer to the document entitled “A New Theory of Intransitive Noninterference for Separation Kernels with Control” [31].

The structure of the model is based on locales and refinement:

- locale “Kernel” defines a highly generic model for a kernel, with execution semantics. It defines a state transition system with some extensions to the one used in [25]. The transition system defined here stores the currently active domain in the state, and has transitions for explicit context switches and interrupts and provides a notion of control. As each operation of the system will be split into atomic actions in our model, only certain sequences of actions will correspond to a run on a real system. Therefore, the function run, which applies an execution on a state and computes the resulting new state, is partial and defined for realistic traces only. Later, but not in this locale, we will define a predicate to distinguish realistic traces from other traces. Security properties are also not part of this locale, but will be introduced in the locales to be described next.

- locale “Separation_Kernel” extends ”Kernel” with constraints concerning non-interference. The theorem is only sensical for realistic traces; for unrealistic trace it will hold vacuously.

- locale “Interruptible_Separation_Kernel” refines “Separation_Kernel” with interruptible action sequences. It defines function “realistic_trace” based on these action sequences. Therefore, we can formulate a total run function.

- locale “Controlled Interruptible_Separation_Kernel” refines “Interruptible_Separation_Kernel” with abortable action sequences. It refines function “control” which now uses a generic predicate “aborting” and a generic function “set_error_code” to manage aborting of action sequences.

3.1 K (Kernel)

theory K
imports Main List Set Transitive-Closure List-Theorems Option-Binders
begin

The model makes use of the following types:

- state t A state contains information about the resources of the system, as well as which domain is currently active. We decided that a state does not need to include a program stack, as in this model the actions that are executed are modelled separately.

- dom t A domain is an entity executing actions and making calls to the kernel. This type represents the names of all domains. Later on, we define security policies in terms of domains.

- action t Actions of type ’action t represent atomic instructions that are executed by the kernel. As kernel actions are assumed to be atomic, we assume that after each kernel action an interrupt point can occur.

- action t execution An execution of some domain is the code or the program that is executed by the domain. One call from a domain to the kernel will typically trigger a succession of one or more kernel actions. Therefore, an execution is represented as a list of sequences of kernel actions. Non-kernel actions are not take into account.

- output t Given the current state and an action an output can be computed deterministically.

- time t Time is modelled using natural numbers. Each atomic kernel action can be executed within one time unit.

type-synonym (’action-t) execution = ’action-t list

\[\text{type-synonym } \text{time-t} = \text{nat} \]
Function \(kstep \) (for kernel step) computes the next state based on the current state \(s \) and a given action \(a \). It may assume that it makes sense to perform this action, i.e., that any precondition that is necessary for execution of action \(a \) in state \(s \) is met. If not, it may return any result. This precondition is represented by generic predicate \(kprecondition \) (for kernel precondition). Only realistic traces are considered. Predicate \(\text{realistic-execution} \) decides whether a given execution is realistic.

Function \(current \) returns given the state the domain that is currently executing actions. The model assumes a single-core setting, i.e., at all times only one domain is active. Interrupt behavior is modelled using functions interrupt and cswitch (for context switch) that dictate respectively when interrupts occur and how interrupts occur. Interrupts are solely time-based, meaning that there is an at beforehand fixed schedule dictating which domain is active at which time.

Finally, we add function \(control \). This function represents control of the kernel over the execution as performed by the domains. Given the current state \(s \), the currently active domain \(d \) and the execution \(\alpha \) of that domain, it returns three objects. First, it returns the next action that domain \(d \) will perform. Commonly, this is the next action in execution \(\alpha \). It may also return None, indicating that no action is done. Secondly, it returns the updated execution. When executing action \(a \), typically, this action will be removed from the current execution (i.e., updating the program stack). Thirdly, it can update the state to set, e.g., error codes.

\[
\begin{align*}
\text{locale Kernel} = \\
\text{fixes } kstep &: \text{state-t} \Rightarrow \text{action-t} \Rightarrow \text{state-t} \\
\text{and } output-f &: \text{state-t} \Rightarrow \text{action-t} \Rightarrow \text{output-t} \\
\text{and } s0 &: \text{state-t} \\
\text{and } current &: \text{state-t} \Rightarrow \text{dom-t} \\
\text{and } cswitch &: \text{time-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t} \\
\text{and } interrupt &: \text{time-t} \Rightarrow \text{bool} \\
\text{and } kprecondition &: \text{state-t} \Rightarrow \text{action-t} \Rightarrow \text{bool} \\
\text{and } \text{realistic-execution} &: \text{action-t} \Rightarrow \text{action-t} \Rightarrow \text{bool} \\
\text{and } control &: \text{state-t} \Rightarrow \text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{bool} \\
\text{and } \text{ininvolved} &: \text{action-t} \Rightarrow \text{dom-t} \Rightarrow \text{set}
\end{align*}
\]

3.1.1 Execution semantics

Short hand notations for using function control.

definition next-action: 'state-t \(\Rightarrow \{\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t} \text{ execution}\} \Rightarrow \text{action-t} \text{ option} \)**

where next-action \(s \) \(\in \) \(\text{execs} \) \((\text{execs} \ (\text{current} \ s)) \)

definition next-execs: 'state-t \(\Rightarrow \{\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t} \text{ execution}\} \Rightarrow \text{action-t} \Rightarrow \text{action-t} \text{ execution} \)**

where next-execs \(s \) \(\in \) \(\text{execs} \) \((\text{execs} \ (\text{current} \ s)) \)

definition next-state: 'state-t \(\Rightarrow \{\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t} \text{ execution}\} \Rightarrow \text{state-t} \)

where next-state \(s \) \(\in \) \(\text{execs} \) \((\text{execs} \ (\text{current} \ s)) \)

A thread is empty iff either it has no further action sequences to execute, or when the current action sequence is finished and there are no further action sequences to execute.

abbreviation thread-empty: 'action-t \(\Rightarrow \text{bool} \)

where thread-empty \(\equiv \) \(\text{exec} = [] \vee \text{exec} = [][] \)

Wrappers for function kstep and kprecondition that deal with the case where the given action is None.

definition step where step s oa \(\equiv \) case oa of None \(\Rightarrow \) s | (Some a) \(\Rightarrow \) kstep s a

definition precondition: 'state-t \(\Rightarrow \{\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{bool} \)

where precondition \(s \) \(a \equiv a \Rightarrow kprecondition \ s \)

definition involved

where involved \(oa \equiv \) case oa of None \(\Rightarrow \) \{\} | (Some a) \(\Rightarrow \) kinvolved a

Execution semantics are defined as follows: a run consists of consecutively running sequences of actions. These sequences are interruptable. Run first checks whether an interrupt occurs. When this
happens, function \(c\text{switch} \) may switch the context. Otherwise, function control is used to determine the next action \(a \), which also yields a new state \(s' \). Action \(a \) is executed by executing \((\text{step } s' a) \). The current execution of the current domain is updated.

Note that \(\text{run} \) is a partial function, i.e., it computes results only when at all times the preconditions hold. Such runs are the realistic ones. For other runs, we do not need to – and cannot – prove security. All the theorems are formulated in such a way that they hold vacuously for unrealistic runs.

function \(\text{run} : : \text{time-t} \Rightarrow \text{state-t option} \Rightarrow (\text{dom-t} \Rightarrow \text{action-t execution}) \Rightarrow \text{state-t option} \)

where \(\text{run} 0 s \text{execs} = s \)
\(\text{interrupt} (\text{Suc } n) \Rightarrow \text{run} (\text{Suc } n) (\text{Some } s) \text{execs} = \text{run} n (\text{Some } (\text{cswitch } (\text{Suc } n) s)) \text{execs} \)
\(\neg \text{interrupt} (\text{Suc } n) \Rightarrow \text{thread-empty}(\text{execs } (\text{current } s)) \Rightarrow \text{run} (\text{Suc } n) (\text{Some } s) \text{execs} = \text{run} n (\text{Some } s) \text{execs} \)
\(\neg \text{interrupt} (\text{Suc } n) \Rightarrow \neg \text{thread-empty}(\text{execs } (\text{current } s)) \Rightarrow \neg \text{precondition } (\text{next-state } s \text{execs}) (\text{next-action } s \text{execs}) \Rightarrow \text{run} (\text{Suc } n) (\text{Some } s) \text{execs} = \text{None} \)
\(\neg \text{interrupt} (\text{Suc } n) \Rightarrow \neg \text{thread-empty}(\text{execs } (\text{current } s)) \Rightarrow \text{precondition } (\text{next-state } s \text{execs}) (\text{next-action } s \text{execs}) \Rightarrow \)
\(\text{run} (\text{Suc } n) (\text{Some } s) \text{execs} = \text{run} n (\text{Some } (\text{step } (\text{next-state } s \text{execs}) (\text{next-action } s \text{execs}))) (\text{next-execs } s \text{execs}) \)

using \(\text{not0-implies-Suc} \) by \((\text{metis option.exhaust prod-cases3}, \text{auto}) \)

termination by \(\text{lexicographic-order} \)

end

3.2 SK (Separation Kernel)

theory SK

imports \(K \)

begin

Locale Kernel is now refined to a generic model of a separation kernel. The security policy is represented using function \(\text{ia} \). Function \(\text{vpeq} \) is adopted from Rushby and is an equivalence relation representing whether two states are equivalent from the point of view of the given domain.

We assume constraints similar to Rushby, i.e., weak step consistency, locally respects, and output consistency. Additional assumptions are:

Step Atomicity Each atomic kernel step can be executed within one time slot. Therefore, the domain that is currently active does not change by executing one action.

Time-based Interrupts As interrupts occur according to a prefixed time-based schedule, the domain that is active after a call of switch depends on the currently active domain only (\(\text{cswitch} \text{consistency} \)). Also, \(\text{cswitch} \) can only change which domain is currently active (\(\text{cswitch} \text{consistency} \)).

Control Consistency States that are equivalent yield the same control. That is, the next action and the updated execution depend on the currently active domain only (\(\text{next-action}, \text{next-execs} \text{consistent} \)). The state as updated by the control function remains in \(\text{vpeq} \) (\(\text{next-state} \text{consistent}, \text{locally respects} \text{next-state} \)). Finally, function control cannot change which domain is active (\(\text{current} \text{next-state} \text{consistent} \)).

definition actions-in-execution : : 'action-t execution \Rightarrow 'action-t set

where actions-in-execution \text{exec} \equiv \{ a . \exists a\text{seq} \in \text{set} \text{exec}. a \in \text{set} a\text{seq} \}

locale Separation-Kernel = Kernel kstep output-f s0 current cswitch interrupt kprecondition realistic-execution control kinvolved

for kstep : : 'state-t \Rightarrow 'action-t \Rightarrow 'state-t

and output-f : : 'state-t \Rightarrow 'action-t \Rightarrow 'output-t
We define security for domains that are completely non-interfering. That is, for all domains \(u \) and \(v \) such that \(v \) may not interfere in any way with domain \(u \), we prove that the behavior of domain \(u \) is independent of the actions performed by \(v \). In other words, the output of domain \(u \) in some run is at all times equivalent to the output of domain \(u \) when the actions of domain \(v \) are replaced by some other set actions.

A domain is unrelated to \(u \) if and only if the security policy dictates that there is no path from the domain to \(u \).

3.2.1 Security for non-interfering domains

We define security for domains that are completely non-interfering. That is, for all domains \(u \) and \(v \) such that \(v \) may not interfere in any way with domain \(u \), we prove that the behavior of domain \(u \) is independent of the actions performed by \(v \). In other words, the output of domain \(u \) in some run is at all times equivalent to the output of domain \(u \) when the actions of domain \(v \) are replaced by some other set actions.

A domain is unrelated to \(u \) if and only if the security policy dictates that there is no path from the domain to \(u \).
To formulate the new theorem to prove, we redefine purging: all domains that may not influence domain u are replaced by arbitrary action sequences.

Definition of purge:

$\text{purge} \equiv \begin{cases} \text{dom-t} \Rightarrow \text{action-t execution} \Rightarrow \text{dom-t} \Rightarrow (\text{dom-t} \Rightarrow \text{action-t execution}) \end{cases}$

Where purges execs $u = \lambda \cdot d$. (if unrelated d then

$(\text{SOME alpha} \cdot \text{realistic-execution alpha})$

else execs d)

A normal run from initial state s ending in state s_f is equivalent to a run purged for domain (currents_f).

Definition of NI-unrelated where NI-unrelated

$\equiv \exists \text{ execs a n . run n (Some s0) execs} \rightarrow$

$(\lambda \cdot s-f \cdot \text{run n (Some s0)} \text{ purges execs (current s-f)}) \rightarrow$

$(\lambda \cdot s-f \cdot \text{output-f s-f a} = \text{output-f s-f2 a} \land \text{current s-f = current s-f2})$

The following properties are proven inductive over states s and t:

1. Invariably, states s and t are equivalent for any domain v that may influence the purged domain u. This is more general than proving that “$vpeq u s t$” is inductive. The reason we need to prove equivalence over all domains v is so that we can use weak step consistency.

2. Invariably, states s and t have the same active domain.

Abbreviation equivalent-states ::= \text{\texttt{s}}-\text{option} \Rightarrow \text{\texttt{s}}-\text{option} \Rightarrow \text{\texttt{dom-t}} \Rightarrow \text{\texttt{bool}}

Where equivalent-states $s t u \equiv s \parallel (\forall v \cdot \text{ifp}^{\ast\ast} v u \rightarrow vpeq v s t) \land s = \text{current t}$

Rushby’s view partitioning is redefined. Two states that are initially u-equivalent are u-equivalent after performing respectively a realistic run and a realistic purged run.

Definition of view-partitioned:bool where view-partitioned

$\equiv \forall \text{ execs a n . equivalent-states ms mt u} \rightarrow$

$(\lambda \cdot rs rt . \text{vpeq u rs rt} \land \text{current rs = current rt})$

We formulate a version of predicate view-partitioned that is on one hand more general, but on the other hand easier to prove inductive over function run. Instead of reasoning over execs and (purge execs u), we reason over any two executions execs1 and execs2 for which the following relation holds:

Definition of purged-relation := \text{\texttt{dom-t}} \Rightarrow (\text{\texttt{dom-t}} \Rightarrow \text{\texttt{action-t execution}}) \Rightarrow (\text{\texttt{dom-t}} \Rightarrow \text{\texttt{action-t execution}}) \Rightarrow \text{\texttt{bool}}

Where purged-relation u execs1 execs2 $\equiv \forall d \cdot \text{ifp}^{\ast\ast} d u \rightarrow \text{execs1 d = execs2 d}$

The inductive version of view partitioning says that runs on two states that are u-equivalent and on two executions that are purged-related yield u-equivalent states.

Definition of view-partitioned-ind:bool where view-partitioned-ind

$\equiv \forall \text{ execs1 execs2 s t n u . equivalent-states s t u \land purged-relation u execs1 execs2} \rightarrow \text{equivalent-states (run n s execs1)} (\text{run n t execs2}) u$

A proof that when state t performs a step but state s not, the states remain equivalent for any domain v that may interfere with u.

Lemma vpeq-s-nt:

Assumes prec-t: precondition (next-state t execs2) (next-action t execs2)

Assumes not-ifp-curr-u: \text{\texttt{ifp}}^{\ast\ast} (current t) u

Assumes vpeq-s-t: \forall v . \text{\texttt{ifp}}^{\ast\ast} v u \rightarrow vpeq v s t

Shows $(\forall v \cdot \text{\texttt{ifp}}^{\ast\ast} v u \rightarrow vpeq v s (\text{step (next-state t execs2)} (\text{next-action t execs2})))$

Proof:

fix v
assume ifp-v-uc ifp^** v u

from ifp-v-uc not-ifp-curr-uc have unrelated: ¬ifp^** (current t) v using rtranclp-trans by metis
from this current-next-state[THEN spec,THEN spec,where x1=t] locally-respects[THEN spec,THEN spec,THEN spec,where x1=next-state t execs2] vpeq-reflexive
 prec-s have vpeq v (next-state t execs2) (step (next-state t execs2) (next-action t execs2))
 unfolding step-def precondition-def B-def
 by (cases next-action t execs2,auto)
from unrelated this locally-respects-next-state vpeq-transitive have vpeq v t (step (next-state t execs2) (next-action t execs2)) by blast

thus ?thesis by auto
qed

A proof that when state s performs a step but state t not, the states remain equivalent for any domain v that may interfere with u.

lemma vpeq-ns-t:
assumes prec-s: precondition (next-state s execs) (next-action s execs)
assumes not-ifp-curr-uc: ¬ifp^** (current s) u
assumes vpeq-s-t: ∀ v . ifp^** v u → vpeq v s t
shows ∀ v . ifp^** v u → vpeq v (step (next-state s execs) (next-action s execs)) t
proof–
{ fix v
 assume ifp-v-uc ifp^** v u

from ifp-v-uc and not-ifp-curr-uc have unrelated: ¬ifp^** (current s) v using rtranclp-trans by metis
from this current-next-state[THEN spec,THEN spec,where x1=s] vpeq-reflexive
 unrelated locally-respects[THEN spec,THEN spec,THEN spec,where x1=next-state s execs and x=v and
 x2=the (next-action s execs)] prec-s
 have vpeq v (next-state s execs) (step (next-state s execs) (next-action s execs))
 unfolding step-def precondition-def B-def
 by (cases next-action s execs,auto)
from unrelated this locally-respects-next-state vpeq-transitive have vpeq v s (step (next-state s execs) (next-action s execs)) by metis
}
thus ?thesis by auto
qed

A proof that when both states s and t perform a step, the states remain equivalent for any domain v that may interfere with u. It assumes that the current domain can interact with u (the domain for which is purged).

lemma vpeq-ns-nt-ifp-u:
assumes vpeq-s-t: ∀ v . ifp^** v u → vpeq v s t'
 and current-s-t: current s = current t'
shows precondition (next-state s execs) a ∧ precondition (next-state t' execs) a' → → (ifp^** (current s) u ⇒ (∀ v . ifp^** v u → vpeq v (step (next-state s execs) a) (step (next-state t' execs) a'))
proof–
{ fix a
 assume prec-s: precondition (next-state s execs) a ∧ precondition (next-state t' execs) a
 assume ifp-curr: ifp^** (current s) u
from vpeq-s-t have vpeq-curr-s-t: ifp^** (current s) u → vpeq (current s) s t' by auto
from ifp-curr precs
A proof that when both states \(s \) and \(t \) perform a step, the states remain equivalent for any domain \(v \) that may interfere with \(u \). It assumes that the current domain cannot interact with \(u \) (the domain for which is purged).

Lemma vpeq-nb-nx-not-ifp-u

Assumes purged-a-a: purged-relation \(u \) execs execs2

\(\text{and prec-s precondition (next-state } s \text{ execs) (next-action } s \text{ execs) and current-s-t: current } s = \text{ current } t' \text{ and vpeq-s-t: v . ifp'' } v u \rightarrow \text{ vpeq } v s t' \text{ shows } \neg \text{ifp'' (current } s \text{) } u \land \text{ precondition (next-state } t' \text{ execs2) (next-action } t' \text{ execs2) } \rightarrow (\forall v . \text{ifp'' } v u \rightarrow \text{ vpeq } v (\text{step (next-state } s \text{ execs) } a) (\text{step (next-state } t' \text{ execs) } a) \text{\)} \text{ proof\} \\

\{
\text{assume not-ifp: } \neg \text{ifp'' (current } s \text{) } u \text{ assume prec-t: precondition (next-state } t' \text{ execs2) (next-action } t' \text{ execs2) fix } a a' v \text{ assume ifp-v-uc ifp'' } v u \text{ from not-ifp and purged-a-a2 have } \neg \text{ifp'' (current } s \text{) } u \text{ unfolding purged-relation-def by auto from this and ifp-v-uc have not-ifp-curr-v: } \neg \text{ifp'' (current } s \text{) } v \text{ using rtranclp-trans by metis from this current-next-state[THEN spec,THEN spec,THEN spec,where } x1=s \text{ and } x2=\text{execs2} \text{] prec-s vpeq-reflexive locally-respects[THEN spec,THEN spec,THEN spec,where } x1=\text{next-state } s \text{ execs and } x2=\text{the (next-action } s \text{ execs)} \text{ and } x=v \text{ have vpeq } v (\text{next-state } s \text{ execs}) (\text{step (next-state } s \text{ execs) (next-action } s \text{ execs) }) \text{ unfolding step-def precondition-def B-def by (cases next-action } s \text{ execs,auto) from not-ifp-curr-v this locally-respects-next-state vpeq-transitive have vpeq-s-n-ns vpeq v s (\text{step (next-state } s \text{ execs) (next-action } s \text{ execs)}) by blast from not-ifp-curr-v current-s-t current-next-state[THEN spec,THEN spec,THEN spec,where } x1=t' \text{ and } x=\text{execs2} \text{] prec-t locally-respects[THEN spec,THEN spec,THEN spec,where } x=\text{next-state } t' \text{ execs2} \text{] vpeq-reflexive have } \theta: \text{vpeq } v (\text{next-state } t' \text{ execs2}) (\text{step (next-state } t' \text{ execs2) (next-action } t' \text{ execs2)}) \text{ unfolding step-def precondition-def B-def by (cases next-action } t' \text{ execs2,auto) from not-ifp-curr-v current-s-t current-next-state have } I: \neg \text{ifp'' (current } t' \text{) } v \text{ using rtranclp-trans by auto from } 0 1 \text{ locally-respects-next-state vpeq-transitive have vpeq-t-tnt: vpeq } v t' (\text{step (next-state } t' \text{ execs2) (next-action } t' \text{ execs2)}) \text{ by blast from vpeq-s-n-ns and vpeq-t-tnt and vpeq-s-t and ifp-v-uc and vpeq-symmetric and vpeq-transitive have vpeq-ns-nt: vpeq } v (\text{step (next-state } s \text{ execs) (next-action } s \text{ execs)}) (\text{step (next-state } t' \text{ execs2) (next-action } t' \text{ execs2)}) \text{ by blast } \} \\
\text{thus } ?\text{thesis by auto qed}
proof -

{ fix execs execs2 t n u
 have equivalent-states s t u \land purged-relation u execs execs2 \rightarrow equivalent-states (run n s execs) (run n t execs2) u

proof (induct n s execs arbitrary: t u execs2 rule: run.induct)
 case (1 s execs t u execs2)
 show ?case by auto
 next
 case (2 n execs t u execs2)
 show ?case by simp
 next
 case (3 n s execs t u execs2)
 assume interrupt-s: interrupt (Suc n)
 assume IH: (\forall u execs2. equivalent-states (Some (cswitch (Suc n) s)) t u \land purged-relation u execs execs2 \rightarrow equivalent-states (run n (Some (cswitch (Suc n) s)) execs) (run n t execs2) u)
 fix t'
 assume t = Some t'
 fix rs
 assume rs: run (Suc n) (Some s) execs = Some rs
 fix rt
 assume rt: run (Suc n) (Some t') execs2 = Some rt
 assume vpeq-s-t: \forall v. ifp^∗∗ v u \rightarrow vpeq v s t'
 assume current-s-t: current s = current t'
 assume purged-a-a2: purged-relation u execs execs2

 -- The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns and nt (for: next-s and next-t) are the states after one step.
 -- We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the properties hold for the next step (in this case, a context switch). Statement current-ns-nt states that after one step states ns and nt have the same active domain. Statement vpeq-ns-nt states that after one step states ns and nt are vpeq for all domains v that may influence u (vpeq-rs-rt).

 from current-s-t cswitch-independent-of-state
 have current-ns-nt: current (cswitch (Suc n) s) = current (cswitch (Suc n) t') by blast
 from cswitch-consistency vpeq-s-t
 have vpeq-ns-nt: \forall v. ifp^∗∗ v u \rightarrow vpeq v (cswitch (Suc n) s) (cswitch (Suc n) t') by auto
 from current-ns-nt vpeq-ns-nt interrupt-s vpeq-reflexive purged-a-a2 current-s-t IH[where u=u and t=Some (cswitch (Suc n) t') and ?execs2.0=execs2]
 have current-rs-rt: current rs = current rt using rs rt by(auto)
 { fix v
 assume ia: ifp^∗∗ v u
 from current-ns-nt vpeq-ns-nt ia interrupt-s vpeq-reflexive purged-a-a2 IH[where u=u and t=Some (cswitch (Suc n) t') and ?execs2.0=execs2]
 have vpeq-rs-rt: vpeq v rs rt using rs rt by(auto)
 }
 from current-rs-rt and this have equivalent-states (Some rs) (Some rt) u by auto
 }
 thus ?case by(simp add:option.splits,cases t,simp+)
 next
 case (4 n execs s t u execs2)
 assume not-interrupt: \neg interrupt (Suc n)
 assume thread-empty-s: thread-empty(execs (current s))
assume IH: (∀t u execs2. equivalent-states (Some s) t u ∧ purged-relation u execs execs2 → equivalent-states (run n (Some s) execs) (run n t execs2) u)

\[
\begin{align*}
\text{fix } t' \\
\text{assume } t: t = Some t' \\
\text{fix } rs \\
\text{assume } rs: \text{run (Suc n) (Some s) execs = Some rs} \\
\text{fix } rt \\
\text{assume } rt: \text{run (Suc n) (Some t') execs2 = Some rt} \\
\text{assume } \text{vpeq-s-t: } \forall v. \text{ifp}^* v u \rightarrow \text{vpeq v s t'} \\
\text{assume } \text{current-s-t: current s = current t'} \\
\text{assume } \text{purged-a-a2: purged-relation u execs execs2}
\end{align*}
\]

The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns and nt (for: next-s and next-t) are the states after one step.

We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the properties hold for the next step (in this case, nothing happens in s as the thread is empty). Statement current-ns-nt states that after one step states ns and nt have the same active domain. Statement vpeq_ns_nt states that after one step states ns and nt are vpeq for all domains v that may influence u (vpeq-rs-rt).

\[
\begin{align*}
\text{from ifp-reflexive and vpeq-s-t have vpeq-s-t-u: vpeq u s t' by auto} \\
\text{from thread-empty-s and purged-a-a2 and current-s-t have purged-a-na2: } \neg \text{ifp}^* (\text{current } t') u \rightarrow \\
\text{purged-relation u execs (next-execs } t' \text{ execs2)} \\
\text{by (unfold next-execs-def, unfold purged-relation-def, auto)} \\
\text{from step-atomicity current-next-state current-s-t have current-s-nt: current s = current (step (next-state } t' \text{ execs2)} (next-action } t' \text{ execs2))} \\
\text{unfolding step-def} \\
\text{by (cases next-action } t' \text{ execs2, auto)}
\end{align*}
\]

The proof is by case distinction. If the current thread is empty in state t as well (case t-empty), then nothing happens and the proof is trivial. Otherwise (case t-not-empty), since the current thread has different executions in states s and t, we now show that it cannot influence u (statement not-ifp-curr-t). If in state t the precondition holds (case t-prec), locally respects shows that the states remain vpeq. Otherwise, (case t-not-prec), everything holds vacuously.

\[
\begin{align*}
\text{have current-rs-rt: current rs = current rt} \\
\text{proof (cases thread-empty(execs2 (current } t')) rule : case-split[case-names t-empty t-not-empty]} \\
\text{case t-empty} \\
\text{from purged-a-a2 and vpeq-s-t and current-s-t IH[where } t=\text{Some } t' \text{ and } u=u \text{ and } ?\text{execs2.0=}\text{execs2]}} \\
\text{have equivalent-states (run n (Some s) execs) (run n (Some t') execs2) u using rs rt by (auto)} \\
\text{from this not-interrupt t-empty thread-empty-s} \\
\text{show } ?\text{thesis using rs rt by (auto)} \\
\text{next} \\
\text{case t-not-empty} \\
\text{from t-not-empty current-next-state and vpeq-s-t-u and thread-empty-s and purged-a-a2 and current-s-t} \\
\text{have not-ifp-curr-t: } \neg \text{ifp}^* (\text{current } (\text{next-state } t' \text{ execs2})) \text{ unfolding purged-relation-def by auto} \\
\text{show } ?\text{thesis} \\
\text{proof (cases precondition (next-state } t' \text{ execs2) (next-action } t' \text{ execs2) rule : case-split[case-names t-prec t-not-prec]}} \\
\text{case t-prec} \\
\text{from locally-respects-next-state current-next-state t-prec not-ifp-curr-t vpeq-s-t locally-respects vpeq-s-nt} \\
\text{have vpeq-s-nt: } \forall v. \text{ifp}^* v u \rightarrow \text{vpeq v s (step (next-state } t' \text{ execs2) (next-action } t' \text{ execs2))} \text{ by auto} \\
\text{from vpeq-s-nt purged-a-na2 this current-s-nt not-ifp-curr-t current-next-state IH[where } t=\text{Some } (\text{step (next-state } t' \text{ execs2) (next-action } t' \text{ execs2)}) \text{ and } u=u \text{ and } ?\text{execs2.0=}\text{execs} \text{ t'} \text{ execs2]} \\
\text{have equivalent-states (run n (Some s) execs) (run n (Some step (next-state } t' \text{ execs2) next-action } t')
execs2)) (next-execs t' execs2)) u
 using rs rt by auto
 from t-not-empty t-prec vpeq-s-nt this thread-empty-s not-interrupt
 show ?thesis using rs rt by auto
next
case t-not-prec
 thus ?thesis using rt t-not-empty not-interrupt by(auto)
qed
qed
{
 fix v
 assume ia :: ifp'''' v u
 have vpeq v rs rt
 proof (cases thread-empty (execs2 (current t')) rule :case-split[case-names t-empty t-not-empty])
 case t-empty
 from purged-a-a2 and vpeq-s-t and current-s-t IH[where t=Some t' and u=u and ?execs2.0=execs2]
 have equivalent-states (run n (Some s) execs) (run n (Some t') execs2) u using rs rt by(auto)
 from ia this not-interrupt thread-empty-s
 show ?thesis using rs rt by(auto)
next
case t-not-empty
 show ?thesis
 proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[case-names t-prec t-not-prec])
 case t-prec
 from t-prec current-next-state t-not-empty current-s-t and vpeq-s-t-u and thread-empty-s and purged-a-a2 and current-s-t
 have not-ifp-curr-t : ¬ifp'''' (current (next-state t' execs2)) u unfolding purged-relation-def by auto
 from t-prec current-next-state locally-respects-next-state this and vpeq-s-t and locally-respects and vpeq-s-nt
 have vpeq-s-nt: (v' v . ifp'''' v u ---> vpeq v s (step (next-state t' execs2) (next-action t' execs2))) by auto
 from purged-a-na2 this current-s-nt not-ifp-curr-t current-next-state
 IH[where t=Some (step (next-state t' execs2)) (next-action t' execs2)] and u=u and ?execs2.0=execs execs t' execs2]
 have equivalent-states (run n (Some s) execs) (run n (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t' execs2)) (next-execs t' execs2)) u
 using rs rt by(auto)
 from ia t-not-empty t-prec vpeq-s-nt this thread-empty-s not-interrupt
 show ?thesis using rs rt by auto
next
case t-not-prec
 thus ?thesis using rt t-not-empty not-interrupt by(auto)
qed
qed
}
from current-rs-rt and this have equivalent-states (Some rs) (Some rt) u by auto
}
thus ?case by(simp add:option.splits,cases t,simp+)
next
case (Suc n) execs s t u execs2
assume not-interrupt: ¬interrupt (Suc n)
assume thread-not-empty-s: ¬thread-empty(execs (current s))
assume not-prec-s: ¬precondition (next-state s execs) (next-action s execs)
— Whenever the precondition does not hold, the entire theorem flattens to True and everything holds vacuously.
hence run (Suc n) (Some s) execs = None using not-interrupt thread-not-empty-s by simp
D31.1 – Formal Specification of a Generic Separation Kernel

thus \text{?case by}(\text{simp add:option.splits})

next

case \((6\ n\ \text{execs}\ s\ t\ u\ \text{execs}2)\)

assume \text{not-interrupt} \cdash\text{not-interrupt} (\text{Suc}\ n)

assume \text{thread-not-empty-s} \cdash\text{thread-empty} (\text{execs} (\text{current}\ s))

assume \text{prec-s} \text{ preconid} (\text{next-state}\ s\ \text{execs}) (\text{next-action}\ s\ \text{execs})

assume \text{IH}: (\forall u\ \text{execs}2).

\quad\text{equivalent-states} (\text{Some} (\text{step} (\text{next-state}\ s\ \text{execs}) (\text{next-action}\ s\ \text{execs})))\ t\ u\ \wedge

\quad\text{purged-relation}\ u\ (\text{next-exec}\ s\ \text{execs}\ \text{execs}2)\ \cdash\rightarrow

\quad\text{equivalent-states}

\quad\text{(run}\ n\ (\text{Some} (\text{step} (\text{next-state}\ s\ \text{execs}) (\text{next-action}\ s\ \text{execs})))\ (\text{next-exec}\ s\ \text{execs}))

\quad\text{(run}\ n\ t\ \text{execs}2)\ u)

\{

\quad\text{fix } t'

\quad\text{assume } t': t = \text{Some} t'

\quad\text{fix } rs

\quad\text{assume } rs: \text{run} (\text{Suc}\ n) (\text{Some} s) = \text{Some}\ rs

\quad\text{fix } rt

\quad\text{assume } rt: \text{run} (\text{Suc}\ n) (\text{Some} t') = \text{Some}\ rt

\quad\text{assume } \text{vpeq-s-t}: \forall v. \text{ifp}^{**} v u \rightarrow \text{vpeq}\ v s t'

\quad\text{assume } \text{current-s-t}: \text{current}\ s = \text{current}\ t'

\quad\text{assume } \text{purged-a-a2}: \text{purged-relation}\ u\ \text{execs}\ \text{execs}2

— The following terminology is used: states rs and rt (for: run-s and run-t) are the states after a run. States ns and nt (for: next-s and next-t) are the states after one step.

— We prove two properties: the states rs and rt have equal active domains (current-rs-rt) and are vpeq for all domains v that may influence u (vpeq-rs-rt). Both are proven using the IH. To use the IH, we have to prove that the properties hold for the next step (in this case, state s executes an action). Statement current-ns-nt states that after one step states ns and nt have the same active domain. Statement vpeq-ns-nt states that after one step states ns and nt are vpeq for all domains v that may influence u (vpeq-rs-rt).

— Some lemma’s used in the remainder of this case.

from \text{ifp-reflexive} \text{ and}\ \text{vpeq-s-t}\ \text{have } \text{vpeq-s-t-u}\ \text{vpeq}\ u\ s\ t' \text{by auto}

from \text{step-atomicity} \text{ and}\ \text{current-s-t}\ \text{current-next-state}

\quad\text{have } \text{current-ns-nt}: \text{current}\ (\text{step} (\text{next-state}\ s\ \text{execs}) (\text{next-action}\ s\ \text{execs})) = \text{current}\ (\text{step} (\text{next-state}\ t' \\text{execs}2) (\text{next-action}\ t'\ \text{execs}2))

\quad\text{unfolding}\ \text{step-def}

\quad\text{by}\ (\text{cases}\ \text{next-action}\ s\ \text{execs},\text{cases}\ \text{next-action}\ t'\ \text{execs}2,\text{simp}\text{.simp},\text{cases}\ \text{next-action}\ t'\ \text{execs}2,\text{simp}\text{.simp})

\quad\text{from } \text{vpeq-s-t}\ \text{have } \text{vpeq-curr-s-t}: \text{ifp}^{**}\ (\text{current}\ s)\ u \rightarrow \text{vpeq}\ (\text{current}\ s)\ s\ t' \text{by auto}

\quad\text{from } \text{prec-s}\ \text{involved-ifp}[\text{THEN}\ \text{spec},\text{THEN}\ \text{spec},\text{where}\ x1=\text{next-state}\ s\ \text{execs} \text{and}\ x=\text{next-action}\ s\ \text{execs}]\n
\quad\text{vpeq-s-t}\ \text{have } \text{vpeq-involved}: \text{ifp}^{**} (\text{current}\ s)\ u \rightarrow (\forall d\ \text{involved}\ (\text{next-action}\ s\ \text{execs})\ .\ \text{vpeq}\ d\ s\ t')

\quad\text{using}\ \text{current-next-state}

\quad\text{unfolding}\ \text{involved-def}\ \text{precondition-def}\ \text{B-def}

\quad\text{by}(\text{cases}\ \text{next-action}\ s\ \text{execs},\text{simp}\text{.auto},\text{metis}\text{ converse-rtranclp-into-rtranclp})

\quad\text{from } \text{current-s-t}\ \text{next-exec-consistent}\ \text{vpeq-curr-s-t}\ \text{vpeq-involved}

\quad\text{have } \text{next-execs-t}: \text{ifp}^{**}\ (\text{current}\ s)\ u \rightarrow \text{next-execs}\ t'\ \text{execs} = \text{next-execs}\ s\ \text{execs}

\quad\text{unfolding}\ \text{next-exec-def}

\quad\text{by}(\text{auto})

\quad\text{from } \text{current-s-t}\ \text{purged-a-a2}\ \text{thread-not-empty-s}\ \text{next-action-consistent}[\text{THEN}\ \text{spec},\text{THEN}\ \text{spec},\text{where}\ x1=s\ \text{and}\ x=t']\ \text{vpeq-curr-s-t}\ \text{vpeq-involved}

\quad\text{have } \text{next-action-s-t}: \text{ifp}^{**}\ (\text{current}\ s)\ u \rightarrow \text{next-action}\ t'\ \text{execs}2 = \text{next-action}\ s\ \text{execs}

\quad\text{by}(\text{unfold}\ \text{next-action-def},\text{unfold}\ \text{purged-relation-def},\text{auto})

\quad\text{from } \text{purged-a-a2}\ \text{current-s-t}\ \text{next-exec-consistent}[\text{THEN}\ \text{spec},\text{THEN}\ \text{spec},\text{THEN}\ \text{spec},\text{where}\ x2=s\ \text{and}\ x1=t'

\quad\text{and}\ x=\text{execs}]

\quad\text{vpeq-curr-s-t}\ \text{vpeq-involved}

\quad\text{have } \text{purged-na-na2}: \text{purged-relation}\ u\ (\text{next-exec}\ s\ \text{execs}) (\text{next-exec}\ t'\ \text{execs}2)
lemma vpeq-ns-nt-not-ifp-u applies.
proof is trivial as the theorem holds vacuously. If the domain cannot interact with u, (case curr-not-ifp-u), then state t the precondition holds (case t-prec) or not. If it holds, then lemma vpeq-ns-nt-ifp-u applies. Otherwise, the

— The proof is by case distinction. If the current domain can interact with u (case curr-ifp-u), then either in state t the precondition holds (case t-prec) or not. If it holds, then lemma vpeq-ns-nt-ifp-u applies. Otherwise, the proof is trivial as the theorem holds vacuously. If the domain cannot interact with u, (case curr-not-ifp-u), then lemma vpeq-ns-nt-not-ifp-u applies.

have current-rs-rt: current rs = current rt
proof (cases ifp** (current s) u rule :case-split[case-names curr-ifp-u curr-not-ifp-u])
case curr-ifp-u
show ?thesis
proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[case-names prec-t prec-not-t])
case prec-t
have thread-not-empty-t: ~thread-empty(execs2 (current t')) using thread-not-empty-t curr-ifp-u by auto
from current-ns-nt next-execs-t next-action-s-t purged-a-a2
curr-ifp-u prec-t curr-s-nt purged-relation-def[where a=(next-action s execs)] vpeq-s-t current-s-t
have equivalent-states (Some (step (next-state s execs) (next-action t' execs2))) (Some (step (next-state t' execs2) (next-action t' execs2))) u
unfolding purged-relation-def next-state-def
by auto
from this
H[H[where u=u and ?execs2.0=(next-execs t' execs2) and t=Some (step (next-state t' execs2) (next-action t' execs2))]]
current-ns-nt purged-na-na2
have equivalent-states (run n (Some (step (next-state s execs) (next-action t' execs2))) (next-execs s execs))
(\text{run n} (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t' execs2)) u
by auto
from prec-t thread-not-empty-t prec-s and this and not-interrupt and thread-not-empty-s and next-action-s-t
show ?thesis using rs rt by auto
next
case prec-not-t
from curr-ifp-u prec-not-t thread-not-empty-t not-interrupt show ?thesis using rt by simp
qed
next
case curr-not-ifp-u
show ?thesis
proof (cases thread-empty(execs2 (current t')) rule :case-split[case-names t-empty t-not-empty])
case t-not-empty
show ?thesis
proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[case-names t-prec t-not-prec])
case t-prec
from curr-not-ifp-u t-prec H[H[where u=u and ?execs2.0=(next-execs t' execs2) and t=Some (step (next-state t' execs2) (next-action t' execs2))]]
current-ns-nt next-execs-t purged-na-na2 vpeq-ns-nt-not-ifp-u current-s-t vpeq-s-t prec-s purged-a-a2 have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs)) (run n (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t' execs2)) u by auto
from this t-prec curr-not-ifp-u t-not-empty prec-s not-interrupt thread-not-empty-s show ?thesis using rs rt by auto
next case t-not-prec
from t-not-prec t-not-empty not-interrupt show ?thesis using rt by simp
qed
next case t-empty
from curr-not-ifp-u and prec-s and vpeq-s-t and locally-respects and vpeq-ns-t current-next-state locally-respects-next-state have vpeq-ns-t (∀ v. ifp* v u ─ v eq (step (next-state s execs) (next-action s execs)) t') by blast
from curr-not-ifp-u IH[where t=Some t' and u=u and ?execs2.0=?execs2] and current-ns-t and next-execs-t and purged-na-a-a2 and vpeq-ns-t and this have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs)) (run n (Some t' execs2) u by auto
from this not-interrupt thread-not-empty-s t-empty prec-s show ?thesis using rs rt by auto
qed
qed

{ fix v
assume ia : ifp* v u
have vpeq v rs rt
proof (cases ifp* (current s) u rule :case-split[case-names curr-ifp-u curr-not-ifp-u])
case curr-ifp-u show ?thesis
proof (cases precondition (next-state t' execs2) (next-action t' execs2) rule :case-split[case-names t-prec t-not-prec])
case t-prec
have thread-not-empty-t: ~thread-empty(execs2 (current t')) using thread-not-empty-t curr-ifp-u by auto
from current-ns-nt next-execs-t next-action-s-t purged-a-a2 curr-ifp-u t-prec prec-s vpeq-ns-nt-ifp-u[where a=\langle\text{next-action s execs}\rangle] vpeq-s-t current-s-t have equivalent-states (Some (step (next-state s execs) (next-action s execs))) (Some (step (next-state t' execs2) (next-action t' execs2))) u unlocking purged-relation-def next-state-def
by auto
from this IH[where u=u and ?execs2.0=\langle\text{next-execs t' execs2}\rangle] and t=Some (step (next-state t' execs2) (next-action t' execs2))
current-ns-nt purged-na-na2 have equivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs)) (run n (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t' execs2)) u by auto
from ia curr-ifp-u t-prec thread-not-empty-t prec-s and this and not-interrupt and thread-not-empty-s and next-action-s-t show ?thesis using rs rt by auto
next case t-not-prec
From the previous lemma, we can prove that the system is view partitioned. The previous lemma was inductive, this lemma just instantiates the previous lemma replacing s and t by the initial state.

Lemma unwinding-implies-view-partitioned:

shows view-partitioned
proof—
from assms unwinding-implies-view-partitioned-ind
have view-partitioned-inductive: view-partitioned-ind
by blast
have purged-relation: \(\forall \ u \ \text{execs} : \ \text{purged-relation} \ u \ \text{execs} (\purge \text{execs} \ u) \)
by (unfold purged-relation-def, unfold purge-def, auto)
{
fix execs s t n u
}{
domains that many not interfere with each other, do not interfere with each other.

\textbf{3.2.2 Security for indirectly interfering domains}

Consider the following security policy over three domains \(A, B \) and \(C \): \(A \sim B \sim C \), but \(A \not\sim C \). The semantics of this policy is that \(A \) may communicate with \(C \), but only via \(B \). No direct communication from \(A \) to \(C \) is allowed. We formalize these semantics as follows: without intermediate domain \(B \), domain \(A \) cannot flow information to \(C \). In other words, from the point of view of domain \(C \) the run
where domain \(B \) is inactive must be equivalent to the run where domain \(B \) is inactive and domain \(A \) is replaced by an attacker. Domain \(C \) must be independent of domain \(A \), when domain \(B \) is inactive.

The aim of this subsection is to formalize the semantics where \(A \) can write to \(C \) via \(B \) only. We define two ipurge functions. The first purges all domains \(d \) that are intermediary for some other domain \(v \). An intermediary for \(u \) is defined as a domain \(d \) for which there exists an information flow from some domain \(v \) to \(u \) via \(d \), but no direct information flow from \(v \) to \(u \) is allowed.

definition intermediary :: \'(dom-t ⇒ 'dom-t ⇒ bool\)

where intermediary \(d u \equiv \forall v . \ ifp^* \ d d \land ifp d u \land \neg ifp v u \land d \neq u\)

primrec remove-gateway-communications :: \'(dom-t ⇒ 'action-t execution ⇒ 'action-t execution\)

where remove-gateway-communications \(u [] = []\)

\[
\begin{align*}
&\text{remove-gateway-communications} \ u (\text{aseq} \# \text{exec}) = (\ if \ \exists \ a \ \in \ \text{aseq} . \ \exists \ v . \ \text{intermediary} \ v u \land v \in \ \text{involved} (\ \text{Some} \ a) \ \text{then} [\] \ \text{else aseq}) \# (\ \text{remove-gateway-communications} \ u \ \text{exec})
\end{align*}
\]

definition ipurge-l ::

\[
(\ '\text{dom-t} ⇒ '\text{action-t execution}) ⇒ '\text{dom-t} ⇒ (\ '\text{dom-t} ⇒ '\text{action-t execution})\text{ where}
\]

ipurge-l \(\text{execs} \ u \equiv \lambda \ d . \ \text{if intermediary} \ d u \ \text{then} \)

\[
\begin{align*}
[\] &\ \text{else if} \ d = u \ \text{then} \\& \\&
\end{align*}
\]

remove-gateway-communications \(u \ \text{execs} \) \(u \ \text{else execs} \ d\)

The second ipurge removes both the intermediaries and the indirect sources. An indirect source for \(u \) is defined as a domain that may indirectly flow information to \(u \), but not directly.

abbreviation ind-source :: \'(dom-t ⇒ 'dom-t ⇒ bool\)

where ind-source \(d u \equiv \exists v . \ ifp^* \ d u \land \neg ifp d u\)

definition ipurge-r ::

\[
(\ '\text{dom-t} ⇒ '\text{action-t execution}) ⇒ '\text{dom-t} ⇒ (\ '\text{dom-t} ⇒ '\text{action-t execution})\text{ where}
\]

ipurge-r \(\text{execs} \ u \equiv \lambda \ d . \ \text{if intermediary} \ d u \ \text{then} \)

\[
\begin{align*}
[\] &\ \text{else if ind-source} \ d u \ \text{then} \\& \\&
\end{align*}
\]

SOME \(\alpha \) . realistic-execution \(\alpha \)

else if \(d = u \) then

\[
\begin{align*}
\text{remove-gateway-communications} \ u (\ \text{execs} \ u) &\ \text{else execs} \ u \\& \\&
\end{align*}
\]

\(\text{else execs} \ d\)

For a system with an intransitive policy to be called secure for domain \(u \) any indirect source may not flow information towards \(u \) when the intermediaries are purged out. This definition of security allows the information flow \(A \leadsto B \leadsto C \), but prohibits \(A \leadsto C \).

definition NI-indirect-sources ::bool

where NI-indirect-sources

\[
\equiv \forall \ \text{execs} \ a n . \ \text{run} \ n (\ \text{Some} \ s0) \ \text{execs} \ →
\begin{align*}
(\ \lambda \ s-f . \ (\ \text{run} \ n (\ \text{Some} \ s0) \ (\ \text{ipurge-l} \ \text{execs} \ (\ \text{current} \ s-f))) \ ||
\end{align*}
\]

\[
\begin{align*}
\text{run} \ n (\ \text{Some} \ s0) (\ (\ \text{ipurge-r} \ \text{execs} \ (\ \text{current} \ s-f)) \ →
\end{align*}
\]

\[
(\ \lambda \ s-l \ s-r . \ \text{output-f} \ s-l a = \ \text{output-f} \ s-r a))
\]

This definition concerns indirect sources only. It does not enforce that an unrelated domain may not flow information to \(u \). This is expressed by “secure”.

This allows us to define security over intransitive policies.

definition isecure::bool

where isecure \(\equiv \ \text{NI-indirect-sources} \land \text{NI-unrelated} \)

abbreviation iequivalent-states :: \'(\text{state-t option}) ⇒ 'state-t option ⇒ 'dom-t ⇒ bool\)

where iequivalent-states \(s_t u \equiv s \parallel t → (\ \forall \ s . \ (\ \forall \ v . \ ifp v u \land \neg \text{intermediary} v u \ → \ \text{vpeq} \ v s t)) \land \text{current} \ s = \ \text{current} \ t\)
\textbf{definition} \textit{does-not-communicate-with-gateway} \par \textbf{where} \textit{does-not-communicate-with-gateway} \textit{u execs} \equiv \forall \ a . \ a \in \text{actions-in-execution} (\text{execs} \ u) \rightarrow (\forall \ v . \ \text{intermediary} \ v \ u \rightarrow v \notin \text{involved} (\text{Some} \ a)) \par

\textbf{definition} \textit{iview-partitioned} :: bool \textbf{where} \textit{iview-partitioned}
\equiv \forall \execs \ms \mt \ n \ u. \ \text{iequivalent-states} \ ms \ mt \ u \rightarrow
\big(\forall \ v. \ \text{intermediary} \ v \ u \rightarrow v \notin \text{involved} \ (\text{Some} \ a)\big) \par

\textbf{definition} \textit{ipurged-relation1} :: \textdom{dom-t} \Rightarrow (\textdom{dom-t} \Rightarrow \textdom{action-t} \ \text{execution}) \Rightarrow (\textdom{dom-t} \Rightarrow \textdom{action-t} \ \text{execution}) \Rightarrow \text{bool} \par
\textbf{where} \textit{ipurged-relation1} u \ execs1 \ execs2 \equiv \forall \ d. \ \text{ifp} \ d \ u \rightarrow \text{execs1} \ d = \text{execs2} \ d \ \land \ (\text{intermediary} \ d \ u \rightarrow \text{vpeq} \ d \ s \ t) \par

Proof that if the current is not an intermediary for \textit{u}, then all domains involved in the next action are \text{vpeq}. \par
\textbf{lemma} \textit{vpeq-involved-domains}: \par \textbf{assumes} \textit{ifp-curr} :: \text{ifp} \ (\text{current} \ s) \ u \par \text{and} \textit{not-intermediary-curr} :: \neg \text{intermediary} \ (\text{current} \ s) \ u \par \text{and} \textit{no-gateway-comm} :: \textit{does-not-communicate-with-gateway} \ u \ execs \par \text{and} \textit{vpeq-s-t} :: \forall \ v . \ \text{ifp} \ v \ u \land \neg \text{intermediary} \ v \ u \rightarrow \text{vpeq} \ v \ s \ t' \par \text{and} \textit{prec-s} :: \text{precondition} \ (\text{next-state} \ s \ execs) \ (\text{next-action} \ s \ execs) \par \textbf{shows} \forall \ d \in \text{involved} (\text{next-action} \ s \ execs) . \ \text{vpeq} \ d \ s \ t' \par
\textbf{proof} - \par \{ \par \text{fix} \ v \par \text{assume} \ \text{involved} :: v \in \text{involved} (\text{next-action} \ s \ execs) \par \text{from} \ \text{this} \ \text{prec-s} \ \text{involved-ifp}[\text{THEN} \ \text{spec}, \text{THEN} \ \text{spec}, \textbf{where} \ x1=\text{next-state} \ s \ execs \ \text{and} \ x=\text{next-action} \ s \ execs] \par \ \text{have} \ \text{ifp-v-curr} :: \text{ifp} \ v \ (\text{current} \ s) \par \text{using} \ \text{current-next-state} \par \text{unfolding} \ \text{involved-def} \ \text{precondition-def} \ B-def \par \text{by} (\text{cases} \ \text{next-action} \ s \ execs, \text{auto}) \par \ \text{have} \ \text{vpeq} \ v \ s \ t' \par \text{proof} - \par \{ \par \text{assume} \ \text{ifp} \ v \ u \land \neg \text{intermediary} \ v \ u \par \text{from} \ \text{this} \ \text{vpeq-s-t} \par \ \text{have} \ \text{vpeq} \ v \ s \ t' \ \text{by} (\text{auto}) \par \} \par \text{moreover} \par \{ \par \text{assume} \ \text{not-intermediary-v} :: \text{intermediary} \ v \ u \par \text{from} \ \text{ifp-curr} \ \text{not-intermediary-curr} \ \text{ifp-v-curr} \ \text{not-intermediary-v} \ \textbf{have} \ \text{curr-is-u} :: \text{current} \ s = u \par \text{using} \ \text{rtranclp-trans} \ i-into-rtranclp \par \text{by} (\text{metis} \ \text{intermediary-def}) \par \text{from} \ \text{curr-is-u} \ \text{next-action-from-execx}[\text{THEN} \ \text{spec}, \text{THEN} \ \text{spec}, \textbf{where} \ x=\text{execs} \ \text{and} \ x1=s] \ \text{not-intermediary-v} \ \text{involved} \par \text{no-gateway-comm}[\text{unfolded} \ \text{does-not-communicate-with-gateway-def}, \text{THEN} \ \text{spec}, \textbf{where} \ x=\text{the} \ (\text{next-action} \ s \ execs)] \par \ \text{have} \ False \par \text{unfolding} \ \text{involved-def} \ B-def \par \text{by} (\text{cases} \ \text{next-action} \ s \ execs, \text{auto}) \par \ \text{hence} \ \text{vpeq} \ v \ s \ t' \ \text{by} \ \text{auto} \par \} \par \text{moreover} \par \{ \par
assume intermediary-v ∙ ¬ ifp v u
from ifp-curr not-intermediary-curr ifp-curr intermediary-v
have False unfolding intermediary-def by auto
hence vpeq v s t' by auto
}
ultimately
show vpeq v s t' unfolding intermediary-def by auto
qed
}
thus ?thesis by auto
qed

Proof that purging removes communications of the gateway to domain u.

lemma ipurge-l-removes-gateway-communications:
shows does-not-communicate-with-gateway u (ipurge-l execs u)
proof–
{ fix aseq u execs a v
 assume 1 : aseq ∈ set (remove-gateway-communications u (execs u))
 assume 2 : a ∈ set aseq
 assume 3 : intermediary v u
 have 4 : v ∉ involved (Some a)
 proof–
 { fix a,:'action-t
 fix aseq u exec v
 have aseq ∈ set (remove-gateway-communications u exec) ∧ a ∈ set aseq ∧ intermediary v u → v ∉ involved (Some a)
 by (induct exec,auto)
 }
 from 1 2 3 this show ?thesis by metis
 qed
 }
from this
show ?thesis
unfolding does-not-communicate-with-gateway-def ipurge-l-def actions-in-execution-def
by auto
qed

Proof of view partitioning. The lemma is structured exactly as lemma unwinding_implies_view_partitioned_ind
and uses the same convention for naming.

lemma iunwinding_implies_view_partitioned1:
shows iview_partitioned
proof–
{ fix u execs execs2 s t n
 have does-not-communicate-with-gateway u execs ∧ iequivalent-states s t u ∧ ipurged-relation1 u execs execs2
 → iequivalent-states (run n s execs) (run n t execs2) u
 proof (induct n s execs arbitrary: t u execs2 rule: run.induct)
 case (1 s execs t u execs2)
 show ?case by auto
 next
 case (2 n execs t u execs2)
 show ?case by simp
 next
 case (3 n s execs t u execs2)
 assume interrupt-s: interrupt (Suc n)
 assume IH: (¬t u execs2. does-not-communicate-with-gateway u execs ∧
\[\text{iequivalent-states} \left(\text{Some} \left(\text{cswitch} \left(\text{Suc} \ n \right) \ s \right) \right) \ t \ u \land \text{ipurged-relation1} \ u \ \text{execs} \ \text{execs2} \implies \\
\text{iequivalent-states} \left(\text{run} \ n \left(\text{Some} \left(\text{cswitch} \left(\text{Suc} \ n \right) \ s \right) \right) \ \text{execs} \right) \left(\text{run} \ n \ t \ \text{execs2} \right) \ u \]

\{
\text{fix} \ t' \ = \ '\text{state-t'} \\
\text{assume} \ t = \text{Some} \ t' \\
\text{fix} \ rs \\
\text{assume} \ rs: \ \text{run} \left(\text{Suc} \ n \right) \left(\text{Some} \ s \right) \ \text{execs} = \text{Some} \ rs \\
\text{fix} \ rt \\
\text{assume} \ rt: \ \text{run} \left(\text{Suc} \ n \right) \left(\text{Some} \ t' \right) \ \text{execs2} = \text{Some} \ rt \\
\text{assume} \ \text{no-gateway-comm}: \ \text{does-not-communicate-with-gateway} \ u \ \text{execs} \\
\text{assume} \ \text{vpeq-s-t}: \ \forall \ v . \ \text{ifp} \ v \ u \land \neg \text{intermediary} \ v \ u \implies \ \text{vpeq} \ v \ s \ t' \\
\text{assume} \ \text{current-s-t}: \ \text{current} \ s = \text{current} \ t' \\
\text{assume} \ \text{purged-a-a2}: \ \text{ipurged-relation1} \ u \ \text{execs} \ \text{execs2} \\
\text{from} \ \text{current-s-t} \ \text{cswitch-independent-of-state} \\
\text{have} \ \text{current-ns-nt}: \ \text{current} \left(\text{cswitch} \left(\text{Suc} \ n \right) \ s \right) = \text{current} \left(\text{cswitch} \left(\text{Suc} \ n \right) \ t' \right) \\
\text{by} \ \text{blast} \\
\text{from} \ \text{cswitch-consistency} \ \text{vpeq-s-t} \\
\text{have} \ \text{vpeq-ns-nt}: \ \forall \ v . \ \text{ifp} \ v \ u \land \neg \text{intermediary} \ v \ u \implies \ \text{vpeq} \ v \ \left(\text{cswitch} \left(\text{Suc} \ n \right) \ s \right) \ \left(\text{cswitch} \left(\text{Suc} \ n \right) \ t' \right) \\
\text{by} \ \text{auto} \\
\text{from} \ \text{no-gateway-comm} \ \text{current-ns-nt} \ \text{vpeq-ns-nt} \ \text{interrupt-s} \ \text{vpeq-reflexive} \ \text{current-s-t} \ \text{purged-a-a2} \ \text{IH}\left[\text{where} \ u = u \ \text{and} \ t = \text{Some} \left(\text{cswitch} \left(\text{Suc} \ n \right) \ t' \right) \ \text{and} \ \text{execs2.0=execs2} \right] \\
\text{have} \ \text{current-rr-rt}: \ \text{current} \ rs = \text{current} \ rt \ \text{using} \ rs \ rt \ \text{by} \left(\text{auto} \right) \\
\text{fix} \ v \\
\text{assume} \ \text{iax}: \ \text{ifp} \ v \ u \land \neg \text{intermediary} \ v \ u \\
\text{from} \ \text{no-gateway-comm} \ \text{interrupt-s} \ \text{current-ns-nt} \ \text{vpeq-ns-nt} \ \text{vpeq-reflexive} \ \text{ia} \ \text{current-s-t} \ \text{purged-a-a2} \ \text{IH}\left[\text{where} \ u = u \ \text{and} \ t = \text{Some} \left(\text{cswitch} \left(\text{Suc} \ n \right) \ t' \right) \ \text{and} \ \text{execs2.0=execs2} \right] \\
\text{have} \ \text{vpeq} \ v \ rs \ rt \ \text{using} \ rs \ rt \ \text{by} \left(\text{auto} \right) \\
\text{from} \ \text{current-rr-rt} \ \text{and} \ \text{this} \ \text{have} \ \text{iequivalent-states} \left(\text{Some} \ rs \right) \left(\text{Some} \ rt \right) \ u \ \text{by} \ \text{auto} \\
\text{thus} \ \text{?case} \ \text{by} \left(\text{simp add:add-option.splits,cases t,simp+} \right) \\
\text{next} \\
\text{case} \left(4 \ n \ \text{execs} \ t \ u \ \text{execs2} \right) \\
\text{assume} \ \text{not-interrupt}: \ \neg \text{interrupt} \left(\text{Suc} \ n \right) \\
\text{assume} \ \text{thread-empty-s}: \ \text{thread-empty}(\text{execs} \ (\text{current} \ s)) \\
\text{assume} \ \text{IH}: \ \left(\forall \ t \ \text{execs2}. \ \text{does-not-communicate-with-gateway} \ u \ \text{execs} \land \ \text{iequivalent-states} \left(\text{Some} \ s \right) \ t \ u \land \ \text{ipurged-relation1} \ u \ \text{execs} \ \text{execs2} \implies \ \text{iequivalent-states} \left(\text{run} \ n \left(\text{Some} \ s \right) \ \text{execs} \right) \left(\text{run} \ n \ t \ \text{execs2} \right) \ u \right) \\
\text{fix} \ t' \\
\text{assume} \ t: \ t = \text{Some} \ t' \\
\text{fix} \ rs \\
\text{assume} \ rs: \ \text{run} \left(\text{Suc} \ n \right) \left(\text{Some} \ s \right) \ \text{execs} = \text{Some} \ rs \\
\text{fix} \ rt \\
\text{assume} \ rt: \ \text{run} \left(\text{Suc} \ n \right) \left(\text{Some} \ t' \right) \ \text{execs2} = \text{Some} \ rt \\
\text{assume} \ \text{no-gateway-comm}: \ \text{does-not-communicate-with-gateway} \ u \ \text{execs} \\
\text{assume} \ \text{vpeq-s-t}: \ \forall \ v . \ \text{ifp} \ v \ u \land \neg \text{intermediary} \ v \ u \implies \ \text{vpeq} \ v \ s \ t' \\
\text{assume} \ \text{current-s-t}: \ \text{current} \ s = \text{current} \ t' \\
\text{assume} \ \text{purged-a-a2}: \ \text{ipurged-relation1} \ u \ \text{execs} \ \text{execs2} \\
\text{from} \ \text{ifp-reflexive} \ \text{vpeq-s-t} \ \text{have} \ \text{vpeq-u-s-t}: \ \text{vpeq} \ u \ s \ t' \ \text{unfolding} \ \text{intermediary-def} \ \text{by} \ \text{auto} \\
\text{from} \ \text{step-atomicity} \ \text{current-next-state} \ \text{current-s-t} \ \text{have} \ \text{current-s-nt}: \ \text{current} \ s = \text{current} \left(\text{step} \ \text{next-state} \ t' \right)
execs2) (next-action t' execs2))

unfolding step-def
 by (cases next-action s execs,cases next-action t' execs2,simp,simp,cases next-action t' execs2,simp,simp)
 from vpeq-s-t have vpeq-curr-s-t: ifp (current s) u ∧ −intermediary (current s) u → vpeq (current s) s t'
byle auto
 have inequivalent-states (run (Suc n) (Some s) execs) (run (Suc n) (Some t') execs2) u
 proof (cases thread-empty(execs2 (current t'))))
 case True
 from purged-a-a2 and vpeq-s-t and current-s-t IH[where t=Some t' and u=u and ?execs2.0=execs2] no-gateway-comm
 have inequivalent-states (run n (Some s) execs) (run n (Some t') execs2) u using rs rt by(auto)
 from this not-interrupt True thread-empty-s show ?thesis using rs rt by(auto)
 next
 case False
 have prec-t precondition (next-state t' execs2) (next-action t' execs2)
 proof− { assume not-prec-t: −precondition (next-state t' execs2) (next-action t' execs2)
 hence run (Suc n) (Some t') execs2 = None using not-interrupt False not-prec-t by (simp)
 from this have False using rt by(simp add:option.splits)
 } thus ?thesis by auto
 qed

from False purged-a-a2 thread-empty-s current-s-t
 have I: ind-source (current t') u ∨ unrelated (current t') u unfolding ipurged-relation1-def intermediary-def
 by auto
 { fix v assume ifp-v: ifp v u assume v-not-intermediary: −intermediary v u
 from I ifp-v v-not-intermediary have not-ifp-curr-v: −ifp (current t') v unfolding intermediary-def by auto
 from not-ifp-curr-v prec-t locally-respects[THEN spec,THEN spec,THEN spec,where x1=next-state t' execs2 and x2=the (next-action t' execs2)]
 current-next-state vpeq-reflexive
 have vpeq v (next-state t' execs2) (step (next-state t' execs2) (next-action t' execs2))
 unfolding step-def precondition-def B-def
 by (cases next-action t' execs2 auto)
 from this vpeq-transitive not-ifp-curr-v locally-respects-next-state
 have vpeq-t-nt: vpeq v t' (step (next-state t' execs2) (next-action t' execs2))
 by blast
 from vpeq-s-t ifp-v v-not-intermediary vpeq-t-nt vpeq-transitive vpeq-symmetric vpeq-reflexive
 have vpeq v s (step (next-state t' execs2) (next-action t' execs2))
 by (metis)
 } hence vpeq-ns-nt: ∀ v . ifp v u ∧ −intermediary v u → vpeq v s (step (next-state t' execs2) (next-action t' execs2)) by auto
 from False purged-a-a2 current-s-t thread-empty-s have purged-a-na2: ipurged-relation1 u execs (next-execs t' execs2)
 unfolding ipurged-relation1-def next-execs-def by(auto)
 from vpeq-ns-nt no-gateway-comm
 and IH[where t=Some (step (next-state t' execs2) (next-action t' execs2)) and ?execs2.0=(next-execs t' execs2) and u=u]
 and current-s-t purged-a-na2
 have eq-ns-nt: inequivalent-states (run n (Some s) execs)
(run n (Some (step (next-state t' execs2) (next-action t' execs2))) (next-execs t'))

(run n (Some (step (next-state s' execs) (next-action s' execs))) (next-execs s'))

execs2)) u by auto

from prec-t eq-ns-nt not-interrupt False thread-empty-s

show ?thesis using t rs rt by(auto)

qed

thus ?case by(simp add:option.splits,cases t,simp+)

next
case (Suc n) execs s t u execs2

assume not-interrupt: ~interrupt (Suc n)
assume thread-not-empty-s: ~thread-empty(execs (current s))
assume not-prec-s: ~precondition (next-state s execs) (next-action s execs)

hence run (Suc n) (Some s) execs = None using not-interrupt thread-not-empty-s by simp

thus ?case by(simp add:option.splits)

next
case (Suc n) execs s t u execs2

assume not-interrupt: ~interrupt (Suc n)
assume thread-not-empty-s: ~thread-empty(execs (current s))
assume prec-s: precondition (next-state s execs) (next-action s execs)
assume IH: (∃ u execs2. does-not-communicate-with-gateway u (next-execs s execs) ∧

iequivalent-states (Some (step (next-state s execs) (next-action s execs))) t u ∧

ipurged-relation1 u (next-execs s execs) execs2 →

iequivalent-states
t (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))

(r n t execs2) u)

{fix t'
assume t: t = Some t'
fix rs
assume rs: run (Suc n) (Some s) execs = Some rs
fix rt
assume rt: run (Suc n) (Some t' execs2) = Some rt

assume no-gateway-comm: does-not-communicate-with-gateway u execs
assume vpeq-s-t: ∀ v. ifp v u ∧ ~intermediary v u → vpeq v s t'
assume current-s-t: current s = current t'
assume purged-a-a2: ipurged-relation1 u execs execs2

from ifp-reflexive vpeq-s-t have vpeq-u-s-t: vpeq u s t' unfolding intermediary-def by auto

from step-atomicity and current-s-t current-next-state

have current-ns-nt: current (step (next-state s execs) (next-action s execs)) = current (step (next-state t'

execs2) (next-action t' execs2))

unfolding step-def

by (cases next-action s execs,cases next-action t' execs2,simp,simp,cases next-action t' execs2,simp,simp)

from step-atomicity current-next-state current-s-t have current-ns-t: current (step (next-state s execs) (next-action s execs)) = current t'

unfolding step-def

by (cases next-action s execs,auto)

from vpeq-s-t have vpeq-curr-s-t: ifp (current s) u ∧ ~intermediary (current s) u → vpeq (current s) s t'

unfolding intermediary-def by auto

from current-s-t purged-a-a2

have eq-execs ifp (current s) u ∧ ~intermediary (current s) u → execs (current s) = execs2 (current s)

by(auto simp add:ipurged-relation1-def)

from vpeq-involved-domains no-gateway-comm vpeq-s-t vpeq-involved-domains prec-s

have vpeq-involved: ifp (current s) u ∧ ~intermediary (current s) u → (∀ d ∈ involved (next-action s execs)

. vpeq d s t')
by blast
from current-s-t next-exec-consistent[\text{THEN spec,THEN spec,THEN spec,where } x\mathcal{=}s \text{ and } x\mathcal{=}t' \text{ and } x\mathcal{=}\text{execs}]
\text{vpeq-curr-s-t vpeq-involved}
have next-execs-t: ifp (current s) u \land \neg\text{intermediary} (current s) u \rightarrow next-exec t' execs = next-exec s execs
by (auto simp add: next-exec-def)
from current-s-t and purged-a-a2 and thread-not-empty-s next-action-consistent[\text{THEN spec,THEN spec,where } x\mathcal{=}s \text{ and } x\mathcal{=}t' \text{ vpeq-curr-s-t vpeq-involved}]
have next-action-s-t: ifp (current s) u \land \neg\text{intermediary} (current s) u \rightarrow next-action t' execs2 = next-action s execs
by (unfold next-action-def, unfold ipurged-relation1-def, auto)
from purged-a-a2 and thread-not-empty-s and current-s-t
have thread-not-empty-t: ifp (current s) u \land \neg\text{intermediary} (current s) u \rightarrow \neg\text{thread-empty}(execs2 (current t'))
unfolding ipurged-relation1-def by auto
have vpeq-ns-nt-1: \land a \cdot \text{precondition} \ (\text{next-state s execs}) a \land \text{precondition} \ (\text{next-state t' execs}) a \implies ifp (current s) u \land \neg\text{intermediary} (current s) u \implies (\forall v \cdot ifp v u \land \neg\text{intermediary} v u \implies vpeq v (\text{step} \ (\text{next-state s execs}) a) \ (\text{step} \ (\text{next-state t' execs}) a))
proof-
fix a
assume precs: precondition \ (\text{next-state s execs}) a \land \text{precondition} \ (\text{next-state t' execs}) a
assume ifp-curr: ifp (current s) u \land \neg\text{intermediary} (current s) u
from ifp-curr precs
next-state-consistent[\text{THEN spec,THEN spec,where } x\mathcal{=}s \text{ and } x\mathcal{=}t' \text{ vpeq-curr-s-t vpeq-s-t}]
current-next-state current-s-t weakly-step-consistent[\text{THEN spec,THEN spec,THEN spec,THEN spec,where } x\mathcal{=}\text{next-state s execs and } x\mathcal{=}\text{next-state t' execs and } x\mathcal{=}\text{the a}]
show \forall v \cdot ifp v u \land \neg\text{intermediary} v u \implies vpeq v (\text{step} \ (\text{next-state s execs}) a) \ (\text{step} \ (\text{next-state t' execs}) a)
unfolding step-def precondition-def B-def
by (cases a, auto)
qed
have no-gateway-comm-na: does-not-communicate-with-gateway u (next-exec s execs)
proof-
{
 fix a
 assume a \in \text{actions-in-execution} \ (\text{next-exec s execs} u)
 from this no-gateway-comm[unfolded does-not-communicate-with-gateway-def,THEN spec,where x\mathcal{=}a]
 next-execs-subset[\text{THEN spec,THEN spec,THEN spec,where } x\mathcal{=}s \text{ and } x\mathcal{=}\text{execs and } x\mathcal{=}u]
 have \forall v \cdot \text{intermediary} v u \rightarrow v \notin \text{involved} \ (\text{Some a})
 unfolding actions-in-execution-def
 by (auto)
}
thus ?thesis unfolding does-not-communicate-with-gateway-def by auto
qed
have iequivalent-states (run (Suc n) (\text{Some s} execs)) (run (Suc n) (\text{Some t'} execs2) u
proof (cases ifp (current s) u \land \neg\text{intermediary} (current s) u \text{ rule } \text{case-split}[\text{case-names } T F])
case T
 show ?thesis
 proof (cases thread-empty(execs2 (current t')) \text{ rule } \text{case-split}[\text{case-names } T2 F2])
case F2
 show ?thesis
 proof (cases precondition (next-state t' execs2) (next-action t' execs2) \text{ rule } \text{case-split}[\text{case-names } T3 F3])
case T3
 from T purged-a-a2 current-s-t
 next-execs-consistent[\text{THEN spec,THEN spec,where } x\mathcal{=}s \text{ and } x\mathcal{=}t' \text{ vpeq-curr-s-t vpeq-involved}]
 have purged-na-na2: ipurged-relation1 u (next-exec s execs) (next-exec t' execs2)
 unfolding ipurged-relation1-def next-exec-def
 by auto
from IH[where \(t = \text{Some} \ (\text{step} \ (\text{next-state} \ t' \ \text{execs2}) \ (\text{next-action} \ t' \ \text{execs2})) \) and \(\text{execs2} \neq \text{next-exec} \ t' \ \text{execs2} \) and \(u = \)]
\[\text{purged-na-na2 current-ns-nt vpeq-ns-nt-1} \]
where \(a = (\text{next-action} \ s \ \text{execs}) \) \(\text{T} \ \text{prec-s} \)
next-action-s-t eq-actions current-s-t no-gateway-comm-na
have eq-ns-nt equal-units-states (run n (Some (step (next-state s \ \text{execs}) (next-action s \ \text{execs}))) (next-exec s \ \text{execs})) \(\neq \)
(\(\text{run} \ n \ (\text{Some} \ (\text{step} \ (\text{next-state} \ t' \ \text{execs2}) \ (\text{next-action} \ t' \ \text{execs2}))) \) (next-exec t' \ \text{execs2}))
\(u \)
unfolding next-state-def
by (auto,metis)
from this not-interrupt thread-not-empty-s \(\text{prec-s F2 T3} \)
have current-rt current-s-t using rs rt by auto
\{
fix v
assume ia: ifp v u \land \text{~intermediary v u}
from this eq-ns-nt not-interrupt thread-not-empty-s \(\text{prec-s F2 T3} \)
have vpeq v rs rt using rs rt by auto
\}
from this and current-rt current-s-t show ?thesis using rs rt by auto
next
case F3
from F3 F2 not-interrupt show ?thesis using rt by simp
qed
next
case T2
from T2 T purged-a-a2 thread-not-empty-s current-s-t \(\text{prec-s next-action-s-t vpeq-u-s-t} \)
have ind-source: False unfolding ipurged-relation1-def by auto
thus ?thesis by auto
qed
next
case F
hence 1: ind-source (current s) u \lor unrelated (current s) u \lor intermediary (current s) u
unfolding intermediary-def
by auto
from purged-a-a2 and thread-not-empty-s
have 2: \text{~intermediary (current s) u unfolding ipurged-relation1-def by auto}
let ?nt = if thread-empty(execs2 (current t')) then t' else \(\text{next-exec} \ t' \ \text{execs2} \) (next-action t' \ \text{execs2})
let ?na2 = if thread-empty(execs2 (current t')) then execs2 else next-exec t' \ \text{execs2}

have prec-t: \text{~thread-empty(execs2 (current t'))} \implies \text{precondition (next-state t' \ \text{execs2}) (next-action t' \ \text{execs2})}
proof-
assume thread-not-empty-t: \text{~thread-empty(execs2 (current t'))}
{ assume not-prec-t: \text{~precondition (next-state t' \ \text{execs2}) (next-action t' \ \text{execs2})}
hence run (Suc n) (\text{Some t'}) \ \text{execs2} = \text{None using not-interrupt thread-not-empty-t not-prec-t by (simp)}
from this have False using rt by (simp add: option.splits)
\}
thus ?thesis by auto
qed

show ?thesis
proof-
{
fix v
assume ifp-v: ifp v u

assume v-not-intermediary: ¬intermediary v u

have not-ifp-curr-v: ¬ifp (current s) v

proof
assume ifp-curr-v: ifp (current s) v
thus False
proof
{ assume ind-source (current s) u
from this ifp-curr-v ifp-v have intermediary v u unfolding intermediary-def by auto
from this v-not-intermediary have False unfolding intermediary-def by auto
}
moreover
{ assume unrelated: unrelated (current s) u
from this ifp-v ifp-curr-v have False using rtranclp-trans r-into-rtranclp bymetis
}
ultimately show thesis using 1 2 by auto
qed
qed

from this current-next-state[THEN spec,THEN spec,where x1=s and x=execs] prec-s
locally-respects[THEN spec,THEN spec,where x=next-state s execs] vpeq-reflexive
have vpeq v (next-state s execs) (step (next-state s execs) (next-action s execs))
unfolding step-def precondition-def B-def
by (cases next-action s execs,auto)
from not-ifp-curr-v this locally-respects-next-state vpeq-transitive
have vpeq-s-ns: vpeq v s (step (next-state s execs) (next-action s execs))
by blast
from 0 not-ifp-curr-v current-s-t current-next-state[THEN spec,THEN spec,THEN spec,where x=next-state t execs2] F vpeq-reflexive
have t: ¬ thread-empty (execs2 (current t')) → vpeq v (next-state t' execs2) (step (next-state t' execs2) (next-action t' execs2))
unfolding step-def precondition-def B-def
by (cases next-action t' execs2,auto)
from current-ns-nt current-ns-t current-next-state[THEN spec,THEN spec,THEN spec,WHERE x2=t' and x1=v and x=execs2] vpeq-transitive
have vpeq-t-nt: ¬ thread-empty (execs2 (current t')) → vpeq v t' (step (next-state t' execs2) (next-action t' execs2))
by metis
from this vpeq-reflexive
have vpeq-t-nt: vpeq v t' ?nt
by auto
from vpeq-s-t ifp-v v-not-intermediary
have vpeq v s t' by auto
from this vpeq-s-ns vpeq-t-nt vpeq-transitive vpeq-symmetric vpeq-reflexive
have vpeq v (step (next-state s execs) (next-action s execs)) ?nt
by (metis (hide-lams, no-types))
}

hence vpeq-ns-nt: ∀ v. ifp v u ∧ ¬intermediary v u → vpeq v (step (next-state s execs) (next-action s execs)) ?nt by auto
from vpeq-s-t 2 F purged-a-a2 current-s-t thread-not-empty-s have purged-na-na2: ipurged-relation1 u (next-execs s execs), ?na2
unfolding ipurged-relation1-def next-exec-def intermediary-def by (auto)
from current-ns-nt current-ns-t current-next-state have current-ns-nt:
current (step (next-state s execs) (next-action s execs)) = current ?nt
by auto
from prec-s vpeq-ns-nt no-gateway-comm-na
and IH[where \(t = \text{Some } u \) and \(\text{execs2.0 = } ?u2 \) and \(u = u \)]
and current-ns-nt purged-na-na2
have eq-ns-nt: iequivalent-states (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs))

\((\text{run } n (\text{Some } ?nt) ?na2) \) \(u \) by auto

from this not-interrupt thread-not-empty-s prec-t prec-s
have current-rs-rt: current rs = current rt using rs rt by (cases thread-empty (execs2 (current t'))), simp,simp)

\{
 fix v
 assume ia: ifp v u \(\land \)~intermediary v u
 from this eq-ns-nt not-interrupt thread-not-empty-s prec-t
 have vpeq v rs rt using rs rt by (cases thread-empty(execs2 (current t')), simp,simp)
\}

from current-rs-rt and this show \?thesis using rs rt by auto
qed
qed
}

thus \(?\text{case (simp add: option.splits, cases t, simp+)} \)
qed

hence iview-partitioned-inductive: \(\forall \ u s t \ u \text{execs execs2 n. does-not-communicate-with-gateway u execs } \land \ iequivalent-states s t u \land \ iPurged-relation1 u \text{execs execs2 } \rightarrow \ iequivalent-states (\text{run } n s \text{execs}) (\text{run } n t \text{execs2}) u \)
by blast
have iPurged-relation: \(\forall \ u \text{execs . iPurged-relation1 } u \text{(ipurge-l execs u)} \text{(ipurge-r execs u)} \)
by(unfold iPurged-relation1-def , unfold ipurge-l-def , unfold ipurge-r-def , auto)

\{
 fix execs s t n u
 assume I: iequivalent-states s t u
 from ifp-reflexive
 have dir-source: \(\forall \ u . \text{ifp u u } \land \text{~intermediary u u } \text{unfolding intermediary-def by auto} \)
 from ipurge-l-removes-gateway-communications
 have does-not-communicate-with-gateway u (ipurge-l execs u)
 by auto
 from I this iview-partitioned-inductive iPurged-relation
 have iequivalent-states (run n s (ipurge-l execs u)) (run n t (ipurge-r execs u)) u by auto
 from this dir-source
 have run n s (ipurge-l execs u) \(\parallel \) run n t (ipurge-r execs u) \(\rightarrow \) (\(\lambda s r . \text{vpeq u rs rt } \land \text{current rs } = \text{current rt} \))
 using r-into-rtranclp unfolding B-def
 by(cases run n s (ipurge-l execs u), simp,cases run n t (ipurge-r execs u), simp,auto)
\}

thus \(?\text{thesis unfolding iview-partitioned-def Let-def by auto} \)
qed

Returns True iff and only if the two states have the same active domain, or if one of the states is None.

definition mcurrents : 'state-t option \(\Rightarrow \) 'state-t option \(\Rightarrow \) bool
where mcurrents m1 m2 \(\equiv \) m1 \(\parallel \) m2 \(\rightarrow \) (\(\lambda s t . \text{current s } = \text{current t} \))

Proof that switching/interrupts are purely time-based and happen independent of the actions done by the domains. As all theorems in this locale, it holds vacuously whenever one of the states is None, i.e., whenever at some point a precondition does not hold.

lemma current-independent-of-domain-actions:
assumes current-s-t: mcurrents s t

shows \(\text{mcurrents} \ (\text{run } n \ s \ \text{execs}) \ (\text{run } n \ t \ \text{execs2}) \)

proof -

\{
 \text{fix } n \ s \ \text{execs} \ t \ \text{execs2}
 \text{have } \text{mcurrents} \ s \ t \ \rightarrow \ \text{mcurrents} \ (\text{run } n \ s \ \text{execs}) \ (\text{run } n \ t \ \text{execs2})
 \text{proof (induct } n \ s \ \text{execs} \text{ arbitrary: } t \ \text{execs2} \text{ rule: run.induct)}
 \text{case } (1 \ s \ \text{execs} \ t \ \text{execs2})
 \text{from this show } \text{?case using current-s-t unfolding B-def by auto}
 \text{next}
 \text{case } (2 \ n \ \text{execs} \ t \ \text{execs2})
 \text{show } \text{?case unfolding mcurrents-def by(auto)}
 \text{next}
 \text{case } (3 \ n \ s \ \text{execs} \ t \ \text{execs2})
 \text{assume interrupt: interrupt } (\text{Suc } n)
 \text{assume IH: } (\lambda t \ \text{execs2} . \ \text{mcurrents} \ (\text{Some } (\text{cswitch } (\text{Suc } n) \ s)) \ t \ \rightarrow \ \text{mcurrents} \ (\text{run } n \ (\text{Some } (\text{cswitch } (\text{Suc } n) \ s)) \ \text{execs}) \ (\text{run } n \ t \ \text{execs2}))
 \text{\{
 \text{fix } t'
 \text{assume } t': t = (\text{Some } t')
 \text{assume curr: mcurrents } (\text{Some } s) \ t
 \text{from } t \ \text{curr cswitch-independent-of-stateTHEN spec.THEN spec.THEN spec.where } s1=s \ \text{have current-ns-nt: current } (\text{cswitch } (\text{Suc } n) \ s) = \text{current } (\text{cswitch } (\text{Suc } n) \ t')
 \text{unfolding mcurrents-def by simp}
 \text{from current-ns-nt IH[where } t=\text{Some } (\text{cswitch } (\text{Suc } n) \ t') \text{ and } \text{execs2.0=execs2]} \ \text{have mcurrents-ns-nt: mcurrents} (\text{run } n \ (\text{Some } (\text{cswitch } (\text{Suc } n) \ s)) \ \text{execs}) \ (\text{run } n \ (\text{Some } (\text{cswitch } (\text{Suc } n) \ t')) \ \text{execs2})
 \text{unfolding mcurrents-def by(auto)}
 \text{from mcurrents-ns-nt interrupt } t
 \text{have mcurrents} (\text{run } (\text{Suc } n) \ (\text{Some } s) \ \text{execs}) \ (\text{run } (\text{Suc } n) \ t \ \text{execs2})
 \text{unfolding mcurrents-def B2-def B-def by(cases run } n \ (\text{Some } (\text{cswitch } (\text{Suc } n) \ s)) \ \text{execs}, \ \text{cases run } (\text{Suc } n) \ t \ \text{execs2.auto)}
 }\)
 \text{thus } \text{?case unfolding mcurrents-def B2-def by(cases } t,\text{auto)}
 \text{next}
 \text{case } (4 \ n \ s \ \text{execs} \ t \ \text{execs2})
 \text{assume not-interrupt: } \text{~interrupt } (\text{Suc } n)
 \text{assume thread-empty-s: thread-empty}(\text{execs } (\text{current } s))
 \text{assume IH: } (\lambda t \ \text{execs2} . \ \text{mcurrents} \ (\text{Some } s) \ t \ \rightarrow \ \text{mcurrents} \ (\text{run } n \ (\text{Some } s) \ \text{execs}) \ (\text{run } n \ t \ \text{execs2}))
 \text{\{
 \text{fix } t'
 \text{assume } t': t = (\text{Some } t')
 \text{assume curr: mcurrents } (\text{Some } s) \ t
 \text{\{\n \text{assume thread-empty-t: thread-empty}(\text{execs2 } (\text{current } t'))
 \text{from } t \ \text{curr not-interrupt thread-empty-s this } \text{IH[where } \text{execs2.0=execs2 and } t=\text{Some } t'] \ \text{have mcurrents} (\text{run } (\text{Suc } n) \ (\text{Some } s) \ \text{execs}) \ (\text{run } (\text{Suc } n) \ t \ \text{execs2})
 \text{by auto}
 }\)
 \text{moreover}
 \text{\{\n \text{assume not-prec-t: } \text{~thread-empty}(\text{execs2 } (\text{current } t')) \land \text{~precondition } (\text{next-state } t' \ \text{execs2}) \ (\text{next-action } t' \ \text{execs2})
 \text{from } t \ \text{this not-interrupt}
 \text{have mcurrents} (\text{run } (\text{Suc } n) \ (\text{Some } s) \ \text{execs}) \ (\text{run } (\text{Suc } n) \ t \ \text{execs2})
 \text{unfolding mcurrents-def by simp add: rewrite-B2-cases}
 }\)
 \text{moreover}
 }\)
\[
\{
\text{assume } \text{step-} t : \neg \text{thread-empty} (\text{execs} \ 2 (\text{current } t')) \land \text{precondition} (\text{next-state } t' \ \text{execs} \ 2) (\text{next-action } t' \ \text{execs} \ 2) \\
\text{have mcurrents} (\text{Some } s) (\text{Some } (\text{step} (\text{next-state } t' \ \text{execs} \ 2) (\text{next-action } t' \ \text{execs} \ 2))) \\
\text{using step-atomicity curr } t \ \text{current-next-state unfolding mcurrents-def} \\
\text{unfolding step-def} \\
\text{by } (\text{cases } \text{next-action } t' \ \text{execs} \ 2,\text{auto}) \\
\text{from } t \text{ step-} t \ \text{curr } \neg \text{interrupt } \text{thread-empty-} s \ \text{this } \text{IH[where } ?\text{execs} \ 2.0=\text{execs} \ 2 \text{ and } t=\text{Some (step} (\text{next-state } t' \ \text{execs} \ 2) (\text{next-action } t' \ \text{execs} \ 2))] } \\
\text{have mcurrents} (\text{run} (\text{Suc } n) (\text{Some } s) \ \text{execs}) (\text{run} (\text{Suc } n) \ t \ \text{execs} \ 2) \\
\text{by auto} \\
\} \\
\text{ultimately have mcurrents} (\text{run} (\text{Suc } n) (\text{Some } s) \ \text{execs}) (\text{run} (\text{Suc } n) \ t \ \text{execs} \ 2) \text{ by blast} \\
\} \\
\text{thus } ?\text{case unfolding mcurrents-def B2-def by(cases } t,\text{auto) next} \\
\text{case} (5 \ n \ \text{execs} \ s \ t \ \text{execs} \ 2) \\
\text{assume } \neg \text{interrupt-s: } \neg \text{interrupt} (\text{Suc } n) \\
\text{assume } \neg \text{thread-not-empty-s: } \neg \text{thread-empty}(\text{execs} (\text{current } s)) \\
\text{assume } \neg \text{prec-s: } \neg \text{precondition} (\text{next-state } s \ \text{execs}) (\text{next-action } s \ \text{execs}) \\
\text{hence run} (\text{Suc } n) (\text{Some } s) \ \text{execs} = \text{None using } \neg \text{interrupt-s } \neg \text{thread-not-empty-s by simp} \\
\} \\
\text{thus } ?\text{case unfolding mcurrents-def by(simp add-option.splits) next} \\
\text{case} (6 \ n \ \text{execs} \ s \ t \ \text{execs} \ 2) \\
\text{assume } \neg \text{interrupt: } \neg \text{interrupt} (\text{Suc } n) \\
\text{assume } \neg \text{thread-not-empty-s: } \neg \text{thread-empty}(\text{execs} (\text{current } s)) \\
\text{assume } \text{prec-s: } \text{precondition} (\text{next-state } s \ \text{execs}) (\text{next-action } s \ \text{execs}) \\
\text{assume } \text{IH: } (\forall x \ \text{execs} \ 2. \\
\text{mcurrents} (\text{Some } (\text{step} (\text{next-state } s \ \text{execs}) (\text{next-action } s \ \text{execs}))) t \rightarrow \\
\text{mcurrents} (\text{run} (\text{Suc } n) (\text{Some } (\text{step} (\text{next-state } s \ \text{execs}) (\text{next-action } s \ \text{execs}))) (\text{run } n \ t \ \text{execs} \ 2)) \\
\} \\
\text{fix } t' \\
\text{assume t: } t = (\text{Some } t') \\
\text{assume curr: mcurrents} (\text{Some } s) t \\
\{
\text{assume } \neg \text{thread-empty-t: } \neg \text{thread-empty}(\text{execs} \ 2 (\text{current } t')) \\
\text{have mcurrents} (\text{Some } (\text{step} (\text{next-state } s \ \text{execs}) (\text{next-action } s \ \text{execs}))) (\text{Some } t') \\
\text{using step-atomicity curr } t \ \text{current-next-state unfolding mcurrents-def} \\
\text{unfolding step-def} \\
\text{by } (\text{cases } \text{next-action } s \ \text{execs},\text{auto}) \\
\text{from } t \ \text{curr } \neg \text{interrupt } \neg \text{thread-not-empty-s } \text{prec-s } \text{thread-empty-} t \ \text{this } \text{IH[where } ?\text{execs} \ 2.0=\text{execs} \ 2 \text{ and } t=\text{Some } t'] \\
\text{have mcurrents} (\text{run} (\text{Suc } n) (\text{Some } s) \ \text{execs}) (\text{run} (\text{Suc } n) \ t \ \text{execs} \ 2) \\
\text{by auto} \\
\} \\
\text{moreover} \\
\{
\text{assume } \neg \text{prec-t: } \neg \text{precondition} (\text{next-state } t' \ \text{execs} \ 2) (\text{next-action } t' \ \text{execs} \ 2) \\
\text{from } t \ \text{this } \neg \text{interrupt} \\
\text{have mcurrents} (\text{run} (\text{Suc } n) (\text{Some } s) \ \text{execs}) (\text{run} (\text{Suc } n) \ t \ \text{execs} \ 2) \\
\text{unfolding mcurrents-def B2-def by (auto) } \\
\} \\
\text{moreover} \\
\{
\text{assume } \neg \text{thread-empty}(\text{execs} \ 2 (\text{current } t')) \land \neg \text{precondition} (\text{next-state } t' \ \text{execs} \ 2) (\text{next-action } t' \ \text{execs} \ 2) \\
\}
d31.1 – formal specification of a generic separation kernel

have mcurrents (Some (step (next-state s execs) (next-action s execs))) (Some (step (next-state t' execs2) (next-action t' execs2)))
using step-atomicity curr t current-next-state unfolding mcurrents-def unfolding step-def
by (cases next-action s execs, simp, cases next-action t' execs2, simp, simp, cases next-action t' execs2, simp, simp)
from current-next-state t step-t curr not-interrupt thread-not-empty-s prec-s this

ultimately have mcurrents (run (Suc n) (Some s) execs) (run (Suc n) t execs2)
by blast

thus ?thesis using current-s-t by auto

theorem unwinding-implies-NI-indirect-sources:
shows NI-indirect-sources
proof−
{ fix execs a n
from assms iunwinding-implies-view-partitioned1

have vp : iview-partitioned by blast
from vp and vpeq-reflexive

have I: ∀ u . run n (Some s0) (ipurge-l execs u) ∥ run n (Some s0) (ipurge-r execs u) → (λrs rt vpeq u rs rt ∧ current rs = current rt)

unfolding iview-partitioned-def by auto

have run n (Some s0) execs → (λs-f. run n (Some s0) (ipurge-l execs (current s-f)) ∥ run n (Some s0) (ipurge-r execs (current s-f)) →
(λs-l s-r. output-f s-l a = output-f s-r a))
proof(cases run n (Some s0) execs)

next case None

thus ?thesis unfolding B-def by simp

next case (Some s-f)

thus ?thesis

next case (Some s-ipurge-l)

show ?thesis
proof(cases run n (Some s0) (ipurge-r execs (current s-f)))

next case (Some s-ipurge-r)

from cswitch-independent-of-state

have 2: current s-ipurge-l = current s-f

unfolding mcurrents-def B-def by auto

EURO-MILS D31.1
Theorem unwinding-implies-isecure :: shows isecure using unwinding-implies-NI-indirect-sources unwinding-implies-NI-unrelated assms unfolding isecure-def by (auto)

end

3.3 ISK (Interruptible Separation Kernel)

theory ISK imports SK begin

At this point, the precondition linking action to state is generic and highly unconstrained. We refine the previous locale by given generic functions “precondition” and “realistic trace” a definiton. This yields a total run function, instead of the partial one of locale Separation Kernel.

This definition is based on a set of valid action sequences AS_set. Consider for example the following action sequence:

\[\gamma = [COPY_INIT, COPY_CHECK, COPY_COPY] \]

If action sequence \(\gamma \) is a member of AS_set, this means that the attack surface contains an action COPY, which consists of three consecutive atomic kernel actions. Interrupts can occur anywhere between these atomic actions.

Given a set of valid action sequences such as \(\gamma \), generic function precondition can be defined. It now consists of 1.) a generic invariant and 2.) more refined preconditions for the current action.

These preconditions need to be proven inductive only according to action sequences. Assume, e.g., that \(\gamma \in \text{AS_set} \) and that \(d \) is the currently active domain in state \(s \). The following constraints are assumed and must therefore be proven for the instantiation:

- “\text{AS_precondition } s \ d \text{ COPY_INIT}”
 since COPY_INIT is the start of an action sequence.

- “\text{AS_precondition (step } s \text{ COPY_INIT) } d \text{ COPY_CHECK}”
 since (COPY_INIT, COPY_CHECK) is a sub sequence.

- “\text{AS_precondition (step } s \text{ COPY_CHECK) } d \text{ COPY_COPY}”
 since (COPY_CHECK, COPY_COPY) is a sub sequence.

Additionally, the precondition for domain \(d \) must be consistent when a context switch occurs, or when ever some other domain \(d' \) performs an action.
Locale Interruptible_Separation_Kernel refines locale Separation_Kernel in two ways. First, there is a definition of realistic executions. A realistic trace consists of action sequences from AS_set.

Secondly, the generic control function has been refined by additional assumptions. It is now assumed that control conforms to one of four possibilities:

1. The execution of the currently active domain is empty and the control function returns no action.
2. The currently active domain is executing the action sequence at the head of the execution. It returns the next kernel action of this sequence and updates the execution accordingly.
3. The action sequence is delayed.
4. The action sequence that is at the head of the execution is skipped and the execution is updated accordingly.

As for the state update, this is still completely unconstrained and generic as long as it respects the generic invariant and the precondition.

```plaintext
locale Interruptible-Separation-Kernel = Separation-Kernel kstep output-f s0 current cswitch interrupt kprecondition realistic-execution-control kinvolved ifp vpeq
for kstep :: 'state-t ⇒ 'action-t ⇒ 'state-t
and output-f :: 'state-t ⇒ 'action-t ⇒ 'output-t
and s0 :: 'state-t
and current :: 'dom-t — Returns the currently active domain
and cswitch :: time-t ⇒ 'state-t ⇒ 'dom-t — Switches the current domain
and interrupt :: time-t ⇒ bool — Returns t iff an interrupt occurs in the given state at the given time
and kprecondition :: 'state-t ⇒ 'action-t ⇒ bool — Returns t if a precondition holds that relates the current action to the state
and realistic-execution :: 'action-t execution ⇒ bool — In this locale, this function is completely unconstrained.
and control :: 'state-t ⇒ 'dom-t ⇒ 'action-t execution ⇒ (('action-t option) × 'action-t execution × 'state-t)
and kinvolved :: 'action-t ⇒ 'dom-t set
and ifp :: 'dom-t ⇒ 'dom-t ⇒ bool
and vpeq :: 'dom-t ⇒ 'state-t ⇒ 'state-t ⇒ bool +
fixes AS-set :: ('action-t list) set — Returns a set of valid action sequences, i.e., the attack surface
and invariant :: 'state-t ⇒ bool
and AS-precondition :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool
and aborting :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool
and waiting :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool
assumes empty-in-AS-set: [] ∈ AS-set
and invariant-s0: invariant s0
and invariant-after-cswitch ∀ s n . invariant s —> invariant (cswitch n s)
and preconditions-after-cswitch ∀ s d n a . AS-precondition s d a —> AS-precondition (cswitch n s) d a
and AS-precf-first-action: ∀ s d aseq . invariant s ∧ aseq ∈ AS-set ∧ aseq ≠ [] —> AS-precondition s d (hd aseq)
and AS-precf-after-step: ∀ s a a' . (∃ aseq ∈ AS-set . is-sub-seq a a' aseq) ∧ invariant s ∧ AS-precondition s (current s) a ∧ ~aborting s (current s) a ∧ ~waiting s (current s) a —> AS-precondition (kstep s a) (current s) a'
and AS-precf-dom-independent: ∀ s d a a' . current s ≠ d ∧ AS-precondition s d a —> AS-precondition (kstep s a') d a
and spec-of-invariant: ∀ s a . invariant s —> invariant (kstep s a)

and kprecondition-def: kprecondition s a ≡ invariant s ∧ AS-precondition s (current s) a
and realistic-execution-def: realistic-execution aseq ≡ set aseq ∈ AS-set
and control-spec ∀ s d aseqs . case control s d aseqs of (a,aseqs') (s') ⇒
(thread-empty aseqs ∧ (a,aseqs') = (None,[[]])) ∨ (* Nothing happens *)
(aseqs ≠ [] ∧ (hd aseqs) ≠ [] ∧ ~aborting s' d (the a) ∧ ~waiting s' d (the a) ∧ (a,aseqs') = (Some (hd (hd aseqs)), (tl (hd aseqs))(#(tl aseqs))) ∨ (* Execute the first action of the current action sequence *)
```
We can now formulate a total run function, since based on the new assumptions the case where the precondition does not hold, will never occur.

function run-total :: time-t ⇒ 'state-t ⇒ ('dom-t ⇒ 'action-t execution) ⇒ 'state-t
where run-total 0 s execs = s
| interrupt (Suc n) ⇒ run-total (Suc n) s execs = run-total n (cswitch (Suc n) s) execs
| ~interrupt (Suc n) ⇒ thread-empty(execs (current s)) ⇒ run-total (Suc n) s execs = run-total n s execs
| ~interrupt (Suc n) ⇒ ~thread-empty(execs (current s)) ⇒ run-total (Suc n) s execs = run-total n (step (next-state s execs) (next-action s execs)) (next-exec execs)
using not0-implies-Suc by (metis prod-cases3.auto)
termination by lexicographic-order

The major part of the proofs in this locale consist of proving that function run_total is equivalent to function run, i.e., that the precondition does always hold. This assumes that the executions are realistic. This means that the execution of each domain contains action sequences that are from AS_set. This ensures, e.g., that a COPY_CHECK is always preceded by a COPY_INIT.

definition realistic-executions :: ('dom-t ⇒ 'action-t execution) ⇒ bool
where realistic-executions execs ≡ ∀ d . realistic-execution (execs d)

Lemma run_total.equals_run is proven by doing induction. It is however not inductive and can therefore not be proven directly: a realistic execution is not necessarily realistic after performing one action. We generalize to do induction. Predicate realistic_executions_ind is the inductive version of realistic_executions. All action sequences in the tail of the executions must be complete action sequences (i.e., they must be from AS_set). The first action sequence, however, is being executed and is therefore not necessarily an action sequence from AS_set, but it is the last part of some action sequence from AS_set.

definition realistic-AS-partial :: 'action-t list ⇒ bool
where realistic-AS-partial aseq ≡ ∃ n aseq'. n ≤ length aseq' ∧ aseq' ∈ AS-set ∧ aseq' = lastn n aseq'
definition realistic-executions-ind :: ('dom-t ⇒ 'action-t execution) ⇒ bool
where realistic-executions-ind execs ≡ ∀ d . (case execs d of [] ⇒ True | (aseq#aseq) ⇒ realistic-AS-partial aseq ∧ set aseqs ≤ AS-set)

We need to know that invariably, the precondition holds. As this precondition consists of 1.) a generic invariant and 2.) more refined preconditions for the current action, we have to know that these two are invariably true.

definition precondition-ind :: 'state-t ⇒ ('dom-t ⇒ 'action-t execution) ⇒ bool
where precondition-ind s execs ≡ invariant s ∧ (∀ d . fst(control s d (execs d)) ⇒ AS-precondition s d)

Proof that “execution is realistic” is inductive, i.e., assuming the current execution is realistic, the execution returned by the control mechanism is realistic.

lemma next-execution-is-realistic-partial:
assumes na-def: next-execs execs d = aseq ≠ aseq
and d-is-curr: d = current s
and realistic: realistic-executions-ind execs
and thread-not-empty: ~thread-empty(execs (current s))
shows realistic-AS-partial aseq ω set aseqs ⊆ AS-set
proof-
let ?c = control s (current s) (execs (current s))
{assume c-empty: let (a,aseq's,s') = ?c in
 (a,aseq's) = (None,[])
from na-def d-is-curr c-empty
 have ?thesis
 unfolding realistic-executions-ind-def next-exec-def by (auto)
}
moreover
{let ?ct= execs (current s)
 let ?execs' = (tl (hd ?ct)) #(tl ?ct)
 let ?a' = Some (hd (hd ?ct))
 assume hd-thread-not-empty: hd (execs (current s)) ≠ []
 assume c-executing: let (a,aseq's,s') = ?c in
 (a,aseq's) = (?a',?execs')
 from na-def c-executing d-is-curr
 have as-defs: aseq' = tl (hd ?ct) ω aseqs = tl ?ct
 unfolding next-exec-def by (auto)
 from realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] d-is-curr
 have subset: set (tl ?execs') ⊆ AS-set
 unfolding Let-def realistic-AS-partial-def
 by (cases execs d,auto)
 from d-is-curr thread-not-empty hd-thread-not-empty realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d]
 obtain n aseq' where n-aseq' : n ≤ length aseq' ω aseq' ∈ AS-set ω hd ?ct = lastn n aseq'
 unfolding realistic-AS-partial-def
 by (cases execs d,auto)
 from this hd-thread-not-empty have n > 0 unfolding lastn-def by (cases n,auto)
 from this n-aseq' lastn-one-less[where n=n and x=aseq' and a=hd (hd ?ct) and y=tl (hd ?ct)] hd-thread-not-empty
 have n = I ≤ length aseq' ω aseq' ∈ AS-set ω tl (hd ?ct) = lastn (n - 1) aseq'
 by auto
 from this as-defs subset have ?thesis
 unfolding realistic-AS-partial-def
 by auto
}
moreover
{let ?ct= execs (current s)
 let ?execs' = ?ct
 let ?a' = Some (hd (hd ?ct))
 assume c-waiting: let (a,aseq's,s') = ?c in
 (a,aseq's) = (?a',?execs')
 from na-def c-waiting d-is-curr
 have as-defs: aseq' = hd ?execs' ω aseqs = tl ?execs'
 unfolding next-exec-def by (auto)
 from realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] d-is-curr set-tl-is-subset[where x=?execs']
 have subset: set (tl ?execs') ⊆ AS-set
 unfolding Let-def realistic-AS-partial-def
 by (cases execs d,auto)
 from na-def c-waiting d-is-curr
 have ?execs' ≠ [] unfolding next-exec-def by auto
 from realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] d-is-curr thread-not-empty
 obtain n aseq' where witness: n ≤ length aseq' ω aseq' ∈ AS-set ω hd(execs d) = lastn n aseq'
The lemma that proves that the total run function is equivalent to the partial run function, i.e., that in this refinement the case of the run function where the precondition is False will never occur.

Lemma run-total-equals-run:

Assumes realistic-exec: realistic-executions execs

And invariant: invariant s

Shows strict-equal (run n (Some s) execs) (run-total n s execs)

Proof:

```plaintext
{ 
  fix n ms s execs
  have strict-equal ms s ∧ realistic-executions-ind execs ∧ precondition-ind s execs → strict-equal (run n ms execs) (run-total n s execs)
  proof (induct n ms execs arbitrary: s rule: run.induct)
  case (1 s execs sa)
  show ?case by auto
  next
  case (2 n execs s)
  show ?case unfolding strict-equal-def by auto
  next
  case (3 n s execs sa)
  unfolding realistic-AS-partial-def by (cases execs d,auto)
  from d-is-curr this subset as-defs have ?thesis
  unfolding realistic-AS-partial-def by auto
}
```

ultimately show ?thesis using control-spec[THEN spec;THEN spec;THEN spec;THEN spec;where x2=s and x1=current s and x=execs (current s)] d-is-curr thread-not-empty by (auto simp add: Let-def)

qed
\text{assume} \text{ interrupt: interrupt (Suc } n) \\
\text{assume IH: (} \land \text{sa.} \text{ strict-equal (Some (cswitch (Suc } n) \ s)) \text{ sa} \land \text{ realistic-executions-ind execs} \land \text{ precondition-ind sa execs} \\
\text{sa execs} \rightarrow \\
\text{strict-equal (run } n \text{ (Some (cswitch (Suc } n) \ s)) \text{ execs} \text{) (run-total } n \text{ sa execs})} \\
\
\{ \\
\text{assume} \text{ equal-s-sa:} \text{ strict-equal (Some } s) \text{ sa} \\
\text{assume realistic: realistic-executions-ind execs} \\
\text{assume inv-sa: precondition-ind sa execs} \\
\text{have inv-nsa: precondition-ind (cswitch (Suc } n) \ s) \text{ execs} \\
\text{proof--} \\
\{ \\
\text{fix } d \\
\text{have} \text{ fst (control (cswitch (Suc } n) \ sa) } d \text{ (execs } d) \text{) } \rightarrow \text{ AS-precondition (cswitch (Suc } n) \ sa) \text{ d} \\
\text{using next-action-after-cswitch inv-sa unfolded precondition-ind-def,} \text{THEN conjunct2.} \text{THEN spec where} \\
x=d] \\
\text{precondition-after-cswitch} \\
\text{unfolding Let-def B-def precondition-ind-def} \\
\text{by (cases } \text{ fst (control (cswitch (Suc } n) \ sa) } d \text{ (execs } d)\text{),auto)} \\
\} \\
\text{thus} \text{ ?thesis using inv-sa invariant-after-cswitch unfolding precondition-ind-def by auto} \\
\text{qed} \\
\text{from equal-s-sa realistic inv-nsa inv-H[where sa=cswitch (Suc } n) \ sa] \\
\text{have equal-ns-nt: strict-equal (run } n \text{ (Some (cswitch (Suc } n) \ s)) \text{ execs} \text{) (run-total } n \text{ (cswitch (Suc } n) \ sa) \text{ execs}} \\
\text{unfolding strict-equal-def by (auto)} \\
\} \\
\text{from this interrupt show} \text{ ?case by auto} \\
\text{next} \\
\text{case (} 4 \text{ n execs sa sa)} \\
\text{assume not-interrupt: } \neg \text{interrupt (Suc } n) \\
\text{assume thread-empty: thread-empty(execs (current } s)\text{)} \\
\text{assume IH: (} \land \text{sa.} \text{ strict-equal (Some } s) \text{ sa} \land \text{ realistic-executions-ind execs} \land \text{ precondition-ind sa execs } \rightarrow \\
\text{strict-equal (run } n \text{ (Some } s) \text{ execs) (run-total } n \text{ sa execs)}) \\
\text{have current-s-sa:} \text{ strict-equal (Some } s) \text{ sa } \rightarrow \text{ current } s = \text{ current sa unfolding strict-equal-def by auto} \\
\{ \\
\text{assume} \text{ equal-s-sa:} \text{ strict-equal (Some } s) \text{ sa} \\
\text{assume realistic: realistic-executions-ind execs} \\
\text{assume inv-sa: precondition-ind sa execs} \\
\text{from equal-s-sa realistic inv-sa IH[where sa=sa] \\
\text{have equal-ns-nt:} \text{ strict-equal (run } n \text{ (Some } s) \text{ execs) (run-total } n \text{ sa execs)} \\
\text{unfolding} \text{ strict-equal-def by (auto)} \\
\} \\
\text{from this current-s-sa thread-empty not-interrupt show} \text{ ?case by auto} \\
\text{next} \\
\text{case (} 5 \text{ n execs sa)} \\
\text{assume not-interrupt: } \neg \text{interrupt (Suc } n) \\
\text{assume thread-not-empty: } \neg \text{thread-empty(execs (current } s)\text{)} \\
\text{assume not-prec } \neg \text{precondition (next-state } s \text{ execs) (next-action } s \text{ execs)} \\
\text{— In locale ISK, the precondition can be proven to hold at all times. This case cannot happen, and we can prove False.} \\
\{ \\
\text{assume} \text{ equal-s-sa:} \text{ strict-equal (Some } s) \text{ sa} \\
\text{assume realistic: realistic-executions-ind execs} \\
\text{assume inv-sa: precondition-ind sa execs} \\
\text{from equal-s-sa have} \text{ s-sa s } = \text{ sa unfolding strict-equal-def by auto} \\
\text{from inv-sa have} \\
\text{next-action sa execs } \rightarrow \text{ AS-precondition sa (current } sa)
unfolding precondition-ind-def B-def next-action-def
by (cases next-action sa execs,auto)
from this next-state-precondition
have next-action sa execs → AS-precondition (next-state sa execs) (current sa)
unfolding precondition-ind-def B-def
by (cases next-action sa execs,auto)
from inv-sa this s-sa next-state-invariant current-next-state
have prec-s∶precondition (next-state s execs) (next-action s execs)
unfolding precondition-ind-def kprecondition-def precondition-def B-def
by (cases next-action sa execs,auto)
from this not-prec have False by auto
}
thus ?case by auto
next
case (6 n execs s sa)
assume not-interrupt∶¬interrupt (Suc n)
assume thread-not-empty∶¬thread-empty(execs (current s))
assume prec∶precondition (next-state s execs) (next-action s execs)
assume IH∶(∀sa. strict-equal (Some (step (next-state s execs) (next-action s execs))) sa ∧
realistic-executions-ind (next-execs s execs) ∧ precondition-ind sa (next-execs s execs) →
strict-equal (run n (Some (step (next-state s execs) (next-action s execs))) (next-execs s execs)) (run-total n sa (next-execs s execs)))
have current-s-sa∶strict-equal (Some s) sa → current s = current sa unfolding strict-equal-def by auto
{
assume equal-s-sa∶strict-equal (Some s) sa
assume realistic∶realistic-executions-ind execs
assume inv-sa∶precondition-ind sa execs
from equal-s-sa have s-sa∶s = sa unfolding strict-equal-def by auto

let ?a = next-action s execs
let ?ns = step (next-state s execs) ?a
let ?na = next-execs s execs
let ?c = control s (current s) (execs (current s))

have equal-ns-nsa∶strict-equal (Some ?ns) ?ns unfolding strict-equal-def by auto
from inv-sa equal-s-sa have inv-s∶invariant s unfolding strict-equal-def precondition-ind-def by auto

— Two things are proven inductive. First, the assumptions that the execution is realistic (statement realistic-na).
This proof uses lemma next-execution-is-realistic-partial. Secondly, the precondition: if the precondition holds for
the current action, then it holds for the next action (statement invariant-na).

have realistic-na∶realistic-executions-ind ?na
proof
{
fix d
have case ?na d of [] ⇒ True | aseq # aseqs ⇒ realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
proof(cases ?na d,simp,rename-lac aseq aseqs,simp,cases d = current s)
case False
fix aseq aseqs
assume next-execs s execs d = aseq # aseqs
from False this realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d]
show realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set
unfolding next-execs-def by simp
next
case True
fix aseq aseqs
assume na-def∶next-execs s execs d = aseq # aseqs
from next-execution-is-realistic-partial na-def True realistic thread-not-empty
 show realistic-AS-partial aseq ∧ set aseqs ⊆ AS-set by blast
qed
}
thus ?thesis unfolding realistic-executions-ind-def by auto
qed
have invariant-na: precondition-ind ?ns ?na
proof–
from spec-of-invariant inv-sa next-state-invariant s-sa have inv-ns: invariant ?ns
 unfolding precondition-ind-def step-def
 by (cases next-action sa execs auto)
 have ∀ d. fst (control ?ns d (??na d)) → AS-precondition ?ns d
proof–
{
 fix d
{
 let ?a' = fst (control ?ns d (??na d))
 assume snd-action-not-none: ?a' ⩞ None
 have AS-precondition ?ns d (the ?a')
 proof (cases d = current s)
 case True
 {
 have ?thesis
 proof (cases ?a)
 case (Some a)
 — Assuming that the current domain executes some action a, and assuming that the action a’ after that is not None (statement snd-action-not-none), we prove that the precondition is inductive, i.e., it will hold for a’. Two cases arise: either action a is delayed (case waiting) or not (case executing).
 show ?thesis
 proof (cases ?na d = execs (current s) rule:case-split[case-names waiting executing])
 case executing — The kernel is executing two consecutive actions a and a’. We show that [a,a’] is a subsequence in some action in AS-set. The PO’s ensure that the precondition is inductive.
 from executing True Some control-spec[THEN spec,THEN spec,THEN spec,where x2=\$s and x1=d and x=execs d]
 have a-def: a = hd (hd (execs (current s))) ∧ ?na d = (tl (tl (execs (current s)))) # (tl (execs (current s)))
 unfolding next-action-def next-execs-def Let-def
 by (auto)
 from a-def True snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns and x1=d and x=?na d]
 second-elt-is-hd-tl[where x= hd (execs (current s)) and a=hd(tl(tl (execs (current s))))] and x'=tl (tl (execs (current s)))
 have na-def: the ?a' = (hd (execs (current s)))!!1
 unfolding next-execs-def
 by (auto)
 from Some realistic[unfolded realistic-executions-ind-def,THEN spec,where x=d] True thread-not-empty
 obtain n aseq' where witness: n ≤ length aseq' ∧ aseq' ∈ AS-set ∧ hd(aseq d) = las n aseq'
 unfolding realistic-AS-partial-def by (cases execs d,auto)
 from True executing length-lt-2-implies-tl-empty[where x=hd (execs (current s))]
 Some control-spec[THEN spec,THEN spec,THEN spec,where x2=\$s and x1=d and x=execs d]
 snd-action-not-none control-spec[THEN spec,THEN spec,THEN spec,where x2=?ns and x1=d and x=?na d]
 have in-action-sequence: length (hd (execs (current s))) ≥ 2
 unfolding next-action-def next-execs-def
 by auto
 from this witness consecutive-is-sub-seq[where a=a and b=the ?a' and n=n and y=aseq' and x=tl (tl (hd (execs (current s))))]
This holds, since the control mechanism will ensure that action a’ is the start of a new action sequence in AS-set. If \(\text{snd-action-not-none} \) is not None, we prove that the precondition is inductive, i.e., it will hold for a’.

\[
\begin{align*}
&\text{spec-of-waiting a-def True in-action-sequence} \\
&\text{x-is-hd-snd-tl(where x = hd (execs (current s)))} \\
&\text{have 1: } \exists \text{ aseq’ } \in \text{AS-set . is-sub-seq a (the ?a’) aseq’ } \\
&\text{by(auto)} \\
&\text{from True Some inv-sa[unfolded precondition-ind-def , THEN conjunct2, THEN spec, where x = current s] s-sa} \\
&\text{have 2: AS-precondition s (current s) a} \\
&\text{unfolding strict-equal-def next-action-def B-def by auto} \\
&\text{from executing True Some control-spec[THEN spec, THEN spec, THEN spec, where x2 = s and x1 = d and x = execs d]} \\
&\text{have not-aborting ~aborting (next-state s execs) (current s) (the ?a)} \\
&\text{unfolding next-action-def next-state-def next-execs-def} \\
&\text{by auto} \\
&\text{from executing True Some control-spec[THEN spec, THEN spec, THEN spec, where x2 = s and x1 = d and x = execs d]} \\
&\text{have not-waiting: ~waiting (next-state s execs) (current s) (the ?a)} \\
&\text{unfolding next-action-def next-state-def next-execs-def} \\
&\text{by auto} \\
&\text{from True this} \\
&\text{1 2 inv s} \\
&\text{sub-seq-in-prefixes[where X = AS-set] Some next-state-invariant} \\
&\text{current-next-state[THEN spec, THEN spec, where x1 = s and x = execs]} \\
&\text{AS-prec-after-step[THEN spec, THEN spec, THEN spec, where x2 = next-state s execs and x1 = a and x = the ?a’]} \\
&\text{next-state-precondition not-aborting not-waiting} \\
&\text{show ?thesis} \\
&\text{by auto} \\
&\text{next case waiting — The kernel is delaying action a. Thus the action after a, which is a’, is equal to a.} \\
&\text{from tl-hd-x-not-tl-x[where x = execs d] True waiting control-spec[THEN spec, THEN spec, THEN spec, THEN spec, where x2 = s and x1 = d and x = execs d]} \\
&\text{have a-def: ?na d = execs (current s) \& next-state s execs = s \& waiting s d (the ?a)} \\
&\text{unfolding next-action-def next-execs-def next-state-def} \\
&\text{by (auto)} \\
&\text{from Some waiting a-def True snd-action-not-none control-spec[THEN spec, THEN spec, THEN spec, THEN spec, where x2 = ?ns and x1 = d and x = ?na d]} \\
&\text{have na-def: the ?a’ = hd (hd (execs (current s)))} \\
&\text{unfolding next-action-def next-execs-def} \\
&\text{by (auto)} \\
&\text{from spec-of-waiting a-def True} \\
&\text{have no-step: step s ?a = s unfolding step-def by (cases next-action s execs, auto)} \\
&\text{from no-step Some True a-def} \\
&\text{inv-sa[unfolded precondition-ind-def, THEN conjunct2, THEN spec, where x = current s] s-sa} \\
&\text{have 2: AS-precondition s (current s) (the ?a’)} \\
&\text{unfolding next-action-def B-def} \\
&\text{by (auto)} \\
&\text{from a-def na-def this True Some no-step} \\
&\text{show ?thesis} \\
&\text{unfolding step-def} \\
&\text{by (auto)} \\
&\text{qed} \\
&\text{next case None} \\
&\text{— Assuming that the current domain does not execute an action, and assuming that the action a’ after that} \\
&\text{is not None (statement snd-action-not-none), we prove that the precondition is inductive, i.e., it will hold for a’}. \\
&\text{This holds, since the control mechanism will ensure that action a’ is the start of a new action sequence in AS-set.}
from None True snd-action-not-none control-spec[THEN spec, THEN spec, THEN spec, where x2=?ns and x1=d and x=?na d]
 control-spec[THEN spec, THEN spec, THEN spec, where x2=s and x1=d and x=execs d]
 have na-def: the ?a' = hd (tl (execs (current s))) ∨ ?na d = tl (execs (current s))
 unfolding next-action-def next-execs-def
 by (auto)
from True None snd-action-not-none control-spec[THEN spec, THEN spec, THEN spec, where x2=?ns and x1=d and x=?na d]
 this
 have I: tl (execs (current s)) ≠ [] ∧ hd (tl (execs (current s))) ≠ []
 by auto
from this realistic[unfolded realistic-executions-ind-def, THEN spec, where x=d] True thread-not-empty
 have hd (tl (execs (current s))) ∈ AS-set
 by (cases execs d, auto)
from True snd-action-not-none this
 inv-ns this na-def 1
 AS-prec-first-action[THEN spec, THEN spec, THEN spec, where x2=?ns and x1=d and x=hd (tl (execs (current s))) and x1=d]
 show ?thesis by auto
qed
}
thus ?thesis
using control-spec[THEN spec, THEN spec, THEN spec, where x2=?ns and x1=current s and x=?na (current s)]
 thread-not-empty True snd-action-not-none
 by (auto simp add: Let-def)
next
 case False
 from False have equal-na-a ?na d = execs d
 unfolding next-execs-def by auto
 from this False current-next-state next-action-after-step
 have ?a' = fst (control (next-state s execs) d (next-execs s execs d))
 unfolding next-action-def by auto
 from inv-sa[unfolded precondition-ind-def, THEN conjunct2, THEN spec, where x=d] s-sa equal-na-a this
 next-action-after-next-state[THEN spec, THEN spec, THEN spec, where x=d and x2=s and x1=execs]
 snd-action-not-none False
 have AS-precondition s d (the ?a')
 unfolding precondition-ind-def next-action-def B-def by (cases fst (control sa d (execs d)), auto)
 from equal-na-a False this next-state-precondition current-next-state
 AS-precc-dom-independent[THEN spec, THEN spec, THEN spec, THEN spec, where x3=next-state s execs and x2=d and x=the ?a and x1=the ?a']
 show ?thesis
 unfolding step-def
 by (cases next-action s execs, auto)
qed
}
 hence fst (control ?ns d (?na d)) → AS-precondition ?ns d unfolding B-def
 by (cases fst (control ?ns d (?na d)), auto)
}
 thus ?thesis by auto
qed
from this inv-ns show ?thesis
 unfolding precondition-ind-def B-def Let-def
 by (auto)
qed
from equal-ns-nsa realistic-na invariant-na s-sa IH[where sa=?ns]
have equal-ns-nt: strict-equal (run n (Some ?ns) ?na) (run-total n (step (next-state sa execs) (next-action sa execs))) (next-execs sa execs))
by(auto)
}
from this current-s-sa thread-not-empty not-interrupt prec show \textit{?case by auto}
qed
}

hence \textit{thm-inductive}: \forall m s execs n . strict-equal m s \land realistic-executions-ind execs \land precondition-ind s execs
\rightarrow strict-equal (run n m execs) (run-total n s execs) by blast

have 1: \textit{strict-equal (Some s) s}
unfolding \textit{strict-equal-def} by simp
have 2: realistic-executions-ind execs
proof-
{
 fix d
 have case execs d of [] \Rightarrow True | aseq \# aseqs \Rightarrow realistic-AS-partial aseq \land set aseqs \subseteq AS-set
 proof(cases execs d,simp)
 case \textbf{(Cons aseq aseqs)}
 from \textbf{Cons realistic-exec[unfolded realistic-executions-def,THEN spec,where x=d]}
 have 0: length aseq \leq length aseq \land aseq \in AS-set \land aseq = lastn (length aseq) aseq
 unfolding lastn-def realistic-execution-def by auto
 hence 1: realistic-AS-partial aseq unfolding realistic-AS-partial-def by auto
 from \textbf{Cons realistic-exec[unfolded realistic-executions-def,THEN spec,where x=d]}
 have 2: set aseqs \subseteq AS-set
 unfolding realistic-execution-def by auto
 from \textbf{Cons 1 2 show \textit{?thesis by auto}
 qed
}
thus \textit{?thesis unfolding realistic-executions-ind-def by auto
qed
have 3: precondition-ind s execs
proof-
{
 fix d
 assume not-empty: fst (control s d (execs d)) \neq None
 from not-empty realistic-exec[unfolded realistic-executions-def,THEN spec,where x=d]
 have current-aseq-is-realistic: hd (execs d) \in AS-set
 using control-spec[THEN spec,THEN spec,THEN spec,where x=execs d and x1=d and x2=s]
 unfolding realistic-execution-def by(cases execs d,auto)
 from not-empty current-aseq-is-realistic invariant AS-prec-first-action[THEN spec,THEN spec,THEN spec,
 where x2=s and x1=d and x=hd (execs d)]
 have AS-precondition s d (the (fst (control s d (execs d))))
 using control-spec[THEN spec,THEN spec,THEN spec,where x=execs d and x1=d and x2=s]
 by auto
}
 hence \textbf{fst (control s d (execs d)) \rightarrow AS-precondition s d
 unfolding B-def
 by (cases \textbf{fst (control s d (execs d))},auto)
}
from this invariant show \textit{?thesis unfolding precondition-ind-def by auto
qed
from \textit{thm-inductive 1 2 3 show \textit{?thesis by auto
qed

Theorem unwinding_implies_isecure gives security for all realistic executions. For unrealistic executions, it holds vacuously and therefore does not tell us anything. In order to prove security for this refinement (i.e., for function run_total), we have to prove that purging yields realistic runs.
lemma realistic-purge:
 shows ∀ execs d . realistic-executions execs → realistic-executions (purge execs d)
proof-
{
fix execs d
assume realistic-executions execs
 hence realistic-executions (purge execs d)
 unfolding some[where P=realistic-execution and x=execs d]
using someI[where P=realistic-execution and x=execs d]
unfolding realistic-executions-def purge-def by(simp)
}
thus ?thesis by auto
qed

lemma remove-gateway-comm-subset:
shows set (remove-gateway-communications d exec) ⊆ set exec ∪ {}
by (induct exec, auto)

lemma realistic-ipurge-l:
shows ∀ execs d . realistic-executions execs → realistic-executions (ipurge-l execs d)
proof-
{
fix execs d
assume 1: realistic-executions execs
 from empty-in-AS-set remove-gateway-comm-subset[where d=d and exec=execs d] 1 have realistic-executions
 (ipurge-l execs d)
 unfolding realistic-executions-def realistic-executions-def ipurge-l-def by(auto)
}
thus ?thesis by auto
qed

lemma realistic-ipurge-r:
shows ∀ execs d . realistic-executions execs → realistic-executions (ipurge-r execs d)
proof-
{
fix execs d
assume 1: realistic-executions execs
 from empty-in-AS-set remove-gateway-comm-subset[where d=d and exec=execs d] 1 have realistic-executions
 (ipurge-r execs d)
 unfolding realistic-executions-def realistic-executions-def ipurge-r-def by(auto)
}
thus ?thesis by auto
qed

We now have sufficient lemma’s to prove security for run_total. The definition of security is similar to that in Section 3.2. It now assumes that the executions are realistic and concerns function run_total instead of function run.

definition NI-unrelated-total::bool
where NI-unrelated-total
≡ ∀ execs a n . realistic-executions execs →
 (let s-f = run-total n s0 execs in
 output-f s-f a = output-f (run-total n s0 (purge execs (current s-f))) a
 ∧ current s-f = current (run-total n s0 (purge execs (current s-f))))

definition NI-indirect-sources-total::bool
where NI-indirect-sources-total
≡ ∀ execs a n. realistic-executions execs →
(let s-f = run-total n s0 execs in
 output-f (run-total n s0 (ipurge-l execs (current s-f))) a =
 output-f (run-total n s0 (ipurge-r execs (current s-f))) a)

definition isecure-total·booll
where
 isecure-total ≡ NI-unrelated-total ∧ NI-indirect-sources-total

theorem unwinding-implies-isecure-total:
shows isecure-total
proof-
 from assms unwinding-implies-secure have secure-partial: NI-unrelated unfolding isecure-def by blast
 from assms unwinding-implies-secure have isecure1-partial: NI-indirect-sources unfolding isecure-def by blast

 have NI-unrelated-total: NI-unrelated-total
 proof-
 { fix execs a n
 assume realistic: realistic-executions execs
 from assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=execs]
 have 1: strict-equal (run n (Some s0) execs) (run-total n s0 execs) by auto

 have let s-f = run-total n s0 execs in output-f s-f a =
 output-f (run-total n s0 (ipurge-l execs (current s-f))) a ∧
 current s-f = current (run-total n s0 (purge execs (current s-f)))
 proof (cases run n (Some s0) execs)
 case None
 thus ?thesis using 1 unfolding NI-unrelated-total-def strict-equal-def by auto
 next
 case (Some s-f)
 from realistic-purge assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=serges execs (current s-f)]
 have 2: strict-equal (run n (Some s0) (purge execs (current s-f))) (run-total n s0 (purge execs (current s-f)))
 by auto
 show ?thesis proof(cases run n (Some s0) (purge execs (current s-f)))
 case None
 from 2 None show ?thesis using 2 unfolding NI-unrelated-total-def strict-equal-def by auto
 next
 case (Some s-f2)
 from run n (Some s0) execs = Some s-f1 Some 1 2 secure-partial[unfolded NI-unrelated-def,THEN spec,THEN spec,THEN spec,where x=n and x2=execs]
 show ?thesis
 unfolding strict-equal-def NI-unrelated-def
 by(simp add: Let-def B-def B2-def)
 qed
 qed
 } thus ?thesis unfolding NI-unrelated-total-def by auto
 qed
 have NI-indirect-sources-total: NI-indirect-sources-total
 proof-
 { fix execs a n
 assume realistic: realistic-executions execs
 from assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=execs]
 have 1: strict-equal (run n (Some s0) execs) (run-total n s0 execs) by auto

 have let s-f = run-total n s0 execs in output-f (run-total n s0 (ipurge-l execs (current s-f))) a = output-f
(run-total n s0 (ipurge-r execs (current s-f))) a
proof (cases run n (Some s0) execs)
case None
thus ?thesis using 1 unfolding NI-unrelated-total-def strict-equal-def by auto
next
case (Some s-f)
from realistic-ipurge-l assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=ipurge-l execs (current s-f)]
have 2: strict-equal (run n (Some s0) (ipurge-l execs (current s-f))) (run-total n s0 (ipurge-l execs (current s-f)))
by auto
from realistic-ipurge-r assms invariant-s0 realistic run-total-equals-run[where n=n and s=s0 and execs=ipurge-r execs (current s-f)]
have 3: strict-equal (run n (Some s0) (ipurge-r execs (current s-f))) (run-total n s0 (ipurge-r execs (current s-f)))
by auto

show ?thesis proof (cases run n (Some s0) (ipurge-l execs (current s-f)))
case None
from 2 None show ?thesis using 2 unfolding NI-unrelated-total-def strict-equal-def by auto
next
case (Some s-ipurge-l)
show ?thesis
proof (cases run n (Some s0) (ipurge-r execs (current s-f)))
case None
from 3 None show ?thesis using 2 unfolding NI-unrelated-total-def strict-equal-def by auto
next
case (Some s-ipurge-r)
from run n (Some s0) execs = Some s-f \ (run n (Some s0) (ipurge-l execs (current s-f)) = Some s-ipurge-b Some 1 2 3 isecure1-partial[unfolded NI-indirect-sources-def, THEN spec, THEN spec, THEN spec, where x=n and x2=execs]
show ?thesis
unfolding strict-equal-def NI-unrelated-def
by (simp add: Let-def B-def B2-def)
qed
qed
qed
}
thus ?thesis unfolding NI-indirect-sources-total-def by auto
qed
from NI-unrelated-total NI-indirect-sources-total show ?thesis unfolding isecure-total-def by auto
qed
end
end

3.4 CISK (Controlled Interruptible Separation Kernel)

theory CISK
imports ISK
begin

This section presents a generic model of a Controlled Interruptible Separation Kernel (CISK). It formulates security, i.e., intransitive noninterference. For a presentation of this model, see Section 2 of [31].

First, a locale is defined that defines all generic functions and all proof obligations (see Section 2.3 of [31]).
locale Controllable-Interruptible-Separation-Kernel = — CISK

fixes kstep :: 'state-t ⇒ 'action-t ⇒ 'state-t — Executes one atomic kernel action
and output-f :: 'state-t ⇒ 'action-t ⇒ 'output-t — Returns the observable behavior
and s0 :: 'state-t — The initial state
and current :: 'state-t ⇒ 'dom-t — Returns the currently active domain
and cswitch :: 'time-t ⇒ 'state-t ⇒ 'state-t — Performs a context switch
and interrupt :: 'time-t ⇒ bool — Returns true if an interrupt occurs in the given state at the given time
and kinvolved :: 'action-t ⇒ 'dom-t set — Returns the set of domains that are involved in the given action
and ifp :: 'dom-t ⇒ 'dom-t ⇒ bool — The security policy.
and AS-set :: ('action-list, t) set — Returns a set of valid action sequences, i.e., the attack surface
and invariant :: 'state-t ⇒ bool — Returns an inductive state-invariant
and AS-precondition :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool — Returns the preconditions under which the action can be executed.
and aborting :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool — Returns true if the action is aborted.
and waiting :: 'state-t ⇒ 'dom-t ⇒ 'action-t ⇒ bool — Returns true if execution of the given action is delayed.
and set-error-code :: 'state-t ⇒ 'action-t ⇒ 'state-t — Sets an error code when actions are aborted.

assumes vpeq-transitive: ∀ a b c u. (vpeq u a b ∧ vpeq u b c) → vpeq u a c
and vpeq-symmetric: ∀ a b u. vpeq u a b → vpeq u b a
and vpeq-reflexive: ∀ a u. vpeq u a a
and ifp-reflexive: ∀ a. ifp u u
and weakly-step-consistent: ∀ s t u a. vpeq u s t ∧ vpeq (current s) s t ∧ invariant s ∧ AS-precondition s (current s) a ∧ invariant t ∧ AS-precondition t (current t) a ∧ current s = current t → vpeq u (kstep s a) (kstep t a)
and locally-respects: ∀ s a u. ¬ifp (current s) u ∧ invariant s ∧ AS-precondition s (current s) a → vpeq u s
csw
and output-consistent: ∀ a s t. vpeq (current s) s t ∧ current s = current t → (output-f s a) = (output-f t a)
and step-atomicity: ∀ s a. current (kstep s a) = current s
and cswitch-independent-of-state: ∀ n s t. current s = current t → current (cswitch n s) = current (cswitch n t)
and cswitch-consistency: ∀ u s t n. vpeq u s t → vpeq u (cswitch n s) (cswitch n t)
and empty-in-AS-set: [] ∈ AS-set
and invariant-s0: invariant s0
and invariant-after-cswitch: ∀ s n. invariant s → invariant (cswitch n s)
and precondition-after-cswitch: ∀ s d n a. AS-precondition s d a → AS-precondition (cswitch n s) d a
and AS-prec-first-action: ∀ s d a seq. invariant s ∧ seq ∈ AS-set ∧ seq ≠ [] → AS-precondition s d (hd seq)
and AS-prec-after-step: ∀ s a a' (exists seq ∈ AS-set. is-sub-seq a a' seq) ∧ invariant s ∧ AS-precondition s (current s) a ∧ ¬aborting s (current s) a ∧ ¬waiting s (current s) a → AS-precondition (kstep s a) (current s) a a'
and AS-prec-dom-independent: ∀ s d a a'. current s d a ∧ AS-precondition s d a → AS-precondition (kstep s a) (current s) a a'
and spec-of-invariant: ∀ s a. invariant s → invariant (kstep s a)
and aborting-switch-independent: ∀ n s. aborting (cswitch n s) = aborting s
and aborting-error-update: ∀ s d a a'. current s d ∧ aborting s d a → aborting (set-error-code s a') d a
and aborting-after-step: ∀ s d a. current s d → aborting (kstep s a) d = aborting s d
and aborting-and-consistent: ∀ s t u. vpeq u s t → aborting s u = aborting t u
and waiting-switch-independent: ∀ n s. waiting (cswitch n s) = waiting s
and waiting-error-update: ∀ s d a'. current s d ∧ waiting s d a → waiting (set-error-code s a') d a
and waiting-and-consistent: ∀ s t u a. vpeq (current s) s t ∧ (∀ d ∈ kinvolved a. vpeq d s t) ∧ vpeq u s t → waiting s u a = waiting t u a
and spec-of-waiting: ∀ s a. waiting s (current s) a → kstep s a = s
and set-error-consistent: ∀ s t u a. vpeq u s t → vpeq u (set-error-code s a) (set-error-code t a)
and set-error-locally-respects: ∀ s u a. ¬ifp (current s) u → vpeq u (set-error-code s a)
and current-set-error-code: ∀ s a. current (set-error-code s a) = current s
and precondition-after-set-error-code: ∀ s d a a'. AS-precondition s d a ∧ aborting s (current s) a' → AS-precondition (set-error-code s a') d a
and invariant-after-set-error-code: ∀ s a. invariant s → invariant (set-error-code s a)
and involved-ifp: ∀ s a. ∀ d ∈ (kinvolved a). AS-precondition s (current s) a → ifp d (current s)
begin

3.4.1 Execution semantics

Control is based on generic functions *aborting*, *waiting* and *set_error_code*. Function *aborting* decides whether a certain action is aborting, given its domain and the state. If so, then function *set_error_code* will be used to update the state, possibly communicating to other domains that an action has been aborted. Function *waiting* can delay the execution of an action. This behavior is implemented in function CISK_control.

\[
\text{function CISK-control} :: \text{'state-t} \Rightarrow \text{'dom-t} \Rightarrow \text{'action-t} \Rightarrow \text{'action-t option} \times \text{'action-t} \times \text{'action-t option} \times \text{'state-t}
\]

where

\[
\begin{align*}
\text{CISK-control} s d [\[] & = (\text{None}, [], s) \quad \text{— The thread is empty} \\
\text{CISK-control} s d ([\[],[\[]) & = (\text{None}, [], s) \quad \text{— The current action sequence has been finished and the thread has no next action sequences to execute} \\
\text{CISK-control} s d ([\[]#(\text{'as'}#(\text{'execs'}))) & = (\text{None}, \text{as'}#(\text{'execs'}), s) \quad \text{— The current action sequence has been finished.}\end{align*}
\]

Skip to the next sequence

\[
\begin{align*}
\text{CISK-control} s d ((\text{a#as'})#(\text{'execs'})) & = (\text{if aborting} s d a \text{ then} \\
& \quad (\text{None, execs'}#(\text{set-error-code} s a)) \\
\text{else if waiting} s d a \text{ then} \\
& \quad (\text{Some a, (a#as')#(\text{'execs'}, s))}\\
\text{else} \\
& \quad (\text{Some a, as'}#(\text{'execs'}, s)) \quad \text{— Executing an action sequence}
\end{align*}
\]

by *pat-completeness* auto

termination by *lexicographic-order*

Function *run* defines the execution semantics. This function is presented in [31] by pseudo code (see Algorithm 1). Before defining the run function, we define accessor functions for the control mechanism. Functions *next_action*, *next_execs* and *next_state* correspond to “control.\text{a}”, “control.\text{x}” and “control.\text{s}” in [31].

abbreviation *next_action*: 'state-t \Rightarrow (\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t option}) \Rightarrow \text{action-t option}

where

\[
\text{next}_\text{action} \equiv \text{Kernel.next_action current CISK-control}
\]

abbreviation *next_execs*: 'state-t \Rightarrow (\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t}) \Rightarrow (\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t})

where

\[
\text{next}_\text{execs} \equiv \text{Kernel.next_execs current CISK-control}
\]

abbreviation *next_state*: 'state-t \Rightarrow (\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t}) \Rightarrow 'state-t

where

\[
\text{next}_\text{state} \equiv \text{Kernel.next_state current CISK-control}
\]

A thread is empty iff either it has no further action sequences to execute, or when the current action sequence is finished and there are no further action sequences to execute.

abbreviation *thread_empty*: 'action-t \Rightarrow \text{bool}

where

\[
\text{thread_empty exec} \equiv \text{exec} = [\[] \lor \text{exec} = [[\[]]\]
\]

The following function defines the execution semantics of CISK, using function CISK_control.

\[
\text{function run : time-t \Rightarrow state-t} \Rightarrow (\text{dom-t} \Rightarrow \text{action-t} \Rightarrow \text{action-t}) \Rightarrow \text{state-t}
\]

where

\[
\begin{align*}
\text{run 0 s execs} & = \text{s} \\
\text{interrupt (Suc n)} & \Rightarrow \text{run (Suc n) s execs = run n (cswitch (Suc n) s) execs} \\
\neg \text{interrupt (Suc n)} & \Rightarrow \text{thread-empty(execs (current s))} \Rightarrow \text{run (Suc n) s execs = run n s execs} \\
\neg \text{interrupt (Suc n)} & \Rightarrow \text{~thread-empty(execs (current s))} \Rightarrow \\
& \quad \text{run (Suc n) s execs} = \text{(let control-a = next_action s execs;}
\text{control-s = next_state s execs;}
\text{control-x = next_execs s execs in}
\text{case control-a of None \Rightarrow run n control-s control-x}
\text{\text{\quad | (Some a) \Rightarrow run n (kstep control-s a) control-x)}
\text{using not0-implies-Suc by (metis prod-cases3.auto)
\text{termination by *lexicographic-order*}}
\end{align*}
\]
3.4.2 Formulations of security

The definitions of security as presented in Section 2.2 of [31].

\[\text{abbreviation } kprecondition \text{ where } kprecondition s a \equiv \text{invariant } s \land \text{AS-precondition } s (\text{current } s) a\]

\[\text{definition realistic-execution where realistic-execution aseq } \equiv \text{set aseq } \subseteq \text{AS-set}\]

\[\text{definition realistic-executions } :: (\text{dom-t } \Rightarrow \text{'action-t execution}) \Rightarrow \text{bool}\]

\[\text{abbreviation involved where involved } \equiv \text{Kernel.involved kinvolved}\]

\[\text{abbreviation step where step } \equiv \text{Kernel.step kstep}\]

\[\text{abbreviation ipurge where ipurge } \equiv \text{Separation-Kernel.ipurge realistic-execution ifp}\]

\[\text{abbreviation ipurge-l where ipurge-l } \equiv \text{Separation-Kernel.ipurge-l kinvolved ifp}\]

\[\text{abbreviation ipurge-r where ipurge-r } \equiv \text{Separation-Kernel.ipurge-r realistic-execution kinvolved ifp}\]

\[\text{definition NI-unrelated :booi}\]

\[\text{where NI-unrelated } \equiv \forall \text{ execs a n . realistic-executions execs } \Rightarrow\]

\[\text{(let s-f = run n s0 execs in}\]

\[\text{output-f s-f a = output-f (run n s0 (purge execs (current s-f))) a)}\]

\[\text{definition NI-indirect-sources :bool}\]

\[\text{where NI-indirect-sources } \equiv \forall \text{ execs a n . realistic-executions execs } \Rightarrow\]

\[\text{(let s-f = run n s0 execs in}\]

\[\text{output-f (run n s0 (ipurge-l execs (current s-f))) a =}\]

\[\text{output-f (run n s0 (ipurge-r execs (current s-f))) a)}\]

\[\text{definition isecure :bool}\]

\[\text{where isecure } \equiv \text{NI-unrelated } \land \text{NI-indirect-sources}\]

3.4.3 Proofs

The final theorem is unwinding ___implies___isecure___CISK. This theorem shows that any interpretation of locale CISK is secure.

To prove this theorem, the refinement framework is used. CISK is a refinement of ISK, as the only idfference is the control function. In ISK, this function is a generic function called control, in CISK it is interpreted in function CISK_control. It is proven that function CISK_control satisfies all the proof obligations concerning generic function control. In other words, CISK_control is proven to be an interpretation of control. Therefore, all theorems on run_total apply to the run function of CISK as well.

\[\text{lemma next-action-consistent:}\]

\[\text{shows } \forall \text{ s t execs . vpeq (current s) s t } \land (\forall \text{ d } \in \text{ involved (next-action s execs) . vpeq d s t}) \land \text{current s = current t } \Rightarrow \text{next-action s execs = next-action t execs}\]

\[\text{proof-}\]

\[\{\text{fix s t execs}\]

\[\text{assume vpeq vpeq (current s) s t}\]

\[\text{assume vpeq-involved: } \forall \text{ d } \in \text{ involved (next-action s execs) . vpeq d s t}\]

\[\text{assume current-s-t: current s = current t}\]

\[\text{from aborting-consistent current-s-t vpeq}\]

\[\text{have aborting t (current s) = aborting s (current s) by auto}\]

\[\text{from current-s-t this waiting-consistent vpeq-involved}\]

\[\text{have next-action s execs = next-action t execs}\]

\[\text{unfolding Kernel.next-action-def}\]

\[\text{by(cases (s,(current s).execs (current s))) rule: CISK_control.cases,auto}\]

\[\}\]

\[\text{thus } ?\text{thesis by auto}\]

\[\text{qed}\]
lemma next-exec-consistent:
shows ∀ s t execs. vpeq (current s) s t ∧ (∀ d ∈ involved (next-action s execs). vpeq d s t) ∧ current s = current t → \begin{align*}
&\text{fst} \left(\text{snd} \left(\text{CISK-control s} (\text{current s}) (\text{execs} (\text{current s})) \right) \right) = \text{fst} \left(\text{snd} \left(\text{CISK-control t} (\text{current s}) (\text{execs} (\text{current s})) \right) \right) \\
\end{align*}
proof−
{
fix s t execs
assume vpeq: vpeq (current s) s t
assume vpeq-involved: ∀ d ∈ involved (next-action s execs). vpeq d s t
assume current-s-t: current s = current t
from aborting-consistent current-s-t vpeq
have I: aborting t (current s) = aborting s (current s) by auto
from I vpeq current-s-t vpeq-involved waiting-consistent \[\text{THEN spec, THEN spec, THEN spec, THEN spec, where x3=s and x2=t and x1=\text{current s and } x=} \text{the} (\text{next-action s execs}) \]
have \begin{align*}
&\text{fst} \left(\text{snd} \left(\text{CISK-control s} (\text{current s}) (\text{execs} (\text{current s})) \right) \right) = \text{fst} \left(\text{snd} \left(\text{CISK-control t} (\text{current s}) (\text{execs} (\text{current s})) \right) \right) \\
\end{align*}
unfolding Kernel.next-action-def Kernel.involved-def
by (cases (s,(current s),execs (current s)) rule: CISK-control.cases,auto split add: split-if-asm)
}
thus ?thesis by auto
qed

lemma next-state-consistent:
shows ∀ s t u execs. vpeq (current s) s t ∧ vpeq u s t ∧ current s = current t → vpeq u (next-state s execs) (next-state t execs)
proof−
{
fix s t u execs
assume vpeq-s-t: vpeq (current s) s t ∧ vpeq u s t
assume current-s-t: current s = current t
from vpeq-s-t current-s-t
have vpeq u (next-state s execs) (next-state t execs)
unfolding Kernel.next-state-def
using aborting-consistent set-error-consistent
by (cases (s,(current s),execs (current s)) rule: CISK-control.cases,auto)
}
thus ?thesis by auto
qed

lemma current-next-state:
shows ∀ s execs. current (next-state s execs) = current s
proof−
{
fix s execs
have current (next-state s execs) = current s
unfolding Kernel.next-state-def
using current-set-error-code
by (cases (s,(current s),execs (current s)) rule: CISK-control.cases,auto)
}
thus ?thesis by auto
qed

lemma locally-respects-next-state:
shows ∀ s u execs. ¬ ifp (current s) u → vpeq u s (next-state s execs)
proof−
{
}
\[\text{fix } s \ u \ \text{execs}\]
\[\text{assume } \neg \text{ifp (current } s) \ u\]
\[\text{hence } vpeq \ u \ (n\text{ext-state } s \ \text{execs})\]
\[\text{unfolding Kernel.next-state-def}\]
\[\text{using vpeq-reflexive set-error-locally-respects}\]
\[\text{by (cases } s, (\text{current } s) \text{,execs (current } s)) \ \text{rule: CISK-control.cases,auto}\}
\]
thus \text{thesis by auto}
\]
\]
\]
\]
\]
\[\text{lemma CISK-control-spec:}\]
\[\text{shows } \forall \ s \ d \ \text{aseqs}.\]
\[\text{case CISK-control } s \ d \ \text{aseqs of}\]
\[\text{(a, aseqs', s') }\Rightarrow \]
\[\text{thread-empty aseqs } \wedge (a, aseqs') = (None, []) \lor \]
\[\text{aseqs } \neq [] \wedge \text{hd aseqs } \neq [] \wedge \text{aborting } s' d \ (\text{the } a) \wedge \neg \text{waiting } s' d \ (\text{the } a) \wedge (a, aseqs') = (Some (hd (hd aseqs)), tl (hd aseqs) \neq tl aseqs) \lor \]
\[\text{aseqs } \neq [] \wedge \text{hd aseqs } \neq [] \wedge \text{waiting } s' d \ (\text{the } a) \wedge (a, aseqs', s') = (Some (hd (hd aseqs)), aseqs, s) \lor (a, aseqs') = (None, tl aseqs)\]
\[\text{proof--}\]
\[\{\]
\[\text{fix } s \ d \ \text{aseqs}\]
\[\text{have case CISK-control } s \ d \ \text{aseqs of}\]
\[\text{(a, aseqs', s') }\Rightarrow \]
\[\text{thread-empty aseqs } \wedge (a, aseqs') = (None, []) \lor \]
\[\text{aseqs } \neq [] \wedge \text{hd aseqs } \neq [] \wedge \text{aborting } s' d \ (\text{the } a) \wedge \neg \text{waiting } s' d \ (\text{the } a) \wedge (a, aseqs') = (Some (hd (hd aseqs)), tl (hd aseqs) \neq tl aseqs) \lor \]
\[\text{aseqs } \neq [] \wedge \text{hd aseqs } \neq [] \wedge \text{waiting } s' d \ (\text{the } a) \wedge (a, aseqs', s') = (Some (hd (hd aseqs)), aseqs, s) \lor (a, aseqs') = (None, tl aseqs)\]
\[\text{by (cases } s, d, \text{aseqs) rule: CISK-control.cases,auto}\]
\]
thus \text{thesis by auto}
\]
\[\text{lemma next-action-after-cswitch:}\]
\[\text{shows } \forall \ s \ n \ d \ \text{aseqs}. \text{fst (CISK-control (cswitch } n \ s \ d \ \text{aseqs)) = fst (CISK-control } s \ d \ \text{aseqs)}\]
\[\text{proof--}\]
\[\{\]
\[\text{fix } s \ n \ d \ \text{aseqs}\]
\[\text{have fst (CISK-control (cswitch } n \ s \ d \ \text{aseqs)) = fst (CISK-control } s \ d \ \text{aseqs)}\]
\[\text{using aborting-switch-independent waiting-switch-independent}\]
\[\text{by (cases } s, d, \text{aseqs) rule: CISK-control.cases,auto}\]
\]
thus \text{thesis by auto}
\]
\[\text{lemma next-action-after-next-state:}\]
\[\text{shows } \forall \ s \ \text{execs} \ . \text{current } s \neq d \rightarrow \text{fst (CISK-control (next-state } s \ \text{execs) } d \ (\text{execs } d)) = \text{None } \lor \text{fst (CISK-control (next-state } s \ \text{execs) } d \ (\text{execs } d)) = \text{fst (CISK-control } s \ d \ (\text{execs } d))\]
\[\text{proof--}\]
\[\{\]
\[\text{fix } s \ \text{execs} \ d \ \text{aseqs}\]
\[\text{assume } \text{I: current } s \neq d\]
\[\text{have fst (CISK-control (next-state } s \ \text{execs) } d \ \text{aseqs)) = None } \lor \text{fst (CISK-control (next-state } s \ \text{execs) } d \ \text{aseqs)) = fst (CISK-control } s \ d \ \text{aseqs)\}
\]
\[\text{proof (cases } s, d, \text{aseqs) rule: CISK-control.cases,simp,simp,simp}\)
case (4 sa da a as execs)
 thus ?thesis
 unfolding Kernel.next-state-def
 using aborting-error-update waiting-error-update
 by (cases (sa,current sa,execs (current sa)) rule: CISK-control.cases,auto split: split-if-asm)
qed

thus ?thesis by auto
qed

lemma next-action-after-step:
shows ∀ s a d aseqs . current s ∧ d → fst (CISK-control (step s a) d aseqs) = fst (CISK-control s d aseqs)
proof--
{ fix s a d aseqs
 assume 1: current s ∧ d
 from this aborting-after-step
 have fst (CISK-control (step s a) d aseqs) = fst (CISK-control s d aseqs)
 unfolding Kernel.step-def
 by (cases (s,d,aseqs) rule: CISK-control.cases,simp,simp,simp,cases a,auto)
}
thus ?thesis by auto
qed

lemma next-state-precondition:
shows ∀ s d a execs . AS-precondition s d a → AS-precondition (next-state s execs) d a
proof--
{ fix s d a execs
 assume AS-precondition s d a
 hence AS-precondition (next-state s execs) d a
 unfolding Kernel.next-state-def
 using precondition-after-set-error-code
 by (cases (s,(current s),execs (current s)) rule: CISK-control.cases,auto)
}
thus ?thesis by auto
qed

lemma next-state-invariant:
shows ∀ s execs . invariant s → invariant (next-state s execs)
proof--
{ fix s execs
 assume invariant s
 hence invariant (next-state s execs)
 unfolding Kernel.next-state-def
 using invariant-after-set-error-code
 by (cases (s,(current s),execs (current s)) rule: CISK-control.cases,auto)
}
thus ?thesis by auto
qed

lemma next-action-from-exec:
shows ∀ s execs . next-action s execs ∈ (λ a . a ∈ actions-in-execution (execs (current s)))
proof--
{ fix s execs

\{
 \textbf{fix } a \\
 \textbf{assume } \textit{l: }next-action s execs = \textit{Some } a \\
 \textbf{from } l \textbf{ have } a \in \textit{actions-in-execution } (\textit{execs } (\textit{current } s)) \\
 \textbf{unfolding } Kernel.next-action-def actions-in-execution-def \\
 \textbf{by } (\textbf{cases } (s, (\textit{current } s), \textit{execs } (\textit{current } s)) \textbf{ rule: } CISK-control.cases, auto \textbf{ split add: split-if-asm}
\}

\textbf{hence } next-action s execs \mapsto (\lambda a \cdot a \in \textit{actions-in-execution } (\textit{execs } (\textit{current } s))) \\
\textbf{unfolding } B-def \textbf{ by } (\textbf{cases } next-action s execs, auto)
\}

\textbf{thus } ?\textit{thesis } \textbf{unfolding } B-def \textbf{ by } (\textbf{auto})
\textbf{qed}

\textbf{lemma } next-execs-subset:
\textbf{shows } \forall s \textit{execs } u. \textit{actions-in-execution } (\textit{next-execs } s \textit{execs } u) \subseteq \textit{actions-in-execution } (\textit{execs } u)
\textbf{proof--}
\{
 \textbf{fix } s \textit{execs } u \\
 \textbf{have } \textit{actions-in-execution } (\textit{next-execs } s \textit{execs } u) \subseteq \textit{actions-in-execution } (\textit{execs } u) \\
 \textbf{unfolding } Kernel.next-execs-def actions-in-execution-def \\
 \textbf{by } (\textbf{cases } (s, (\textit{current } s), \textit{execs } (\textit{current } s)) \textbf{ rule: } CISK-control.cases, auto \textbf{ split add: split-if-asm}
\}

\textbf{thus } ?\textit{thesis } \textbf{by } auto
\textbf{qed}

\textbf{theorem } unwinding-implies-isecure-CISK:
\textbf{shows } isecure
\textbf{proof} (\textbf{unfold-locales})
\textbf{show } \forall a b c u. vpeq u a b \land vpeq u b c \mapsto vpeq u a c
\textbf{using } vpeq-transitive \textbf{ by blast}
\textbf{show } \forall a b u. vpeq u a b \mapsto vpeq u b a
\textbf{using } vpeq-symmetric \textbf{ by blast}
\textbf{show } \forall a u. vpeq u a a
\textbf{using } vpeq-reflexive \textbf{ by blast}
\textbf{show } \forall u. \textit{ifp } u u
\textbf{using } \textit{ifp-reflexive } \textbf{by blast}
\textbf{show } \forall s t u a. vpeq u s t \land vpeq (\textit{current } s) s t \land \textit{kprecondition } s a \land \textit{kprecondition } t a \land \textit{current } s = \textit{current } t \mapsto vpeq u (\textit{kstep } s a) (\textit{kstep } t a)
\textbf{using } weakly-step-consistent \textbf{ by blast}
\textbf{show } \forall s t u a. \lnot \textit{ifp } (\textit{current } s) u \land \textit{kprecondition } s a \mapsto vpeq u s (\textit{kstep } s a)
\textbf{using } locally-respects \textbf{ by blast}
\textbf{show } \forall a s t. vpeq (\textit{current } s) s t \land \textit{current } s = \textit{current } t \mapsto (\textit{output-f } s a) = (\textit{output-f } t a)
\textbf{using } \textit{output-consistent } \textbf{by blast}
\textbf{show } \forall s a. \textit{current } (\textit{kstep } s a) = \textit{current } s
\textbf{using } \textit{step-atomicity } \textbf{by blast}
\textbf{show } \forall n s t. \textit{current } s = \textit{current } t \mapsto \textit{current } (\textit{cswitch } n s) = \textit{current } (\textit{cswitch } n t)
\textbf{using } \textit{cswitch-independent-of-state } \textbf{by blast}
\textbf{show } \forall u s t n. vpeq u s t \mapsto vpeq u (\textit{cswitch } n s) (\textit{cswitch } n t)
\textbf{using } \textit{cswitch-consistency } \textbf{by blast}
\textbf{show } \forall s t execs. vpeq (\textit{current } s) s t \land (\forall d \in \textit{involved } (\textit{next-action } s \textit{execs}) \cdot vpeq d s t) \land \textit{current } t \mapsto \textit{next-action } s \textit{execs } = \textit{next-action } t \textit{execs}
\textbf{using } \textit{next-action-consistent } \textbf{by blast}
show \(\forall s t \text{ execs}. \)
\[
\text{vpeq (current s) s t} \land (\forall d \in \text{involved (next-action s execs)} \cdot \text{vpeq d s t}) \land \text{current s} = \text{current t} \rightarrow
\text{fst (snd (CISK-control s (current s) (execs (current s))))} = \text{fst (snd (CISK-control t (current s) (execs (current s))))}
\]
using next-execs-consistent by blast

show \(\forall s t a \text{ execs}. \text{vpeq (current s) s t} \land \text{vpeq u s t} \land \text{current s} = \text{current t} \rightarrow \text{vpeq u (next-state s execs)} \) (next-state t execs)
using next-state-consistent by auto

show \(\forall s \text{ execs}. \text{current (next-state s execs)} = \text{current s} \)
using current-next-state by auto

show \(\forall s u \text{ execs}. \neg \text{ifp (current s) u} \rightarrow \text{vpeq u s (next-state s execs)} \)
using locally-respects-next-state by auto

show \([] \in \text{AS-set} \)
using empty-in-AS-set by blast

show \(\forall s n \cdot \text{invariant s} \rightarrow \text{invariant (cswitch n s)} \)
using invariant-after-cswitch by blast

show \(\forall s n a. \text{AS-precondition s d a} \rightarrow \text{AS-precondition (cswitch n s) d a} \)
using pre-condition-after-cswitch by blast

show invariant s0
using invariant-s0 by blast

show \(\forall s a \cdot \text{invariant s} \land \text{aseq s a} \in \text{AS-set} \land \text{aseq} \notin [] \rightarrow \text{AS-precondition s d (hd aseq)} \)
using AS-prec-first-action by blast

show \(\forall s a a'. (\exists \text{aseq AS-set, is-sub-seq a a' aseq}) \land \text{invariant s} \land \text{AS-precondition s (current s) a} \land \neg \text{aborting s (current s) a} \rightarrow
\text{AS-precondition (kstep s a') (current s) a'} \)
using AS-prec-after-step by blast

show \(\forall s a a'. \text{current s} \land \text{d} \land \text{AS-precondition s d a} \rightarrow \text{AS-precondition (kstep s a') d a} \)
using AS-prec-dom-independent by blast

show \(\forall s a. \text{invariant s} \rightarrow \text{invariant (kstep s a)} \)
using spec-of-invariant by blast

show \(\forall s a. \text{kprecondition s a} \equiv \text{kprecondition s a} \)
by auto

show \(\forall a \cdot \text{realistic-execution aseq} \equiv \text{set aseq} \subseteq \text{AS-set} \)
unfolding realistic-execution-def
by auto

show \(\forall a. \forall d \in \text{involved a. kprecondition s (the a)} \rightarrow \text{ifp d (current s)} \)
using involved-ifp unfolding Kernel.involved-def by (auto split: option.splits)

show \(\forall s \text{ execs}. \text{next-action s execs} \rightarrow (\lambda a. a \in \text{actions-in-execution (execs (current s))}) \)
using next-action-from-execs by blast

show \(\forall s \text{ execs u. actions-in-execution (next-execs s execs u)} \subseteq \text{actions-in-execution (execs u)} \)
using next-execs-subset by blast

show \(\forall s \text{ aseqs}. \)
case CISK-control s d aseqs of
\((a, \text{aseqs}', s') \Rightarrow \)

\(\text{thread-empty aseqs} \land (a, \text{aseqs}') = (\text{None}, []) \lor \)
\(\text{aseqs} \notin [] \land \text{hd aseqs} \notin [] \land \neg \text{aborting s' d (the a)} \land \neg \text{waiting s' d (the a)} \land (a, \text{aseqs}') = (\text{Some (hd (hd aseqs))}, \text{tl (hd aseqs)} \# \text{tl aseqs}) \lor \)
\(\text{aseqs} \notin [] \land \text{hd aseqs} \notin [] \land \text{waiting s' d (the a)} \land (a, \text{aseqs}', s') = (\text{Some (hd (hd aseqs))}, \text{aseqs, s} \lor (a, \text{aseqs}') = (\text{None, tl aseqs}) \)
using CISK-control-spec by blast

show \(\forall s n d \text{ aseqs}. \text{fst (CISK-control (cswitch n s) d aseqs)} = \text{fst (CISK-control s d aseqs)} \)
using next-action-after-cswitch by auto

show \(\forall s \text{ execs d}. \)
\(\text{current s} \notin [] \rightarrow \)
\(\text{fst (CISK-control (next-state s execs) d (execs d))} = \text{None} \lor \text{fst (CISK-control (next-state s execs) d (execs d))} = \text{fst (CISK-control s d (execs d))} \)
using next-action-after-next-state by auto
4 Instantiation by a separation kernel with concrete actions

In the previous section, no concrete actions for the step function were given. The foremost point we want to make by this instantiation is to show that we can instantiate the CISK model of the previous section with an implementation that, for the step function, as actions, provides events and interprocess communication (IPC).

System call invocations that can be interrupted at certain interrupt points are split into several atomic steps. A communication interface of events and IPC is less “trivial” than it may seem at first glance, for example the L4 microkernel API only provided IPC as communication primitive [16]. In particular, the concrete actions illustrate how an application of the CISK framework can be used to separate policy enforcement from other computations unrelated to policy enforcement.

Our separation kernel instantiation also has a notion of partitions. A partition is a logical unit that serves to encapsulate a group of CISK threads by, amongst others, enforcing a static per-partition access control policy to system resources. In the following instantiation, while the subjects of the step function are individual threads, the
information flow policy \(ifp \) is defined at the granularity of partitions, which is realistic for many separation kernel implementations. Lastly, as a limited manipulation of an access control policy is often needed, we also provide an invariant for having a dynamic access control policy whose maximal closure is bounded by the static per-partition access control policy. That the dynamic access control policy is a subset of a static access control policy is expressed by the invariant \(sp_{\text{subset}} \). A use case for this is when you have statically configured access to files by subjects, but whether a file can be read/written also depends on whether the file has been dynamically opened or not. The instantiation provides infrastructure for such an invariant on the relation of a dynamic policy to a static policy, and shows how the invariant is maintained, without modeling any API for an open/close operation.

4.1 Model of a separation kernel configuration

definition theory Step-configuration
imports Main
begin

4.1.1 Type definitions

The separation kernel partitions are considered to be the “subjects” of the information flow policy \(ifp \). A file provider is a partition that, via a file API (read/write), provides files to other partitions. The configuration statically defines which partitions can act as a file provider and also the access rights (right/write) of other partitions to the files provided by the file provider. Some separation kernels include a management for address spaces (tasks), that may be hierarchically structured. Such a task hierarchy is not part of this model.

typed\(\text{decl}\) partition-id-t

typed\(\text{decl}\) thread-id-t

typed\(\text{decl}\) page-t — physical address of a memory page

typed\(\text{decl}\) file-p-t — name of file provider

datatype obj-id-t =
\(\text{PAGE} \) page-t | \(\text{FILEP} \) file-p-t

datatype mode-t =
\(\text{READ} \) — The subject has right to read from the memory page, from the files served by a file provider.
\| \(\text{WRITE} \) — The subject has right to write to the memory page, from the files served by a file provider.
\| \(\text{PROVIDE} \) — The subject has right serve as the file provider. This mode is not used for memory pages or ports.

4.1.2 Configuration

The information flow policy is implicitly specified by the configuration. The configuration does not contain the communication rights between partitions (subjects). However, the rights can be derived from the configuration. For example, if two partitions \(p \) and \(p' \) can access a file \(f \), then \(p \) and \(p' \) can communicate. See below.

consts configured-subj-obj :: partition-id-t \(\Rightarrow \) obj-id-t \(\Rightarrow \) mode-t \(\Rightarrow \) bool

Each user thread belongs to a partition. The relation is fixed at system startup. The configuration specifies how many threads a partition can create, but this limit is not part of the model.

consts partition :: thread-id-t \(\Rightarrow \) partition-id-t

end
4.2 Formulation of a subject-subject communication policy and an information flow policy, and showing both can be derived from subject-object configuration data

theory Step-policies
imports Step-configuration
begin

4.2.1 Specification

In order to use CISK, we need an information flow policy ifp relation. We also express a static subject-subject sp-spec-subj-obj and subject-object sp-spec-subj-subj access control policy for the implementation of the model. The following locale summarizes all properties we need.

locale policy-axioms =
fixes sp-spec-subj-obj :: 'a ⇒ obj-id-t ⇒ mode-t ⇒ bool
and sp-spec-subj-subj :: 'a ⇒ 'a ⇒ bool
and ifp :: 'a ⇒ 'a ⇒ bool

assumes sp-spec-file-provider: ∀ p1 p2 f m1 m2 .
sp-spec-subj-obj p1 (FILEP f) m1 ∧
sp-spec-subj-obj p2 (FILEP f) m2 → sp-spec-subj-subj p1 p2

and sp-spec-no-wrongly-pages:
∀ p x . sp-spec-subj-obj p (PAGE x) WRITE → sp-spec-subj-obj p (PAGE x) READ

and ifp-reflexive:
∀ p . ifp p p

and ifp-compatible-with-sp-spec:
∀ a b . sp-spec-subj-subj a b → ifp a b ∧ ifp b a

and ifp-compatible-with-ipc:
∀ a b c x . (sp-spec-subj-subj a b
∧ sp-spec-subj-obj b (PAGE x) WRITE ∧ sp-spec-subj-obj c (PAGE x) READ)
→ ifp a c

begin end

4.2.2 Derivation

The configuration data only consists of a subject-object policy. We derive the subject-subject policy and the information flow policy from the configuration data and prove that properties we specified in Section 4.2.1 are satisfied.

locale abstract-policy-derivation =
fixes configuration-subj-obj :: 'a ⇒ obj-id-t ⇒ mode-t ⇒ bool
begin

definition sp-spec-subj-obj a x m ≡
configuration-subj-obj a x m ∨ (∃ y . x = PAGE y ∧ m = READ ∧ configuration-subj-obj a x WRITE)

definition sp-spec-subj-subj a b ≡
∃ f m1 m2 . sp-spec-subj-obj a (FILEP f) m1 ∧ sp-spec-subj-obj b (FILEP f) m2

definition ifp a b ≡
sp-spec-subj-subj a b
∨ sp-spec-subj-subj b a
∨ (∃ c y . sp-spec-subj-subj a c
∧ sp-spec-subj-obj c (PAGE y) WRITE)
Show that the policies specified in Section 4.2.1 can be derived from the configuration and their definitions.

Lemma correct:

- **shows** policy-axioms sp-spec-subj-obj sp-spec-subj-subj ifp

Proof (unfold-locales)

- **show** sp-spec-file-provider:
 - \(\forall \ p1 \ p2 \ f \ m1 \ m2 \ . \)
 - \(\text{sp-spec-subj-obj} \ p1 \ (\text{FILEP} \ f) \ m1 \ \wedge \)
 - \(\text{sp-spec-subj-obj} \ p2 \ (\text{FILEP} \ f) \ m2 \ \rightarrow \ text{sp-spec-subj-subj} \ p1 \ p2 \)

 unfolding sp-spec-subj-subj-def by auto

- **show** sp-spec-no-wronly-pages:
 - \(\forall \ p \ x \ . \ \text{sp-spec-subj-obj} \ p \ (\text{PAGE} \ x) \ \text{WRITE} \ \rightarrow \ \text{sp-spec-subj-obj} \ p \ (\text{PAGE} \ x) \ \text{READ} \)

 unfolding sp-spec-subj-obj-def by auto

- **show** ifp-reflexive:
 - \(\forall \ p \ . \ \text{ifp} \ p \ p \)

 unfolding ifp-def by auto

- **show** ifp-compatible-with-sp-spec:
 - \(\forall \ a \ b \ . \ \text{sp-spec-subj-subj} \ a \ b \ \rightarrow \ \text{ifp} \ a \ b \ \wedge \ \text{ifp} \ b \ a \)

 unfolding ifp-def by auto

- **show** ifp-compatible-with-ipc:
 - \(\forall \ a \ b \ c \ x \ . \ (\text{sp-spec-subj-subj} \ a \ b \ \wedge \ \text{sp-spec-subj-obj} \ b \ (\text{PAGE} \ x) \ \text{WRITE} \ \wedge \ \text{sp-spec-subj-obj} \ c \ (\text{PAGE} \ x) \ \text{READ}) \)

 \(\rightarrow \ \text{ifp} \ a \ c \)

 unfolding ifp-def by auto

end

Type Synonym

- sp-subj-subj-t = partition-id-t \(\Rightarrow\) partition-id-t \(\Rightarrow\) bool

- sp-subj-obj-t = partition-id-t \(\Rightarrow\) obj-id-t \(\Rightarrow\) mode-t \(\Rightarrow\) bool

Interpretation

- Policy-properties: policy-axioms Policy.sp-spec-subj-obj Policy.sp-spec-subj-subj Policy.ifp

 using Policy.correct by auto

Lemma example-how-to-use-properties-in-proofs:

- **shows** \(\forall \ p \ . \ \text{Policy} \ . \ \text{ifp} \ p \ p \)

 using Policy-properties.ifp-reflexive by auto

end

4.3 Separation kernel state and atomic step function

Theory Step

Imports Step-policies

begin

4.3.1 Interrupt points

To model concurrency, each system call is split into several atomic steps, while allowing interrupts between the steps. The state of a thread is represented by an “interrupt point” (which corresponds to the value of the program counter saved by the system when a thread is interrupted).

Datatype

- ipc-direction-t = SEND \(\mid\) RECV

- ipc-stage-t = PREP \(\mid\) WAIT \(\mid\) BUF page-t
4.3.2 System state

Typed declaration `obj-t` — value of an object

Each thread belongs to a partition. The relation is fixed (in this instantiation of a separation kernel).

Constants

`partition ∶∶ thread-id-t ⇒ partition-id-t`

The state contains the dynamic policy (the communication rights in the current state of the system, for example).

Record

`thread-t =
 ev-counter ∶∶ nat — event counter`

`state-t =
 sp-impl-subj-subj ∶∶ sp-subj-subj-t — current subject-subject policy
 sp-impl-subj-obj ∶∶ sp-subj-obj-t — current subject-object policy
 current :: thread-id-t — current thread
 obj :: obj-id-t ⇒ obj-t — values of all objects
 thread :: thread-id-t ⇒ thread-t — internal state of threads`

Later (Section 4.4), the system invariant `sp-subset` will be used to ensure that the dynamic policies (`sp_impl_...`) are a subset of the corresponding static policies (`sp_spec_...`).

4.3.3 Atomic step

Helper functions

Definition `set-object-value :: obj-id-t ⇒ obj-t ⇒ state-t ⇒ state-t where**

`set-object-value obj-id val s =
 s (obj ⇒ fun-upd (obj s) obj-id val)`

Return a representation of the opposite direction of IPC communication.

Definition `opposite-ipc-direction :: ipc-direction-t ⇒ ipc-direction-t where**

`opposite-ipc-direction dir ≡ case dir of SEND ⇒ RECV | RECV ⇒ SEND`

Add an access right from one partition to an object. In this model, not available from the API, but shows how dynamic changes of access rights could be implemented.

Definition `add-access-right :: partition-id-t ⇒ obj-id-t ⇒ mode-t ⇒ state-t ⇒ state-t where**

`add-access-right part-id obj-id m s =
 s (sp-impl-subj-obj := λ q q′ q'' . (part-id = q ∧ obj-id = q′ ∧ m = q'') ∨ sp-impl-subj-obj s q q' q'')`

Add a communication right from one partition to another. In this model, not available from the API.

Definition `add-comm-right :: partition-id-t ⇒ partition-id-t ⇒ state-t ⇒ state-t where**

`add-comm-right p p' s =
 s (sp-impl-subj-subj := λ q q′ . (p = q ∧ p' = q') ∨ sp-impl-subj-subj s q q')`
Model of IPC system call We model IPC with the following simplifications:

1. The model contains the system calls for sending an IPC (SEND) and receiving an IPC (RECV), often implementations have a richer API (e.g. combining SEND and RECV in one invocation).
2. We model only a copying (“BUF”) mode, not a memory-mapping mode.
3. The model always copies one page per syscall.

\[
\text{ipc-precondition} :: \text{thread-id-t} \Rightarrow \text{ipc-direction-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{page-t} \Rightarrow \text{state-t} \Rightarrow \text{bool}
\]

where

\[
\text{ipc-precondition} \quad \text{tid} \quad \text{dir} \quad \text{partner} \quad \text{page} \quad \text{s} \\
\equiv \text{let sender} = (\text{case dir of SEND \Rightarrow \text{tid} | RECV \Rightarrow \text{partner}}) \text{ in} \\
\text{let receiver} = (\text{case dir of SEND \Rightarrow \text{partner} | RECV \Rightarrow \text{tid}}) \text{ in} \\
\text{let local-access-mode} = (\text{case dir of SEND \Rightarrow \text{READ} | RECV \Rightarrow \text{WRITE}}) \text{ in} \\
(\text{sp-impl-subj-subj s (partition sender)} \text{ (partition receiver)} \\
\land \text{sp-impl-subj-obj s (partition tid)} \text{ (PAGE page) local-access-mode})
\]

\[
\text{atomic-step-ipc} :: \text{thread-id-t} \Rightarrow \text{ipc-direction-t} \Rightarrow \text{ipc-stage-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{page-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t}
\]

where

\[
\text{atomic-step-ipc} \quad \text{tid} \quad \text{dir} \quad \text{stage} \quad \text{partner} \quad \text{page} \quad \text{s} \\
\equiv \text{case stage of} \\
\text{PREP} \Rightarrow \\
\text{s} \\
\text{WAIT} \Rightarrow \\
\text{s} \\
\text{BUF page}' \Rightarrow \\
(\text{case dir of} \\
\text{SEND} \Rightarrow \\
(\text{set-object-value (PAGE page')} \text{ (obj s (PAGE page))}) \text{ s}) \\
\text{RECV} \Rightarrow \text{s}
\]

Model of event syscalls definition \text{ev-signal-precondition} :: \text{thread-id-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{state-t} \Rightarrow \text{bool}

where

\[
\text{ev-signal-precondition} \quad \text{tid} \quad \text{partner} \quad \text{s} \\
\equiv (\text{sp-impl-subj-subj s (partition tid)} \text{ (partition partner)})
\]

\[
\text{atomic-step-ev-signal} :: \text{thread-id-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t}
\]

where

\[
\text{atomic-step-ev-signal} \quad \text{tid} \quad \text{partner} \quad \text{s} \\
\equiv \begin{array}{c}
\text{fun-upd (thread s partner (thread s tid (ev-counter := Suc (ev-counter (thread s tid) − 1))))}
\end{array}
\]

\[
\text{atomic-step-ev-wait-one} :: \text{thread-id-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t}
\]

where

\[
\text{atomic-step-ev-wait-one} \quad \text{tid} \quad \text{s} \\
\equiv \begin{array}{c}
\text{fun-upd (thread s tid (ev-counter := 0))}
\end{array}
\]

\[
\text{atomic-step-ev-wait-all} :: \text{thread-id-t} \Rightarrow \text{state-t} \Rightarrow \text{state-t}
\]

where

\[
\text{atomic-step-ev-wait-all} \quad \text{tid} \quad \text{s} \\
\equiv \begin{array}{c}
\text{fun-upd (thread s tid (ev-counter := 0))}
\end{array}
\]

Instantiation of CISK aborting and waiting In this instantiation of CISK, the \text{aborting} function is used to indicate security policy enforcement. An IPC call aborts in its \text{PREP} stage if the precondition for the calling thread does not hold. An event signal call aborts in its \text{EV-SIGNAL-PREP} stage if the precondition for the calling thread does not hold.

\[
\text{aborting} :: \text{state-t} \Rightarrow \text{thread-id-t} \Rightarrow \text{int-point-t} \Rightarrow \text{bool}
\]

where

\[
\text{aborting} \quad \text{s} \quad \text{tid} \quad \text{a} \equiv \text{case a of SK-IPC dir PREP partner page =>}
\]
The waiting function is used to indicate synchronization. An IPC call waits in its WAIT stage while the precondition for the partner thread does not hold. An EV_WAIT call waits until the event counter is not zero.

Definition: waiting :: state-t ⇒ thread-id-t ⇒ int-point-t ⇒ bool

where waiting s tid a ≡
 case a of
 SK-IPC dir WAIT partner page
 ⇒ ~ipc-precondition tid dir partner page s
 | SK-EV-SIGNAL EV-SIGNAL-PREP partner ⇒ ~ev-signal-precondition tid partner s
 | ¬ ⇒ False

The atomic step function. In the definition of atomic-step the arguments to an interrupt point are not taken from the thread state – the argument given to atomic-step could have an arbitrary value. So, seen in isolation, atomic-step allows more transitions than actually occur in the separation kernel. However, the CISK framework (1) restricts the atomic step function by the waiting and aborting functions as well (2) the set of realistic traces as attack sequences rAS-set (Section 4.8). An additional condition is that (3) the dynamic policy used in aborting is a subset of the static policy. This is ensured by the invariant sp-subset.

Definition: atomic-step :: state-t ⇒ int-point-t ⇒ state-t

where

atomic-step s ipt ≡
 case ipt of
 SK-IPC dir stage partner page ⇒
 atomic-step-ipc (current s) dir stage partner page s
 | SK-EV-WAIT EV-PREP consume ⇒ s
 | SK-EV-WAIT EV-WAIT consume ⇒ s
 | SK-EV-WAIT EV-FINISH consume ⇒
 case consume of
 EV-CONSUME-ONE ⇒ atomic-step-ev-wait-one (current s) s
 | EV-CONSUME-ALL ⇒ atomic-step-ev-wait-all (current s) s
 | SK-EV-SIGNAL EV-SIGNAL-PREP partner ⇒ s
 | SK-EV-SIGNAL EV-SIGNAL-FINISH partner ⇒
 atomic-step-ev-signal (current s) partner s
 | NONE ⇒ s

end

4.4 Preconditions and invariants for the atomic step

Theory: Step-invariants

Imports: Step

begin

The dynamic/implementation policies have to be compatible with the static configuration.

definition sp-subset s ≡
 (∀ p1 p2. sp-impl-subj-subj s p1 p2 → Policy.sp-spec-subj-subj p1 p2)
 ∧ (∀ p1 p2 m. sp-impl-subj-obj s p1 p2 m → Policy.sp-spec-subj-obj p1 p2 m)

The following predicate expresses the precondition for the atomic step. The precondition depends on the type of the atomic action.
Definition atomic-step-precondition :: state-t ⇒ thread-id-t ⇒ int-point-t ⇒ bool where
atomic-step-precondition s tid ipt ≡
case ipt of
 SK-IPC dir WAIT partner page ⇒
 (* the thread managed it past PREP stage *)
 ipc-precondition tid dir partner page s
 SK-IPC dir (BUF page') partner page ⇒
 (* both the calling thread and its communication partner
 managed it past PREP and WAIT stages *)
 ipc-precondition tid dir partner page s
 ∧ ipc-precondition partner (opposite-ipc-direction dir) tid page's
 SK-EV-SIGNAL EV-SIGNAL-FINISH partner ⇒
 ev-signal-precondition tid partner s
| - ⇒
 (* No precondition for other interrupt points. *)
 True

The invariant to be preserved by the atomic step function. The invariant is independent from the type
of the atomic action.

Definition atomic-step-invariant :: state-t ⇒ bool where
atomic-step-invariant s ≡
sp-subset s

4.4.1 Atomic steps of SK_IPC preserve invariants

Lemma set-object-value-invariant:
 shows atomic-step-invariant s = atomic-step-invariant (set-object-value ob va s)
 proof −
 show ?thesis using assms
 unfolding atomic-step-invariant-def atomic-step-precondition-def ipc-precondition-def
 sp-subset-def set-object-value-def Let-def
 by (simp split add: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits)
 qed

Lemma set-thread-value-invariant:
 shows atomic-step-invariant s = atomic-step-invariant (s (thread := thrst))
 proof −
 show ?thesis using assms
 unfolding atomic-step-invariant-def atomic-step-precondition-def ipc-precondition-def
 sp-subset-def set-object-value-def Let-def
 by (simp split add: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits)
 qed

Lemma atomic-ipc-preserves-invariants:
 fixes s :: state-t
 and tid :: thread-id-t
 assumes atomic-step-invariant s
 shows atomic-step-invariant (atomic-step-ipc tid dir stage partner page s)
 proof −
 show ?thesis
 proof (cases stage)
 case PREP
 from this assms show ?thesis
 unfolding atomic-step-ipc-def atomic-step-invariant-def by auto
 next
 case WAIT
 from this assms show ?thesis
 unfolding atomic-step-ipc-def atomic-step-invariant-def by auto
4.4.2 Summary theorems on atomic step invariants

Now we are ready to show that an atomic step from the current interrupt point in any thread preserves invariants.

Theorem atomic-step-preserves-invariants:

- **Fixes** $s :: state-t$
- **and** $tid :: thread-id-t$
- **Assumes** atomic-step-invariant s
- **Shows** atomic-step-invariant (atomic-step a

Proof (cases a)

- **Case** SK-IPC
 - **Then show** ?thesis **Using** assms atomic-ipc-preserves-invariants
 - **By** simp

- **Next case** (SK-EV-WAIT ev-wait-stage consume)

Lemma atomic-ev-wait-one-preserves-invariants:

- **Fixes** $s :: state-t$
- **And** $tid :: thread-id-t$
- **Assumes** atomic-step-invariant s
- **Shows** atomic-step-invariant (atomic-step-ev-wait-one tid s

Proof –

- **From** assms **Show** ?thesis
 - **Unfolding** atomic-step-ev-wait-one-def atomic-step-invariant-def sp-subset-def
 - **By** auto

Lemma atomic-ev-wait-all-preserves-invariants:

- **Fixes** $s :: state-t$
- **And** $tid :: thread-id-t$
- **Assumes** atomic-step-invariant s
- **Shows** atomic-step-invariant (atomic-step-ev-wait-all tid s

Proof –

- **From** assms **Show** ?thesis
 - **Unfolding** atomic-step-ev-wait-all-def atomic-step-invariant-def sp-subset-def
 - **By** auto

Lemma atomic-ev-signal-preserves-invariants:

- **Fixes** $s :: state-t$
- **And** $tid :: thread-id-t$
- **Assumes** atomic-step-invariant s
- **Shows** atomic-step-invariant (atomic-step-ev-signal tid partner s

Proof –

- **From** assms **Show** ?thesis
 - **Unfolding** atomic-step-ev-signal-def atomic-step-invariant-def sp-subset-def
 - **By** auto

Qed
then show ?thesis
proof (cases consume)
 case EV-CONSUME-ALL
 then show ?thesis unfolding atomic-step-def
 using SK-EV-WAIT assms atomic-ev-wait-all-preserves-invariants
 by (simp split: ev-wait-stage-t.splits)
 next case EV-CONSUME-ONE
 then show ?thesis unfolding atomic-step-def
 using SK-EV-WAIT assms atomic-ev-wait-one-preserves-invariants
 by (simp split: ev-wait-stage-t.splits)
 qed
 next case SK-EV-SIGNAL
 then show ?thesis unfolding atomic-step-def
 using assms atomic-ev-signal-preserves-invariants
 by (simp add : ev-signal-stage-t.splits)
 next case NONE
 then show ?thesis unfolding atomic-step-def
 using assms
 by auto
 qed

Finally, the invariants do not depend on the current thread. That is, the context switch preserves the invariants, and an atomic step that is not a context switch does not change the current thread.

Theorem cswitch-preserves-invariants:

- fixes $s :: \text{state-t}$
- and $\text{new-current} :: \text{thread-id-t}$
- assumes atomic-step-invariant s
- shows atomic-step-invariant ($s \ (\ current := \new-current \)$)

Proof

- let $?s1 = s \ (\ current := \new-current \)$
- have $sp-subset s = sp-subset \ ?s1$
- unfolding $sp-subset-def$ by auto
- from assms this show ?thesis
- unfolding atomic-step-invariant-def by metis

Qed

Theorem atomic-step-does-not-change-current-thread:

- shows current (atomic-step $s \ ipt \) = current s$

Proof

- show ?thesis
- unfolding atomic-step-def
- and atomic-step-ipc-def
- and set-object-value-def Let-def
- and atomic-step-ev-signal-def
- by (simp split add: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

Qed

End

4.5 The view-partitioning equivalence relation

Theory Step-vpeq

Imports Step Step-invariants

Begin

The view consists of
1. View of object values.

2. View of subject-subject dynamic policy. The threads can discover the policy at runtime, e.g. by calling ipc() and observing success or failure.

3. View of subject-object dynamic policy. The threads can discover the policy at runtime, e.g. by calling open() and observing success or failure.

definition \(vpeq-obj \) :: partition-id-t \(\Rightarrow \) state-t \(\Rightarrow \) state-t \(\Rightarrow \) bool

\[vpeq-obj \ u \ s \ t \equiv \forall \ obj-id . Policy.sp-spec-subj-obj \ u \ obj-id \ READ \rightarrow (obj \ s) \ obj-id = (obj \ t) \ obj-id \]

definition \(vpeq-subj-subj \) :: partition-id-t \(\Rightarrow \) state-t \(\Rightarrow \) state-t \(\Rightarrow \) bool

\[vpeq-subj-subj \ u \ s \ t \equiv \forall \ v . ((Policy.sp-spec-subj-subj \ u \ v \rightarrow sp-impl-subj-subj \ s \ u \ v = sp-impl-subj-subj \ t \ u \ v) \land (Policy.sp-spec-subj-subj \ v \ u \rightarrow sp-impl-subj-subj \ s \ v \ u = sp-impl-subj-subj \ t \ v \ u)) \]

definition \(vpeq-subj-obj \) :: partition-id-t \(\Rightarrow \) state-t \(\Rightarrow \) state-t \(\Rightarrow \) bool

\[vpeq-subj-obj \ u \ s \ t \equiv \forall \ ob \ m \ P1 . (Policy.sp-spec-subj-obj \ u \ ob \ m \rightarrow sp-impl-subj-obj \ s \ ob \ m = sp-impl-subj-obj \ t \ ob \ m) \land (Policy.sp-spec-subj-obj \ P1 \ ob \ PROVIDE \land (Policy.sp-spec-subj-obj \ u \ ob \ READ \lor Policy.sp-spec-subj-obj \ u \ ob \ WRITE) \rightarrow sp-impl-subj-obj \ s \ P1 \ ob \ PROVIDE = sp-impl-subj-obj \ t \ P1 \ ob \ PROVIDE) \]

definition \(vpeq-local \) :: partition-id-t \(\Rightarrow \) state-t \(\Rightarrow \) state-t \(\Rightarrow \) bool

\[vpeq-local \ u \ s \ t \equiv \forall \ tid . (partition \ tid) = u \rightarrow (thread \ s \ tid) = (thread \ t \ tid) \]

definition \(vpeq \ u \ s \ t \equiv vpeq-obj \ u \ s \ t \land vpeq-subj-subj \ u \ s \ t \land vpeq-subj-obj \ u \ s \ t \land vpeq-local \ u \ s \ t \)

4.5.1 Elementary properties

lemma \(vpeq-rel \):

shows \(vpeq-refl \) :: vpeq \ u \ s \ s

and \(vpeq-sym \) [sym] :: vpeq \ u \ s \ t \implies vpeq \ u \ t \ s

and \(vpeq-trans \) [trans] :: \[\[vpeq \ u \ s \ s2 ; vpeq \ u \ s2 \ s3 \]\] \implies vpeq \ u \ s1 \ s3

unfolding vpeq-def vpeq-obj-def vpeq-subj-subj-def vpeq-subj-obj-def vpeq-local-def

by auto

Auxiliary equivalence relation.

lemma set-object-value-ign:

assumes eq-obs :: "Policy.sp-spec-subj-obj \ u \ x \ READ"

shows vpeq \ u \ s \ (set-object-value \ x \ y \ s)

proof -

from assms show ?thesis

unfolding vpeq-def vpeq-obj-def vpeq-subj-subj-def vpeq-subj-obj-def set-object-value-def

vpeq-local-def

by auto

qed

Context-switch and fetch operations are also consistent with vpeq and locally respect everything.

theorem cs-switch-consistency-and-respect:

fixes \(u \equiv \) partition-id-t

and \(s := \) state-t

and \(new-current := \) thread-id-t
assumes atomic-step-invariant \(s \)
shows \(\text{vpeq} u s \left(s \left(\text{current} := \text{new-current} \right) \right) \)
proof
 show \?thesis
 unfolding vpeq-def vpeq-obj-def vpeq-subj-subj-def vpeq-subj-obj-def vpeq-local-def
 by auto
qed

end

4.6 Atomic step locally respects the information flow policy

theory Step-vpeq-locally-respects
imports Step Step-invariants Step-vpeq
begin

 The notion of locally respects is common usage. We augment it by assuming that the \textit{atomic-step-invariant} holds (see [31]).

4.6.1 Locally respects of atomic step functions

lemma ipc-respects-policy:
 assumes \(\text{nos} \sim \text{Policy.ifp} \ (\text{partition tid}) \ u \)
 and \(\text{inv} \sim \text{atomic-step-invariant} \ s \)
 and \(\text{prec} \sim \text{atomic-step-precondition} \ s \ \text{tid} \ (SK-IPC \ \text{dir} \ \text{stage} \ \text{partner} \ \text{pag}) \)
 and \(\text{ipt-case} \sim \text{ipt} = SK-IPC \ \text{dir} \ \text{stage} \ \text{partner} \ \text{page} \)
 shows \(\text{vpeq} u s \left(\text{atomic-step-ipc} \ \text{tid} \ \text{dir} \ \text{stage} \ \text{partner} \ \text{page} \ s\right) \)
proof(cases stage)
 case \(\text{PREP} \)
 thus \?thesis
 unfolding atomic-step-ipc-def
 using vpeq-refl by simp
 next
 case \(\text{WAIT} \)
 thus \?thesis
 unfolding atomic-step-ipc-def
 using vpeq-refl by simp
 next case \(\text{BUF mypage} \)
 show \?thesis
 proof(cases \text{dir})
 case \(\text{RECV} \)
 thus \?thesis
 unfolding atomic-step-ipc-def
 using vpeq-refl BUF by simp
 next
 case \(\text{SEND} \)
 have \text{Policy.sp-spec-subj-subj} \ (\text{partition tid}) \ (\text{partition partner})
 and \text{Policy.sp-spec-subj-obj} \ (\text{partition partner}) \ (PAGE mypage) \ WRITE
 using BUF SEND inv prec ipt-case
 unfolding atomic-step-invariant-def sp-subset-def
 unfolding atomic-step-precondition-def ipc-precondition-def opposite-ipc-direction-def
 by auto
 hence \(\sim \text{Policy.sp-spec-subj-obj} u \ \text{(PAGE mypage)} \ READ \)
 using no Policy-properties.ifp-compatible-with-ipc
 by auto
thus \(\text{thesis} \)

using BUF SEND assms

unfolding atomic-step-ipc-def set-object-value-def

unfolding vpeq-def vpeq-obj-def vpeq-subj-obj-def vpeq-subj-subj-def vpeq-local-def

by auto

qed

qed

lemma ev-signal-respects-policy:

assumes no :\(\neg \text{Policy}.\text{ifp} \) (partition tid) \(u \)

and inv: atomic-step-invariant s

and prec: atomic-step-precondition s tid (SK-EV-SIGNAL EV-SIGNAL-FINISH partner)

and ipt-case: ipt = SK-EV-SIGNAL EV-SIGNAL-FINISH partner

shows vpeq u s (atomic-step-ev-signal tid partner s)

proof -

from assms have \(\neg \text{sp-impl-subj-subj} \) s (partition tid) \(u \)

unfolding Policy.\text{ifp}-def atomic-step-invariant-def sp-subset-def

by auto

with prec have 1\((\text{partition partner}) \neq u\)

unfolding atomic-step-precondition-def ev-signal-precondition-def

by (auto simp add: ev-signal-stage-t.splits)

then have 2:vpeq-local u s (atomic-step-ev-signal tid partner s)

unfolding vpeq-local-def atomic-step-ev-signal-def

by simp

have 3:vpeq-obj u s (atomic-step-ev-signal tid partner s)

unfolding vpeq-obj-def atomic-step-ev-signal-def

by simp

have 4:vpeq-subj-subj u s (atomic-step-ev-signal tid partner s)

unfolding vpeq-subj-subj-def atomic-step-ev-signal-def

by simp

have 5:vpeq-subj-obj u s (atomic-step-ev-signal tid partner s)

unfolding vpeq-subj-obj-def atomic-step-ev-signal-def

by simp

with 2 3 4 5 show \(\text{thesis} \)

unfolding vpeq-def

by simp

qed

lemma ev-wait-all-respects-policy:

assumes no :\(\neg \text{Policy}.\text{ifp} \) (partition tid) \(u \)

and inv: atomic-step-invariant s

and prec: atomic-step-precondition s tid ipt

and ipt-case: ipt = SK-EV-WAIT ev-wait-stage EV-CONSUME-ALL

shows vpeq u s (atomic-step-ev-wait-all tid s)

proof -

from assms have 1:(\text{partition tid}) \neq u

unfolding Policy.\text{ifp}-def

by simp

then have 2:vpeq-local u s (atomic-step-ev-wait-all tid s)

unfolding vpeq-local-def atomic-step-ev-wait-all-def

by simp

have 3:vpeq-obj u s (atomic-step-ev-wait-all tid s)

unfolding vpeq-obj-def atomic-step-ev-wait-all-def

by simp

have 4:vpeq-subj-subj u s (atomic-step-ev-wait-all tid s)

unfolding vpeq-subj-subj-def atomic-step-ev-wait-all-def

by simp
have 5:vpeq-subj-obj u s (atomic-step-ev-wait-all tid s)
unfolding vpeq-subj-obj-def atomic-step-ev-wait-all-def
by simp
with 2 3 4 5 show ?thesis
unfolding vpeq-def
by simp
qed

lemma ev-wait-one-respects-policy:
assumes no: ¬ Policy.ifp (partition tid) u
and inv: atomic-step-invariant s
and prec: atomic-step-precondition s tid ipt
and ipt-case: ipt = SK-EV-WAIT ev-wait-stage EV-CONSUME-ONE
shows vpeq u s (atomic-step-ev-wait-one tid s)
proof
from assms have 1:(partition tid) ⊨ u
unfolding Policy.ifp-def
by simp
then have 2:vpeq-local u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-local-def atomic-step-ev-wait-one-def
by simp
have 3:vpeq-obj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-obj-def atomic-step-ev-wait-one-def
by simp
have 4:vpeq-subj-subj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-subj-subj-def atomic-step-ev-wait-one-def
by simp
have 5:vpeq-subj-obj u s (atomic-step-ev-wait-one tid s)
unfolding vpeq-subj-obj-def atomic-step-ev-wait-one-def
by simp
with 2 3 4 5 show ?thesis
unfolding vpeq-def
by simp
qed

4.6.2 Summary theorems on view-partitioning locally respects

Atomic step locally respects the information flow policy (ifp). The policy ifp is not necessarily the same as sp_spec_subj_subj.

theorem atomic-step-respects-policy:
assumes no: ¬ Policy.ifp (current s) u
and inv: atomic-step-invariant s
and prec: atomic-step-precondition s (current s) ipt
shows vpeq u s (atomic-step s ipt)
proof
show ?thesis
using assms ipc-respects-policy vpeq-refl
 ev-signal-respects-policy ev-wait-one-respects-policy
 ev-wait-all-respects-policy
unfolding atomic-step-def
by (auto split add: int-point-t.splits ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)
qed

end
4.7 Weak step consistency

theory Step-vpeq-weakly-step-consistent
imports Step Step-invariants Step-vpeq
begin

The notion of weak step consistency is common usage. We augment it by assuming that the atomic-step-invariant holds (see [31]).

4.7.1 Weak step consistency of auxiliary functions

lemma ipc-precondition-weakly-step-consistent:
assumes eq-tid : vpeq (partition tid) s1 s2
and inv1: atomic-step-invariant s1
and inv2: atomic-step-invariant s2
shows ipc-precondition tid dir partner page s1 = ipc-precondition tid dir partner page s2
proof –
let ?sender = case dir of SEND ⇒ tid/divides.alt0
RECV ⇒ partner
let ?receiver = case dir of SEND ⇒ partner/divides.alt0
RECV ⇒ tid
let ?local-access-mode = case dir of SEND ⇒ READ/divides.alt0
RECV ⇒ WRITE
let ?A = sp-impl-subj-subj s1 (partition ?sender) (partition ?receiver)
= sp-impl-subj-subj s2 (partition ?sender) (partition ?receiver)
let ?B = sp-impl-subj-obj s1 (partition tid) (PAGE page) ?local-access-mode
= sp-impl-subj-obj s2 (partition tid) (PAGE page) ?local-access-mode

have A: ?A
proof (cases Policy.sp-spec-subj-subj (partition ?sender) (partition ?receiver))
case True
thus ?A
using eq-tid unfolding vpeq-def vpeq-subj-subj-def
by (simp split add: ipc-direction-t.splits)
next case False
have sp-subset s1 and sp-subset s2
using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto
hence ¬ sp-impl-subj-subj s1 (partition ?sender) (partition ?receiver)
and ¬ sp-impl-subj-subj s2 (partition ?sender) (partition ?receiver)
using False unfolding sp-subset-def by auto
thus ?A by auto
qed

have B: ?B
proof (cases Policy.sp-spec-subj-obj (partition tid) (PAGE page) ?local-access-mode)
case True
thus ?B
using eq-tid unfolding vpeq-def vpeq-subj-obj-def
by (simp split add: ipc-direction-t.splits)
next case False
have sp-subset s1 and sp-subset s2
using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto
hence ¬ sp-impl-subj-obj s1 (partition tid) (PAGE page) ?local-access-mode
and ¬ sp-impl-subj-obj s2 (partition tid) (PAGE page) ?local-access-mode
using False unfolding sp-subset-def by auto
thus ?B by auto
qed

show ?thesis using A B unfolding ipc-precondition-def by auto
qed

lemma ev-signal-precondition-weakly-step-consistent:
assumes eq-tid: vpeq (partition tid) s1 s2
and inv1: atomic-step-invariant s1
and inv2: atomic-step-invariant s2
shows ev-signal-precondition tid partner s1 = ev-signal-precondition tid partner s2
proof –
let ?A = sp-impl-subj-subj s1 (partition tid) (partition partner)
 = sp-impl-subj-subj s2 (partition tid) (partition partner)
have A: ?A
proof (cases Policy.sp-spec-subj-subj (partition tid) (partition partner))
case True
thus ?A using eq-tid unfolding vpeq-def vpeq-subj-subj-def
by (simp split add: ipc-direction-t.splits)
next case False
have sp-subset s1 and sp-subset s2
using inv1 inv2 unfolding atomic-step-invariant-def sp-subset-def by auto
hence ¬ sp-impl-subj-subj s1 (partition tid) (partition partner)
and ¬ sp-impl-subj-subj s2 (partition tid) (partition partner)
using False unfolding sp-subset-def by auto
thus ?A by auto
qed
show ?thesis using A unfolding ev-signal-precondition-def by auto
qed

lemma set-object-value-consistent:
assumes eq-obs: vpeq u s1 s2
shows vpeq u (set-object-value x y s1) (set-object-value x y s2)
proof –
let ?s1' = set-object-value x y s1 and ?s2' = set-object-value x y s2
have E1: vpeq-obj u ?s1' ?s2'
proof –
{ fix x'
assume 1: Policy.sp-spec-subj-obj u x' READ
have obj ?s1' x' = obj ?s2' x' proof (cases x = x')
case True
thus obj ?s1' x' = obj ?s2' x' unfolding set-object-value-def by auto
next case False
hence 2: obj ?s1' x' = obj s1 x'
 and 3: obj ?s2' x' = obj s2 x'
unfolding set-object-value-def by auto
have 4: obj s1 x' = obj s2 x'
using 1 eq-obs unfolding vpeq-def vpeq-obj-def by auto
from 2 3 4 show obj ?s1' x' = obj ?s2' x' by simp
qed }
thus vpeq-obj u ?s1' ?s2' unfolding vpeq-obj-def by auto
qed
have E4: vpeq-subj-subj u ?s1' ?s2'
proof –
have sp-impl-subj-subj ?s1' = sp-impl-subj-subj s1
and sp-impl-subj-subj ?s2' = sp-impl-subj-subj s2
unfolding set-object-value-def by auto
thus vpeq-subj-subj u ?s1' ?s2'
using eq-obs unfolding vpeq-def vpeq-subj-subj-def by auto
qed
have E5: vpeq-subj-obj u ?s1' ?s2'
proof –
have \(\text{sp-impl-subj-obj} \ ?s1' = \text{sp-impl-subj-obj} \ s1 \)
and \(\text{sp-impl-subj-obj} \ ?s2' = \text{sp-impl-subj-obj} \ s2 \)
unfolding set-object-value-def by auto
thus \(\text{vpeq-subj-obj} \ u \ ?s1' \ ?s2' \)
using eq-obs unfolding vpeq-subj-obj-def by auto
qed
from eq-obs have \(E6: \text{vpeq-local} \ u \ ?s1' \ ?s2' \)
unfolding vpeq-def vpeq-local-def set-object-value-def
by simp
from \(E1 \ E4 \ E5 \ E6 \)
show \(\text{thesis} \) unfolding vpeq-def
by auto
qed

4.7.2 Weak step consistency of atomic step functions

lemma ipc-weakly-step-consistent:
assumes eq-obs: \(\text{vpeq} \ u \ s1 \ s2 \)
and eq-act: \(\text{vpeq} \ (\text{partition} \ \text{tid}) \ s1 \ s2 \)
and inv1: \(\text{atomic-step-invariant} \ s1 \)
and inv2: \(\text{atomic-step-invariant} \ s2 \)
and \(\text{prec1}: \text{atomic-step-precondition} \ s1 \ \text{tid} \ \text{ipt} \)
and \(\text{prec2}: \text{atomic-step-precondition} \ s1 \ \text{tid} \ \text{ipt} \)
and \(\text{ipt-case}: \text{ipt} = \text{SK-IPC} \ \text{dir} \ \text{stage} \ \text{partner} \ \text{page} \)
shows \(\text{vpeq} \ u \)
(atomic-step-ipc \ text{tid} \ \text{dir} \ \text{stage} \ \text{partner} \ \text{page} \ s1)
(atomic-step-ipc \ text{tid} \ \text{dir} \ \text{stage} \ \text{partner} \ \text{page} \ s2)
proof –
have \(\\land \text{mypage} \ . \ [\text{dir} = \text{SEND}; \text{stage} = \text{BUF} \ \text{mypage}] \implies \text{thesis} \)
proof –
fix \text{mypage}
assume dir-send: dir = \text{SEND}
assume stage-buf: stage = \text{BUF} \ \text{mypage}
have Policy.\text{sp-spec-subj-obj} \ (\text{partition} \ \text{tid}) \ (\text{PAGE} \ \text{page}) \ \text{READ}
using inv1 prec1 dir-send stage-buf ipt-case
unfolding atomic-step-invariant-def sp-subset-def
unfolding atomic-step-precondition-def ipc-precondition-def opposite-ipc-direction-def
by auto
hence \(\text{obj} \ s1 \ (\text{PAGE} \ \text{page}) = \text{obj} \ s2 \ (\text{PAGE} \ \text{page}) \)
using eq-act unfolding vpeq-def vpeq-obj-def vpeq-local-def
by auto
thus \(\text{vpeq} \ u \)
(atomic-step-ipc \ text{tid} \ \text{dir} \ \text{stage} \ \text{partner} \ \text{page} \ s1)
(atomic-step-ipc \ text{tid} \ \text{dir} \ \text{stage} \ \text{partner} \ \text{page} \ s2)
using dir-send stage-buf eq-obs set-object-value-consistent
unfolding atomic-step-ipc-def
by auto
qed
thus \(\text{thesis} \)
using eq-obs unfolding atomic-step-ipc-def
by (cases stage, auto, cases dir, auto)
qed

lemma ev-wait-one-weakly-step-consistent:
assumes eq-obs: \(\text{vpeq} \ u \ s1 \ s2 \)
and eq-act: \(\text{vpeq} \ (\text{partition} \ \text{tid}) \ s1 \ s2 \)
and inv1: \(\text{atomic-step-invariant} \ s1 \)
and inv2: \(\text{atomic-step-invariant} \ s2 \)
and prec1: atomic-step-precondition s1 (current s1) ipt
and prec2: atomic-step-precondition s1 (current s1) ipt
shows vpeq u
 (atomic-step-ev-wait-one tid s1)
 (atomic-step-ev-wait-one tid s2)
using assms
unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def
 atomic-step-ev-wait-one-def
by simp

lemma ev-wait-all-weakly-step-consistent:
assumes eq-obs: vpeq u s1 s2
 eq-act: vpeq (partition tid) s1 s2
 inv1: atomic-step-invariant s1
 inv2: atomic-step-invariant s2
and prec1: atomic-step-precondition s1 (current s1) ipt
and prec2: atomic-step-precondition s1 (current s1) ipt
shows vpeq u
 (atomic-step-ev-wait-all tid s1)
 (atomic-step-ev-wait-all tid s2)
using assms
unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def
 atomic-step-ev-wait-all-def
by simp

lemma ev-signal-weakly-step-consistent:
assumes eq-obs: vpeq u s1 s2
 eq-act: vpeq (partition tid) s1 s2
 inv1: atomic-step-invariant s1
 inv2: atomic-step-invariant s2
and prec1: atomic-step-precondition s1 (current s1) ipt
and prec2: atomic-step-precondition s1 (current s1) ipt
shows vpeq u
 (atomic-step-ev-signal tid partner s1)
 (atomic-step-ev-signal tid partner s2)
using assms
unfolding vpeq-def vpeq-subj-subj-def vpeq-obj-def vpeq-subj-obj-def vpeq-local-def
 atomic-step-ev-signal-def
by simp

The use of extend-f is to provide infrastructure to support use in dynamic policies, currently not used.

definition extend-f :: (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒ (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒ (partition-id-t ⇒ partition-id-t ⇒ bool) where
extend-f f g = λ p1 p2 . f p1 p2 ∨ g p1 p2

definition extend-subj-subj :: (partition-id-t ⇒ partition-id-t ⇒ bool) ⇒ state-t ⇒ state-t where
extend-subj-subj f s ≡ s (sp-impl-subj-subj :: extend-f (sp-impl-subj-subj s))

lemma extend-subj-subj-consistent:
 fixes f :: partition-id-t ⇒ partition-id-t ⇒ bool
 assumes vpeq u s1 s2
 shows vpeq u (extend-subj-subj f s1) (extend-subj-subj f s2)
proof
 let ?g1 = sp-impl-subj-subj s1 and ?g2 = sp-impl-subj-subj s2
 have ∀ v . Policy.sp-spec-subj-subj u v →→ ?g1 u = ?g2 u v
 and ∀ v . Policy.sp-spec-subj-subj v u →→ ?g1 v = ?g2 v u
 using assms unfolding vpeq-def vpeq-subj-subj-def by auto
hence ∀ v . Policy.sp-spec-subj-subj v u v = extend-ff ?g1 u v = extend-ff ?g2 u v

and ∀ v . Policy.sp-spec-subj-subj v u v = extend-ff ?g1 v u = extend-ff ?g2 v u

unfolding extend-f-def by auto

hence I: vpeq-subj-subj u (extend-subj-subj f s1) (extend-subj-subj f s2)

unfolding vpeq-subj-subj-def by auto

have 2: vpeq-obj u (extend-subj-subj f s1) (extend-subj-subj f s2)

using assms unfolding vpeq-def vpeq-obj-def by fastforce

have 3: vpeq-obj u (extend-subj-subj f s1) (extend-subj-subj f s2)

using assms unfolding vpeq-def vpeq-subj-obj-def by fastforce

have 4: vpeq-local u (extend-subj-subj f s1) (extend-subj-subj f s2)

using assms unfolding vpeq-def vpeq-local-def by fastforce

from 1 2 3 4 show ?thesis

using assms unfolding vpeq-def by fast

qed

4.7.3 Summary theorems on view-partitioning weak step consistency

The atomic step is weakly step consistent with view partitioning. Here, the “weakness” is that we assume that the two states are vp-equivalent not only w.r.t. the observer domain u, but also w.r.t. the caller domain Step.partition tid).

theorem atomic-step-weakly-step-consistent:

assumes eq-obs: vpeq u s1 s2

and eq-act: vpeq (partition (current s1)) s1 s2

and im1: atomic-step-invariant s1

and im2: atomic-step-invariant s2

and prec1: atomic-step-precondition s1 (current s1) ipt

and prec2: atomic-step-precondition s2 (current s2) ipt

and eq-curr: current s1 = current s2

shows vpeq u (atomic-step s1 ipt) (atomic-step s2 ipt)

proof –

show ?thesis

using assms

ipc-weakly-step-consistent

ev-wait-all-weakly-step-consistent

ev-wait-one-weakly-step-consistent

ev-signal-weakly-step-consistent

vpeq-refl ev-signal-stage-t.exhaust

unfolding atomic-step-def

apply (cases ipt, auto)

apply (simp split add: ev-consume-t.splits ev-wait-stage-t.splits)

by (simp split add: ev-signal-stage-t.splits)

qed

end

4.8 Separation kernel model

theory Separation-kernel-model

imports/step/Step

../step/Step-invariants

../step/Step-vpeq

../step/Step-vpeq-locally-respects

../step/Step-vpeq-weakly-step-consistent

CISK

begin

First (Section 4.8.1) we instantiate the CISK generic model. Functions that instantiate a generic
function of the CISK model are prefixed with an ‘r’, ‘r’ standing for “Rushby”; as CISK is derived originally from a model by Rushby [31]. For example, ‘rifp’ is the instantiation of the generic ‘ifp’.

Later (Section 4.8.5) all CISK proof obligations are discharged, e.g., weak step consistency, output consistency, etc. These will be used in Section 4.9.

4.8.1 Initial state of separation kernel model

We assume that the initial state of threads and memory is given. The initial state of threads is arbitrary, but the threads are not executing the system call. The purpose of the following definitions is to obtain the initial state without potentially dangerous axioms. The only axioms we admit without proof are formulated using the “consts” syntax and thus safe.

consts
initial-current :: thread-id-t
initial-obj :: obj-id-t ⇒ obj-t

definition \(s_0 \) = state-t where
\(s_0 \equiv \{ \langle sp-impl-subj-subj = Policy.sp-spec-subj-subj, sp-impl-subj-obj = Policy.sp-spec-subj-obj, current = initial-current, obj = initial-obj, thread = \lambda - . (| ev-counter = 0 |) \} \)

lemma initial-invariant:
shows atomic-step-invariant \(s_0 \)

proof –
 have sp-subset \(s_0 \)
 unfolding sp-subset-def \(s_0 \)-def by auto
 thus ?thesis
 unfolding atomic-step-invariant-def by auto
qed

4.8.2 Types for instantiation of the generic model

To simplify formulations, we include the state invariant atomic-step-invariant in the state data type. The initial state \(s_0 \) serves as witness that \(rstate-t \) is non-empty.

typedef \(rstate-t = \{ s . atomic-step-invariant s \} \)

using initial-invariant by auto

definition abs = state-t \(\uparrow \) where abs = Abs-rstate-t
definition rep = rstate-t \(\downarrow \) where rep = Rep-rstate-t

lemma rstate-invariant:
 shows atomic-step-invariant \(\langle s \rangle \)
 unfolding rep-def by (metis Rep-rstate-t mem-Collect-eq)

lemma rstate-down-up[simp]:
 shows \(\uparrow \langle s \rangle \) = s
 unfolding rep-def abs-def using Rep-rstate-t-inverse by auto

lemma rstate-up-down[simp]:
 assumes atomic-step-invariant s
 shows \(\downarrow \langle s \rangle \) = s
 using assms Abs-rstate-t-inverse unfolding rep-def abs-def by auto

A CISK action is identified with an interrupt point.
type-synonym raction-t = int-point-t

definition rcurrent :: rstate-t ⇒ thread-id-t where
rcurrent s = current ↓s

definition rstep :: rstate-t ⇒ raction-t ⇒ rstate-t where
rstep s a ≡ ↑(atomic-step (↓s) a)

Each CISK domain is identified with a thread id.

type-synonym rdom-t = thread-id-t

The output function returns the contents of all memory accessible to the subject. The action argument of the output function is ignored.

datatype visible-obj-t = VALUE obj-t | EXCEPTION
type-synonym routput-t = page-t ⇒ visible-obj-t

definition routput-f :: rstate-t ⇒ raction-t ⇒ routput-t where
routput-f s a p ≡
if sp-impl-subj-obj (↓s) (partition (rcurrent s)) (PAGE p) READ then
 VALUE (obj (↓s) (PAGE p))
else
 EXCEPTION

The precondition for the generic model. Note that atomic-step-invariant is already part of the state.

definition rprecondition :: rstate-t ⇒ rdom-t ⇒ raction-t ⇒ bool where
rprecondition s d a ≡ atomic-step-precondition (↓s) d a

abbreviation rinvariant where
rinvariant s ≡ True — The invariant is already in the state type.

Translate view-partitioning and interaction-allowed relations.

definition rvpeq :: rdom-t ⇒ rstate-t ⇒ rstate-t ⇒ bool where
rvpeq u s1 s2 ≡ vpeq (partition u) (↓s1) (↓s2)

definition rifp :: rdom-t ⇒ rdom-t ⇒ bool where
rifp u v = Policy.dfp (partition u) (partition v)

Context Switches

definition rcswitch :: nat ⇒ rstate-t ⇒ rstate-t where
rcswitch n s ≡ ↑((↓s) (current := (SOME t. True)))

4.8.3 Possible action sequences

An SK-IPC consists of three atomic actions PREP, WAIT and BUF with the same parameters.

definition is-SK-IPC :: raction-t list ⇒ bool where
is-SK-IPC aseq ≡ ∃ dir partner page .
 aseq = [SK-IPC dir PREP partner page,SK-IPC dir WAIT partner page,SK-IPC dir (BUF (SOME page'. True)) partner page]

An SK-EV-WAIT consists of three atomic actions, one for each of the stages EV-PREP, EV-WAIT and EV-FINISH with the same parameters.

definition is-SK-EV-WAIT :: raction-t list ⇒ bool where
is-SK-EV-WAIT aseq ≡ ∃ consume .
 aseq = [SK-EV-WAIT EV-PREP consume ,
 SK-EV-WAIT EV-WAIT consume ,
 SK-EV-WAIT EV-FINISH consume]
An SK-EV-SIGNAL consists of two atomic actions, one for each of the stages EV-SIGNAL-PREP and EV-SIGNAL-FINISH with the same parameters.

definition is-SK-EV-SIGNAL : raction-t list ⇒ bool

where is-SK-EV-SIGNAL aseq ≡ ∃ partner .

aseq = [SK-EV-SIGNAL EV-SIGNAL-PREP partner, SK-EV-SIGNAL EV-SIGNAL-FINISH partner]

The complete attack surface consists of IPC calls, events, and noops.

definition rAS-set : raction-t list set

where rAS-set ≡ \{ aseq . is-SK-IPC aseq ∨ is-SK-EV-WAIT aseq ∨ is-SK-EV-SIGNAL aseq \} ∪ \{\}\n
4.8.4 Control

When are actions aborting, and when are actions waiting. We do not currently use the set-error-code function yet.

abbreviation raborting

where raborting s ≡ aborting (↓s)

abbreviation rwaiting

where rwaiting s ≡ waiting (↓s)

definition rset-error-code :: rstate-t ⇒ raction-t ⇒ rstate-t

where rset-error-code s a ≡ s

Returns the set of threads that are involved in a certain action. For example, for an IPC call, the WAIT stage synchronizes with the partner. This partner is involved in that action.

definition rkinvolved :: int-point-t ⇒ rdom-t set

where rkinvolved a ≡

\[
\text{case } a \text{ of SK-IPC dir WAIT partner page } \Rightarrow \{ \text{partner} \\
| SK-EV-SIGNAL EV-SIGNAL-FINISH partner } \Rightarrow \{ \text{partner} \\
| - } \Rightarrow \{ \}
\]

abbreviation rinvolved

where rinvolved ≡ Kernel.involved rkinvolved

4.8.5 Discharging the proof obligations

lemma inst-vpeq-refl:

shows rvpeq-refl : rvpeq u s s

and rvpeq-sym : rvpeq u s1 s2 ⇒ rvpeq u s2 s1

and rvpeq-trans : [rvpeq u s1 s2; rvpeq u s2 s3] ⇒ rvpeq u s1 s3

unfolding rvpeq-def *using* vpeq-rel *by* metis

lemma inst-ifp-refl:

shows ∀ u . rifp u u

unfolding rifp-def *using* Policy-properties.ifp-reflexive *by* fast

lemma inst-step-atomicity [simp]:

shows ∀ s a . rcurrent (rstep s a) = rcurrent s

unfolding rstep-def *rcurrent-def *using* atomic-step-does-not-change-current-thread rstate-up-down rstate-invariant atomic-step-preserves-invariants *by* auto

lemma inst-weakly-step-consistent:

assumes rvpeq u s t
and \text{rvpeq}(\text{rcurrent } s) s t
\and \text{rcurrent } s = \text{rcurrent } t
\and \text{rprecondition } s(\text{rcurrent } s) a
\and \text{rprecondition } t(\text{rcurrent } t) a
\shows \text{rvpeq} u (\text{rstep } s a) (\text{rstep } t a)
\using \text{assms atomic-step-weakly-step-consistent rstate-invariant atomic-step-preserves-invariants}
\unfolding \text{rcurrent-def rstep-def rvpeq-def rprecondition-def}
by \text{auto}

\text{lemma inst-local-respect:}
\assumes \text{not-ifp}: \neg \text{rifp}(\text{rcurrent } s) u
\and \text{prec}: \text{rprecondition } s(\text{rcurrent } s) a
\shows \text{rvpeq} u s (\text{rstep } s a)
\using \text{assms atomic-step-respects-policy rstate-invariant atomic-step-preserves-invariants}
\unfolding \text{rifp-def rprecondition-def rvpeq-def rstep-def rcurrent-def}
by \text{auto}

\text{lemma inst-output-consistency:}
\assumes \text{rvpeq}: \text{rvpeq}(\text{rcurrent } s) s t
\and \text{current-eq}: \text{rcurrent } s = \text{rcurrent } t
\shows \text{routput-f } s a = \text{routput-f } t a
\proof
\have \forall a s t. \text{rvpeq}(\text{rcurrent } s) s t \land \text{rcurrent } s = \text{rcurrent } t \implies \text{routput-f } s a = \text{routput-f } t a
\proof\-
\{ fix a :: \text{raction-t}
\fix s t :: \text{rstate-t}
\fix p :: \text{page-t}
\assume 1: \text{rvpeq}(\text{rcurrent } s) s t
\and 2: \text{rcurrent } s = \text{rcurrent } t
\let \text{?part} = \text{partition}(\text{rcurrent } s)
\have \text{routput-f } s a p = \text{routput-f } t a p
\proof (\text{cases Policy,sp-spec-subj-obj } \text{?part } \text{(PAGE } p) \text{ READ})
rule: \text{case-split}\ [\text{case-names Allowed Denied}]
\case\ Allowed
\have 5: \text{obj}(\downarrow s)(\text{PAGE } p) = \text{obj}(\downarrow t)(\text{PAGE } p)
\using 1 \text{Allowed unfolding rvpeq-def vpeq-def vpeq-obj-def} \text{ by auto}
\have 6: \text{sp-impl-subj-obj}(\downarrow s) \text{?part } (\text{PAGE } p) \text{ READ} = \text{sp-impl-subj-obj}(\downarrow t) \text{?part } (\text{PAGE } p) \text{ READ}
\using 1 2 \text{Allowed unfolding rvpeq-def vpeq-def vpeq-subj-obj-def} \text{ by auto}
\show \text{routput-f } s a p = \text{routput-f } t a p
\unfolding \text{routput-f-def using} 2 5 6 \text{ by auto}
\next\ case\ Denied
\hence \text{sp-impl-subj-obj}(\downarrow s) \text{?part } (\text{PAGE } p) \text{ READ} = \text{False}
\and \text{sp-impl-subj-obj}(\downarrow t) \text{?part } (\text{PAGE } p) \text{ READ} = \text{False}
\using \text{rstate-invariant unfolding atomic-step-invariant-def sp-subset-def}
by \text{auto}
\thus \text{routput-f } s a p = \text{routput-f } t a p
\using 2 \text{unfolding routput-f-def} \text{ by simp}
\qed\}
\thus \forall a s t. \text{rvpeq}(\text{rcurrent } s) s t \land \text{rcurrent } s = \text{rcurrent } t \implies \text{routput-f } s a = \text{routput-f } t a
by \text{auto}
\qed
\thus \text{?thesis using assms by auto}
lemma inst-cswitch-independent-of-state:
assumes rcurrent s = rcurrent t
shows rcurrent (rcswitch n s) = rcurrent (rcswitch n t)
using rstate-invariant cswitch-preserves-invariants unfolding rcurrent-def rcswitch-def by simp

lemma inst-cswitch-consistency:
assumes rvpeq u s t
shows rvpeq u (rcswitch n s) (rcswitch n t)
proof-
 have 1: vpeq (partition u) (↓s) ↓(rcswitch n s)
 using rstate-invariant cswitch-consistency-and-respect cswitch-preserves-invariants
 unfolding rcswitch-def
 by auto
 have 2: vpeq (partition u) (↓t) ↓(rcswitch n t)
 using rstate-invariant cswitch-consistency-and-respect cswitch-preserves-invariants
 unfolding rcswitch-def
 by auto
from 1 2 assms show ?thesis unfolding rvpeq-def using vpeq-rel by metis
qed

For the PREP stage (the first stage of the IPC action sequence) the precondition is True.

lemma prec-first-IPC-action:
assumes is-SK-IPC aseq
shows rprecondition s d (hd aseq)
using assms unfolding is-SK-IPC-def rprecondition-def atomic-step-precondition-def
by auto

For the first stage of the EV-WAIT action sequence the precondition is True.

lemma prec-first-EV-WAIT-action:
assumes is-SK-EV-WAIT aseq
shows rprecondition s d (hd aseq)
using assms unfolding is-SK-EV-WAIT-def rprecondition-def atomic-step-precondition-def
by auto

For the first stage of the EV-SIGNAL action sequence the precondition is True.

lemma prec-first-EV-SIGNAL-action:
assumes is-SK-EV-SIGNAL aseq
shows rprecondition s d (hd aseq)
using assms unfolding is-SK-EV-SIGNAL-def rprecondition-def atomic-step-precondition-def
ev-signal-precondition-def
by auto

When not waiting or aborting, the precondition is “1-step inductive”, that is at all times the precondition holds initially (for the first step of an action sequence) and after doing one step.

lemma prec-after-IPC-step:
assumes prec: rprecondition s (rcurrent s) (aseq ! n)
 and n-bound: Suc n < length aseq
 and IPC: is-SK-IPC aseq
 and not-aborting: ~raborting s (rcurrent s) (aseq ! n)
 and not-waiting: ~rwaiting s (rcurrent s) (aseq ! n)
shows \(rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n) \)

proof-

{ }

fix dir partner page

let ?page' = (SOME page'. True)

assume IPC: aseq = [SK-IPC dir PREP partner page, SK-IPC dir WAIT partner page, SK-IPC dir (BUF ?page') partner page]

{ assume 0: n=0
from 0 IPC prec not-aborting
 have ?thesis
 unfolding rprecondition-def atomic-step-precondition-def rstep-def rcurrent-def atomic-step-def atomic-step-ipc-def
 by(auto) }

moreover

{ assume 1: n=1
from 1 IPC prec not-waiting
 have ?thesis
 unfolding rprecondition-def atomic-step-precondition-def rstep-def rcurrent-def atomic-step-def atomic-step-ipc-def
 waiting-def
 by(auto) }

moreover

from IPC

have length aseq = 3
 by auto

ultimately

have ?thesis
 using n-bound
 by arith }

thus ?thesis
 using IPC
 unfolding is-SK-IPC-def
 by(auto)

qed

When not waiting or aborting, the precondition is 1-step inductive.

lemma prec-after-EV-WAIT-step:

assumes prec: rprecondition s (rcurrent s) (aseq ! n)
 and n-bound: Suc n < length aseq
 and IPC: is-SK-EV-WAIT aseq
 and not-aborting: ~raborting s (rcurrent s) (aseq ! n)
 and not-waiting: ~rwaiting s (rcurrent s) (aseq ! n)

shows rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)

proof-

{ }

fix consume

assume WAIT: aseq = [SK-EV-WAIT EV-PREP consume,
 SK-EV-WAIT EV-WAIT consume,
 SK-EV-WAIT EV-FINISH consume]

{ assume 0: n=0
from 0 WAIT prec not-aborting
 have ?thesis
unfolding rprecondition-def atomic-step-precondition-def
by(auto)
}

moreover
{
assume I: n=1
from 1 WAIT prec not-waiting
have ?thesis
unfolding rprecondition-def atomic-step-precondition-def
by(auto)
}

moreover
from WAIT
have length aseq = 3
by auto
ultimately
have ?thesis
using n-bound
by arith
}

thus ?thesis
using assms
unfolding is-SK-EV-WAIT-def
by auto
qed

When not waiting or aborting, the precondition is 1-step inductive.

lemma prec-after-EV-SIGNAL-step:
assumes prec: rprecondition s (rcurrent s) (aseq ! n)
and n-bound: Suc n < length aseq
and SIGNAL: is-SK-EV-SIGNAL aseq
and not-aborting: ¬raborting s (rcurrent s) (aseq ! n)
and not-waiting: ¬rwaiting s (rcurrent s) (aseq ! n)
shows rprecondition (rstep s (aseq ! n)) (rcurrent s) (aseq ! Suc n)
proof−
{
fix partner
assume SIGNAL1: aseq = [SK-EV-SIGNAL EV-SIGNAL-PREP partner,
 SK-EV-SIGNAL EV-SIGNAL-FINISH partner]

assume 0: n=0
from 0 SIGNAL1 prec not-aborting
have ?thesis
unfolding rprecondition-def atomic-step-precondition-def
aborting-def rstep-def atomic-step-def
by auto
}

moreover
from SIGNAL1
have length aseq = 2
by auto
ultimately
have ?thesis
using n-bound
by arith
}

thus ?thesis
using assms
unfolding is-SK-EV-SIGNAL-def
by auto

qed

lemma on-set-object-value:
 shows sp-impl-subj-subj (set-object-value ob val s) = sp-impl-subj-subj s
 and sp-impl-subj-obj (set-object-value ob val s) = sp-impl-subj-obj s
 unfolding set-object-value-def

apply simp+ done

lemma prec-IPC-dom-independent:
 assumes current s ≠ d
 and atomic-step-invariant s
 and atomic-step-precondition s d a
 shows atomic-step-precondition (atomic-step-ipc (current s) dir stage partner page s) d a
 using assms on-set-object-value
 unfolding atomic-step-precondition-def atomic-step-ipc-def ipc-precondition-def
ev-signal-precondition-def set-object-value-def
 by (auto split add: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma prec-ev-signal-dom-independent:
 assumes current s ≠ d
 and atomic-step-invariant s
 and atomic-step-precondition s d a
 shows atomic-step-precondition (atomic-step-ev-signal (current s) partner s) d a
 using assms on-set-object-value
 unfolding atomic-step-precondition-def atomic-step-ev-signal-def ipc-precondition-def
ev-signal-precondition-def set-object-value-def
 by (auto split add: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma prec-ev-wait-one-dom-independent:
 assumes current s ≠ d
 and atomic-step-invariant s
 and atomic-step-precondition s d a
 shows atomic-step-precondition (atomic-step-ev-wait-one (current s) s) d a
 using assms on-set-object-value
 unfolding atomic-step-precondition-def atomic-step-ev-wait-one-def ipc-precondition-def
ev-signal-precondition-def set-object-value-def
 by (auto split add: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma prec-ev-wait-all-dom-independent:
 assumes current s ≠ d
 and atomic-step-invariant s
 and atomic-step-precondition s d a
 shows atomic-step-precondition (atomic-step-ev-wait-all (current s) s) d a
 using assms on-set-object-value
 unfolding atomic-step-precondition-def atomic-step-ev-wait-all-def ipc-precondition-def
ev-signal-precondition-def set-object-value-def
 by (auto split add: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma prec-dom-independent:
 shows ∀ s d a a'. current s ≠ d ∧ precondition s d a → precondition (rstep s a') d a
 using atomic-step-preserves-invariants
 rstate-invariant prec-IPC-dom-independent prec-ev-signal-dom-independent
 prec-ev-wait-all-dom-independent prec-ev-wait-one-dom-independent
unfolding \(rcurrent-def \) \(rprecondition-def \) \(rstep-def \) \(atomic-step-def \)
by (auto split add: int-point-t.splits ev-consume-t.splits ev-wait-stage-t.splits ev-signal-stage-t.splits)

lemma ipc-precondition-after-cswitch[simp]:
shows ipc-precondition d dir partner page \(\{\downarrow s\} (current := \text{new-current}) \)
using assms
unfolding ipc-precondition-def
by (auto split add: ipc-direction-t.splits)

lemma precondition-after-cswitch:
shows \(\forall s \ d \ n \ a. \ rprecondition \ d \ a \leftarrow \ rprecondition \ (rcswitch \ n \ s) \ d \ a \)
using cswitch-preserves-invariants rstate-invariant
unfolding \(rprecondition-def \) \(rcswitch-def \) \(atomic-step-precondition-def \) \(ev-signal-precondition-def \)
by (auto split add: int-point-t.splits ipc-stage-t.splits ev-signal-stage-t.splits)

lemma aborting-switch-independent:
shows \(\forall n \ s. \ raborting \ (rcswitch \ n \ s) = raborting \ s \)
proof–
\{
fix n s
\{
fix tid a
have raborting (rcswitch n s) tid a = raborting s tid a
using rstate-invariant cswitch-preserves-invariants ev-signal-precondition-weakly-step-consistent
 cswitch-consistency-and-respect
unfolding aborting-def rcswitch-def
apply (auto split add: int-point-t.splits ipc-stage-t.splits ev-signal-stage-t.splits)
apply (metis (full-types))
by blast
\}
hence raborting (rcswitch n s) = raborting s by auto
\}
thus ?thesis by auto
qed

lemma waiting-switch-independent:
shows \(\forall n \ s. \ rwaiting \ (rcswitch \ n \ s) = rwaiting \ s \)
proof–
\{
fix n s
\{
fix tid a
have rwaiting (rcswitch n s) tid a = rwaiting s tid a
using rstate-invariant cswitch-preserves-invariants
unfolding waiting-def rcswitch-def
by (auto split add: int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits)
\}
hence rwaiting (rcswitch n s) = rwaiting s by auto
\}
thus ?thesis by auto
qed

lemma aborting-after-IPC-step:
assumes \(d1 \neq d2 \)
shows aborting (atomic-step-ipc d1 dir stage partner page s) \(d2 \) a = aborting s \(d2 \) a
lemma waiting-after-IPC-step:
assumes d1 ∉ d2
shows waiting (atomic-step-ipc d1 dir stage partner page s) d2 a = waiting s d2 a

lemma raborting-consistent:
shows ∀ s t u. rvpeq u s t → raborting s u = raborting t u

lemma aborting-dom-independent:
assumes rcurrent s ≠ d
shows raborting (rstep s a) d a' = raborting s d a'

proof –
 from rvpeq rstate-invariant have raborting s a = raborting t a
 unfolding abortion-def rvpeq-def vpeq-def vpeq-local-def ev-signal-precondition-def
 wqappl (auto split add: int-point-t.splits ipc-stage-t.splits ipc-direction-t.splits
 ev-signal-stage-t.splits)
 by blast

thus thesis by auto

qed
∧ ev-signal-precondition tid partner s = ev-signal-precondition tid partner (atomic-step s a)

unfolding ipc-precondition-def ev-signal-precondition-def by simp

qed

moreover have ∧ b . (⟨⟨atomic-step (⊥s) b)⟩) = atomic-step (⊥s) b

using rstate-invariant atomic-step-preserve-invariants rstate-up-down by auto

ultimately show ?thesis

unfolding aborting-def rstep-def ev-signal-precondition-def

by (simp split add: int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits
 ev-signal-stage-t.splits)

qed

lemma ipc-precondition-of-partner-consistent:

assumes vpeq: ∀ d ∈ rkinvolved (SK-IPC dir WAIT partner page) . rvpeq d s t

shows ipc-precondition partner dir' u page' (⊥s) = ipc-precondition partner dir' u page' ⊥ t

proof –

from assms ipc-precondition-weakly-step-consistent rstate-invariant

show ?thesis

unfolding rvpeq-def rkinvolved-def

by auto

qed

lemma ev-signal-precondition-of-partner-consistent:

assumes vpeq: ∀ d ∈ rkinvolved (SK-EV-SIGNAL EV-SIGNAL-FINISH partner) . rvpeq d s t

shows ev-signal-precondition partner u (⊥s) = ev-signal-precondition partner u (⊥ t)

proof –

from assms ev-signal-precondition-weakly-step-consistent rstate-invariant

show ?thesis

unfolding rvpeq-def rkinvolved-def

by auto

qed

lemma waiting-consistent:

shows ∀ s t u a . rvpeq (rcurrent s) s t ∧ (∀ d ∈ rkinvolved a . rvpeq d s t)

∧ rvpeq u s t

→ rwaiting s u a = rwaiting t u a

proof –

{ fix s t u a

assume vpeq: rvpeq (rcurrent s) s t

assume vpeq-involved: ∀ d ∈ rkinvolved a . rvpeq d s t

assume vpeq-op rvpeq u s t

have rwaiting s u a = rwaiting t u a proof (cases a)

case SK-IPC

thus rwaiting s u a = rwaiting t u a

using ipc-precondition-of-partner-consistent vpeq-involved

unfolding waiting-def by (auto split add: ipc-stage-t.splits)

case SK-EV-WAIT

thus rwaiting s u a = rwaiting t u a

using ev-signal-precondition-of-partner-consistent

vpeq-involved vpeq vpeq-op

unfolding waiting-def rkinvolved-def ev-signal-precondition-def

rvpeq-def vpeq-def vpeq-local-def

by (auto split add: ipc-stage-t.splits ev-wait-stage-t.splits ev-consume-t.splits)

qed (simp add: waiting-def , simp add: waiting-def)
}

thus ?thesis by auto
lemma ipc-precondition-ensures-ifp
assumes ipc-precondition (current s) dir partner page s
and atomic-step-invariant s
shows rifp partner (current s)
proof –
let ?sp = \lambda t1 t2 . Policy.sp-spec-subj-subj (partition t1) (partition t2)
have ?sp (current s) partner ∨ ?sp partner (current s)
using assms unfolding ipc-precondition-def atomic-step-invariant-def sp-subset-def
by (cases dir, auto)
thus ?thesis
unfolding rifp-def using Policy-properties.ifp-compatible-with-sp-spec by auto
qed

lemma ev-signal-precondition-ensures-ifp
assumes ev-signal-precondition (current s) partner s
and atomic-step-invariant s
shows rifp partner (current s)
proof –
let ?sp = \lambda t1 t2 . Policy.sp-spec-subj-subj (partition t1) (partition t2)
have ?sp (current s) partner ∨ ?sp partner (current s)
using assms unfolding ev-signal-precondition-def atomic-step-invariant-def sp-subset-def
by (auto)
thus ?thesis
unfolding rifp-def using Policy-properties.ifp-compatible-with-sp-spec by auto
qed

lemma involved-ifp:
shows ∀ s a d . ∀ d ∈ rkinvolved a . rprecondition s (rcurrent s) a → rifp d (rcurrent s)
proof –
{ fix s a d
 assume d-involved: d ∈ rkinvolved a
 assume prec: rprecondition s (rcurrent s) a
 from d-involved prec have rifp d (rcurrent s)
 using ipc-precondition-ensures-ifp ev-signal-precondition-ensures-ifp rstate-invariant
 unfolding rkinvolved-def rprecondition-def atomic-step-precondition-def rcurrent-def Kernel.involved-def
 by (cases a, simp, auto split add: int-point-t.splits ipc-stage-t.splits ev-signal-stage-t.splits)
}
thus ?thesis by auto
qed

lemma spec-of-waiting-ev:
shows ∀ s a . rwaiting s (rcurrent s) (SK-EV-WAIT EV-FINISH EV-CONSUME-ALL) → rstep s a = s
unfolding waiting-def
by auto

lemma spec-of-waiting-ev-w:
shows ∀ s a . rwaiting s (rcurrent s) (SK-EV-WAIT EV-WAIT EV-CONSUME-ALL) → rstep s (SK-EV-WAIT EV-WAIT EV-CONSUME-ALL) = s
unfolding rstep-def atomic-step-def
by (auto split add: int-point-t.splits ipc-stage-t.splits ev-wait-stage-t.splits)

lemma spec-of-waiting:
shows ∀ s a . rwaiting s (rcurrent s) a → rstep s a = s
unfolding waiting-def rstep-def atomic-step-def atomic-step-ipc-def
atomic-step-ev-signal-def atomic-step-ev-wait-all-def
atomic-step-ev-wait-one-def
by(auto split add: int-point.t.split ipc-stage.t.split ev-wait-stage.t.split)
end

4.9 Link implementation to CISK: the specific separation kernel is an interpretation of the generic model.

theory Link-separation-kernel-model-to-CISK
imports Separation-kernel-model
begin

We show that the separation kernel instantiation satisfies the specification of CISK.

theorem CISK-proof-obligations-satisfied:
shows
Controllable-Interruptible-Separation-Kernel
rstep
routput-f
(↑s0)
rcurrent
rcswitch
rkinvolved
rifp
rvpeq
rAS-set
rinvariant
rprecondition
raborting
rwating
rset-error-code

proof (unfold-locales)
— show that rvpeq is equivalence relation
show ∀ a b c u. (rvpeq u a b ∧ rvpeq u b c) → rvpeq u a c
and ∀ a b u. rvpeq u a b → rvpeq u b a
and ∀ a u. rvpeq u a a
using inst-vpeq-rel by metis+
— show output consistency
show ∀ a s t. rvpeq (rcurrent s) s t ∧ rcurrent s = rcurrent t → routput-f s a = routput-f t a
using inst-output-consistency by metis
— show reflexivity of ifp
show ∀ u. rifp u u
using inst-ifp-refl by metis
— show step consistency
show ∀ s t u a. rvpeq u s t ∧ rvpeq (rcurrent s) s t ∧ rprecondition s (rcurrent s) a ∧ True ∧ rprecondition t (rcurrent t) a ∧ rcurrent s = rcurrent t → rvpeq u (rstep s a) (rstep t a)
using inst-weakly-step-consistent by blast
— show step atomicity
show ∀ s a . rcurrent (rstep s a) = rcurrent s
using inst-step-atomicity by metis
show ∀ a s t. ¬ rifp (rcurrent s) u ∧ True ∧ rprecondition s (rcurrent s) a → rvpeq u s (rstep s a)
using inst-local-respect by blast
— show cs switch is independent of state
show ∀ n s t. rcurrent s = rcurrent t → rcurrent (rcswitch n s) = rcurrent (rcswitch n t)
using inst-cswitch-independent-of-state by metis
— show cs switch consistency
∀ u s t n. rvpeq u s t → rvpeq u (rcswitch n s) (rcswitch n t)
using inst-cswitch-consistency by metis
— Show the empty action sequence is in AS-set

show [] ∈ rAS-set
unfolding rAS-set-def by auto
— The invariant for the initial state, already encoded in rstate-t

show True by auto
— Step function of the invariant, already encoded in rstate-t

show ∀ s n. True → True
by auto
— The precondition does not change with a context switch

show ∀ s d a. rprecondition s d a → rprecondition (rcswitch n s) d a
using precondition-after-cswitch by blast
— The precondition holds for the first action of each action sequence

show ∀ s d aseq. True ∧ aseq ∈ rAS-set ∧ aseq ≠ [] → rprecondition s d (hd aseq)
using prec-first-IPC-action prec-first-EV-WAIT-action prec-first-EV-SIGNAL-action
unfolding rAS-set-def is-sub-seq-def by auto
— Steps of other domains do not influence the precondition

show ∀ s a a'. (∃ aseq ∈ rAS-set. is-sub-seq a a' aseq) ∧ True ∧ rprecondition s (rcurrent s) a ∧ ¬ raborting s (rcurrent s) a ∧ ¬ rwaiting s (rcurrent s) a →
 rprecondition (rstep s a) (rcurrent s) a'
unfolding rAS-set-def is-sub-seq-def by auto
— Steps of other domains do not influence the precondition

show ∀ s d a a '. rcurrent s ≠ d ∧ rprecondition s d a → rprecondition (rstep s a') d a
using prec-dom-independent by blast
— The invariant

show ∀ s a. True → True
by auto
— Aborting does not depend on a context switch

show ∀ n s. raborting (rcswitch n s) = raborting s
using aborting-switch-independent by auto
— Aborting does not depend on actions of other domains

show ∀ s d a. rcurrent s ≠ d → raborting (rstep s a) d = raborting s d
using aborting-dom-independent by auto
— Aborting is consistent

show ∀ s t u. rvpeq u s t → raborting s u = raborting t u
using raborting-consistent by auto
— Waiting does not depend on a context switch

show ∀ n s. rwaiting (rcswitch n s) = rwaiting s
using waiting-switch-independent by auto
— Waiting is consistent

show ∀ s t u a. rvpeq (rcurrent s) s t ∧ (∀ d ∈ rkinvolved a. rvpeq d s t)
 ∧ rvpeq u s t
→ rwaiting s u a = rwaiting t u a
unfolding Kernel.involved-def
using waiting-consistent by auto
— Domains that are involved in an action may influence the domain of the action

show ∀ s a. ∃ d ∈ rkinvolved a. rprecondition s (rcurrent s) a → rifp d (rcurrent s)
using involved-ifp by blast
— An action that is waiting does not change the state

show ∀ s a. rwaiting s (rcurrent s) a → rstep s a = s
using spec-of-waiting by blast
— Proof obligations for set-error-code. Right now, they are all trivial
show ∀ s d a′ a. rcurrent s ∤ d ∧ raborting s d a → raborting (rset-error-code s a′) d a
unfolding rset-error-code-def
by auto
show ∀ s t u a. rvpeq u s t → rvpeq u (rset-error-code s a) (rset-error-code t a)
unfolding rset-error-code-def
by auto
show ∀ s t u a. ¬ rifp (rcurrent s) u → rvpeq u s (rset-error-code s a)
by (metis (∀ a u. rvpeq u a a))
show ∀ s a. rcurrent (rset-error-code s a) = rcurrent s
unfolding rset-error-code-def
by auto
show ∀ s d a a′. rprecondition s d a ∧ raborting s (rcurrent s) a′ → rprecondition (rset-error-code s a′) d a
unfolding rset-error-code-def
by auto
show ∀ s d a a′. rcurrent s ∤ d ∧ rwaiting s d a → rwaiting (rset-error-code s a′) d a
unfolding rset-error-code-def
by auto
qed

Now we can instantiate CISK with some initial state, interrupt function, etc.

interpretation Inst:
Controllable-Interruptible-Separation-Kernel
rstep — step function, without program stack
routput-f — output function
↑ s0 — initial state
rcurrent — returns the currently active domain
rcswitch — switches the currently active domain
(op =) 42 — interrupt function (yet unspecified)
rkinvolved — returns a set of threads involved in the give action
rifp — information flow policy
rvpeq — view partitioning
rAS-set — the set of valid action sequences
rinvariant — the state invariant
rprecondition — the precondition for doing an action
raborting — condition under which an action is aborted
rwaiting — condition under which an action is delayed
rset-error-code — updates the state. Has no meaning in the current model.
using CISK-proof-obligations-satisfied by auto

The main theorem: the instantiation implements the information flow policy ifp.

theorem risecure:
Inst.isecure
using Inst.unwinding-implies-secure-CISK
by blast
end

5 Related Work

We consider various definitions of intransitive (I) noninterference (NI). This overview is by no means intended to be complete. We first prune the field by focusing on INI with as granularity the domains: if the security policy states the act “v ∼ u”, this means domain v is permitted to flow any information it has at its disposal to u. We do not consider language-based approaches to noninterference [26], which allow
finer granularity mechanisms (i.e., flowing just a subset of the available information). Secondly, several formal verification efforts have been conducted concerning properties similar and related to INI such as no-exfiltration and no-infiltration [9]. Heitmeyer et al. prove these properties for a separation kernel in a Common Criteria certification process [11] (which kernel and which EAL is not clear). Martin et al. proved separation properties over the MASK kernel [18] and Shapiro and Weber verified correctness of the EROS confinement mechanism [28]. Klein provides an excellent overview of OSs for which such properties have been verified [13]. Thirdly, INI definitions can be built upon either state-based automata, trace-based models, or process algebraic models [30]. We do not focus on the latter, as our approach is not based on process algebra.

Transitive NI was first introduced by Goguen and Meseguer in 1982 [7] and has been the topic of heavy research since. Goguen and Meseguer tried to extend their definition with an unless construct to allow such policies [8]. This construct, however, did not capture the notion of INI [17]. The first commonly accepted definition of INI is Rushbys purging-based definition IP-secure [24]. IP-security has been applied to, e.g., smartcards [27] and OS kernel extensions [7]. To the best of our knowledge, Rushbys definition has not been applied in a certification context. Rushbys definition has been subject to heavy scrutiny [22], [29] and a vast array of modifications have been proposed.

Roscoe and Goldsmith provide CSP-based definitions of NI for the transitive and the intransitive case, here dubbed as lazy and mixed independence. The latter one is more restrictive than Rushbys IP-security. Their critique on IP-secure, however, is not universally accepted [7]. Greve at al. provided the GWV framework developed in ACL2 [9]. Their definition is a non-inductive version of noninterference similar to Rushbys step consistency. GWV has been used on various industrial systems. The exact relation between GWV and (I)P-secure, i.e., whether they are of equal strength, is still open. The second property, Declassification, means whether the definition allows assignments in the form of \(l := \text{declassify}(h) \) (where we use Sabelfelds [26] notation for high and low variables). Information flows from \(h \) to \(l \), but only after it has been declassified. In general, NI is coarser than declassification. It allows where downgrading can occur, but now what may be downgraded [17]. Mantel provides a definition of transitive NI where exceptions can be added to allow de-classification by adding intransitive exceptions to the security policy [17].

To deal with concurrency, definitions of NI have been proposed for Non-Deterministic automata. Von Oheimb defined noninfluence for such systems. His definition can be regarded as a “non-deterministic version” of IP-secure. Engelhardt et al. defined nTA-secure, the non-deterministic version of TA-security. Finally, some notions of INI consider models that are in a sense richer than similar counterparts. Leslie extends Rushbys notion of IP-security for a model in which the security policy is Dynamic. Eggert et al. defined i-secure, an extension of IP-secure. Their model extends Rushbys model (Mealy machines) with Local security policies. Murray et al. extends Von Oheimb definition of noninfluence to apply to a model that does not assume a static mapping of actions to domains. This makes it applicable to OSs, as in such a setting such a mapping does not exist [20]. NI-OS has been applied to the seL4 separation kernel [20], [14].

Most definitions have an associated methodology. Various methodologies are based on unwinding [8]. This breaks down the proof of NI into smaller proof obligations (POs). These POs can be checked by some manual proof [24], [10], model checking [32] or dedicated algorithms [5]. The methodology of Murray et al. is a combination of unwinding, automated deduction and manual proofs. Some definitions are undecidable and have no suitable unwinding.

We are aiming to provide a methodology for INI based on a model that is richer in detail than Mealy machines. This places our contribution next to other works that aim to extend IP-security [15], [4] in Figure 2. Similar to those approaches, we take IP-security as a starting point. We add kernel control mechanisms, interrupts and context switches. Ideally, we would simply prove IP-security over CISK. We argue that this is impossible and that a rephrasing is necessary.

Our ultimate goal — certification of PikeOS — is very similar to the work done on seL4 [20][19]. There are two reasons why their approach is not directly applicable to PikeOS. First, seL4 has been developed from scratch. A Haskell specification serves as the medium for the implementation as well
as the system model for the kernel [6]. C code is derived from a high level specification. PikeOS, in contrast, is an established industrial OS. Secondly, interrupts are mostly disabled in seL4. Klein et al. side-step dealing with the verification complexity of interrupts by using a mostly atomic API [14]. In contrast, we aim to fully address interrupts.

With respect to attempts to formal operating system verifications, notable works are also the Verisoft I project [1] where also a weak form of a separation property, namely fairness of execution was addressed [3].

6 Conclusion

We have introduced a generic theory of intransitive non-interference for separation kernels with control as a series of locales and extensible record definitions in order to achieve a modular organization. Moreover, we have shown that it can be instantiated for a simplistic API consisting of IPC and events.

In the ongoing EURO-MILS project, we will extend this generic theory in order make it sufficiently rich to be instantiated with a realistic functional model of PikeOS.

6.0.1 Acknowledgement.

This work corresponds to the formal deliverable D31.1 of the Euro-MILS project funded by the European Unions Programme

\[FP7/2007 – 2013\]

under grant agreement number ICT-318353.

References

