Cu₂O photoelectrodes for solar water splitting: Tuning photoelectrochemical performance by controlled faceting

Quan-Bao Ma *, Jan P. Hofmann, Anton Litke, Emiel J.M. Hensen *

Inorganic Materials Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Cuprous oxide (Cu₂O) films were grown by electrodeposition in aqueous solutions of varying pH. The effect of bath pH on morphology, structural, and photoelectrochemical (PEC) properties of Cu₂O films was investigated. XRD showed that all prepared films were polycrystalline Cu₂O, without formation of competing phases such as CuO and Cu. The film grown in the solution with a pH of 8 is made up of Cu₂O crystallites with preferential (200) planes exposed. The films deposited at solution pH values of 10, 12 and 14 exhibit Cu₂O crystallites with preferential (111) planes exposed. As photoelectrodes these Cu₂O films generate photocurrent upon light illumination. The Cu₂O film grown in the solution with pH of 12 shows the best PEC performance for hydrogen generation. The (111) facets of the Cu₂O film were stable without corrosion during the PEC test. A mechanism for the preferred faceting in alkaline solution has been discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Photoelectrochemical (PEC) water splitting is a promising technology to produce renewable hydrogen with oxygen as a by-product from water and sunlight. Fujishima and Honda demonstrated PEC water splitting for the first time in 1972 using a TiO₂ photocathode [1]. Until now, materials such as GaInP₂ [2,3], Cu₂O [4–6], InGaN [7–10], InP [11], Fe₂O₃ [12] and SiC [13–15] have been used as photocathodes for PEC water splitting. Cu₂O is considered as one of the most promising photosensitive materials for PEC water splitting because of its low toxicity, abundance, good environmental acceptability and simple production process. Cu₂O is a p-type semiconductor with a direct band gap of 2.0 eV [4]. It can absorb solar radiation in the range of 300–620 nm, covering about 50% of the photons of the solar spectrum. Cu₂O is considered as a candidate photocathode in a PEC cell, because the conduction band edge of Cu₂O (ca. –1.35 V vs. Ag/AgCl at pH=7) is significantly more negative than the reduction potential of water (ca. –0.61 V vs. Ag/AgCl at pH=7) [16]. Therefore, Cu₂O is in principle capable of decomposing water into H₂ as a photocathode.

Cu₂O can be synthesized by various methods such as sputtering [17,18], chemical vapor deposition [19,20], thermal oxidation [21], chemical bath deposition [22], and electrodeposition [23–25]. Among them, the electrodeposition technique has attracted special interest for the preparation of Cu₂O thin films in recent years. It has two major advantages, namely its simplicity and the low growth temperature, leading to low cost processes and a large number of industrial applications. Also, electrodeposition allows control of the stoichiometry, thickness, and microstructure of the films by adjusting the deposition parameters. Until now there have been some reports on investigating the influence of pH on the preferred orientation of the Cu₂O crystallites that make up the film [26–28] but few mechanistic details were discussed.

In this work, electrodeposition was used to prepare Cu₂O films with different preferred crystal orientations. The effect of the pH of the bath on the morphology and the structural properties of the Cu₂O films was investigated. A growth mechanism of preferred faceting in alkaline solution as a function of pH taking into account the chemical speciation of Cu species in the bath was discussed. The (photo)electrochemical properties of the as-grown Cu₂O films were investigated in a 1 M Na₂SO₄ electrolyte in the dark and under light illumination. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements were carried out before and after the PEC tests to check the stability of the Cu₂O films against photocorrosion.

2. Experimental

Cu₂O films were electrodeposited in a two-electrode configuration in galvanostatic mode on fluorine-doped tin oxide (FTO) coated...
The crystal structure of the films was analyzed by X-ray diffraction (XRD) using a Bruker D8 system with a Cu Kα source (λ=0.1541 nm). The film thickness and the surface morphology were determined using scanning electron microscopy (SEM)-XL30 and Quanta 3D FEG. XPS investigations were carried out on a Thermo Scientific K-Alpha system using an Al Kα (1486.6 eV) source for excitation.

3. Results and discussion

The pH of the electrolyte solution has a strong influence on the structure of electrodeposited Cu2O films. X-ray diffraction patterns of Cu2O films prepared from solutions of varying pH in the range of 8–14 are shown in Fig. 1. The thickness of all Cu2O films as determined by SEM was around 1 μm. According to the XRD patterns, all prepared films are polycrystalline and can be indexed to the cubic Cu2O phase with a lattice constant of a=4.252 Å. No other phases, in particular CuO and Cu, were detected by XRD. It was found that the film grown in the solution with pH=8 exhibited a pattern with strong Cu2O peaks along the (200) axis, while the films deposited at higher pH had preferential orientation along the (111) axis, that is the (111) facets tend to be parallel to the substrate. These observations agree with results of Jeong et al. [29], reporting that the preferred facet of the Cu2O film was (200) at pH lower than 9 and (111) at pH values higher than 10.

To assess the quality of the as-deposited Cu2O films, the full-width at half-maximum (FWHM) values of the (111) peaks were used to determine the crystallite size according to the Scherrer formula [30,31]. The FWHM and the grain size as a function of pH are shown in Fig. 2. With increasing pH, the crystallites of the Cu2O films became larger. Fig. 2 shows that the average grain size along the (111) axis is between 29 and 46 nm. The film grown at pH=14 contains the largest crystallites. At a pH higher than 12, the plating solution became unstable and a milky precipitate formed. To prepare Cu2O film with the preferential (111) facets the solution with pH=12 is preferred. It is suggested that the higher pH of the solution stimulates the grain growth of Cu2O and forms films with large crystallites, therefore improve the crystallinity of Cu2O films. Thus, the higher the pH, the larger the crystallites become. This phenomenon was also found in the experiments with electrodeposited Cu2O by Gershon et al. [32].

Copper(II) ions in aqueous phase can form complex compounds with various organic and inorganic ligands. In this work a solution of CuSO4 with lactate (LA) in the presence of KOH as a pH correcting agent is used for electrochemical deposition of Cu2O on a conducting support. In this system two types of complexes can exist and/or coexist i.e. copper hydroxo-complexes [Cu(OH)n]2−n and lactic complexes [Cu(LA)n]2−n. An attempt to assess the ionic composition of the solution at different pH has been done. In the following calculation the influence of the high ionic strength of the solution and possible deprotonation of the alpha-OH group of lactic acid at high pH values was not taken into account (pKα(α-OH)≈11 [33]).

The total formation constants of the lactate and hydroxo-complexes of Cu(II) are listed in Table 1.

At pH higher than 6.0 more than 99% of lactic acid in a solution is deprotonated (pKα=3.86 [35]). Based on this the following equations

![Fig. 2. Dependence of the FWHM and crystallite size on the bath pH for Cu2O films.](image)

<table>
<thead>
<tr>
<th>Ligand</th>
<th>log β1</th>
<th>log β2</th>
<th>log β3</th>
<th>log β4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>3.02</td>
<td>4.85</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>OH</td>
<td>7.0</td>
<td>13.68</td>
<td>17.0</td>
<td>18.5</td>
</tr>
</tbody>
</table>

* Data were taken from Ref. [34]. Temperature for the listed values is between 20 and 25 °C. Values are given for zero ionic strength for OH− and finite ionic strength for LA.
for the formation of the lactate complexes can be derived:

\[\text{Cu}^{2+} + \text{LA}^- \rightleftharpoons [\text{Cu(LA)}]^+ \] (1)

\[[\text{Cu(LA)}]^+ + \text{LA}^- \rightleftharpoons [\text{Cu(LA)}_2]^0 \] (2)

\[\text{Cu}^{2+} + 2\text{LA}^- \rightleftharpoons [\text{Cu(LA)}_2]^0 \] (3)

For the above listed reactions the equilibrium constants can be written as follows:

\[k_{11} = \beta(\text{A})_1 = \frac{[\{\text{Cu(LA)}]^+}{[\text{Cu}^{2+}] \times \{\text{LA}^-\}} \]

\[k_{12} = \beta(\text{A})_2 = \frac{[\{\text{Cu(LA)}_2]^0}{[\{\text{Cu(LA)}]^+ \times \{\text{LA}^-\}} \]

\[k_{13} = \beta(\text{A})_3 = \frac{[\{\text{Cu(LA)}_2]^0}{[\{\text{Cu}^{2+}\} \times \{\text{LA}^-\}]} \]

where \{A\} is an equilibrium concentration of species A, \(k_i\) is an equilibrium constant of the corresponding reaction and \(\beta_N(i)\) is a total formation constant of a complex with \(i\) ligands of type \(N\) in the coordination sphere.

Besides, reactions (1)–(3) at high pH values following competing processes can take place:

\[\text{Cu}^{2+} + 4\text{OH}^- \rightleftharpoons [\text{Cu(OH)}_4]^2- \] (8)

\[k_4 = \beta(\text{OH})_1 = \frac{[\{\text{Cu(OH)}]^+}{[\text{Cu}^{2+}] \times \{\text{OH}^-\}} \]

\[k_5 = \beta(\text{OH})_2 = \frac{[\{\text{Cu(OH)}_2]^0}{[\{\text{Cu(OH)}]^+ \times \{\text{OH}^-\}} \]

\[k_6 = \beta(\text{OH})_3 = \frac{[\{\text{Cu(OH)}_3]^+}{[\{\text{Cu(OH)}_2]^0 \times \{\text{OH}^-\}} \]

\[k_7 = \beta(\text{OH})_4 = \frac{[\{\text{Cu(OH)}_4]^2-}{[\{\text{Cu(OH)}_3]^+ \times \{\text{OH}^-\}} \]

\[k_8 = \beta(\text{OH})_5 = \frac{[\{\text{Cu(OH)}_5]^3-}{[\{\text{Cu(OH)}_4]^2- \times \{\text{OH}^-\}} \]

\[\text{Cu(LA)}_2]^0 + 2\text{OH}^- \rightleftharpoons [\text{Cu(LA)}_2(\text{OH})_2]^+ + \text{LA}^- \] (9)

\[\text{Cu(LA)}_2(\text{OH})_2]^+ + 2\text{OH}^- \rightleftharpoons [\text{Cu(OH)}_4]^2^- + \text{LA}^- \] (10)

\[\text{Cu(LA)}_2]^0 + 4\text{OH}^- \rightleftharpoons [\text{Cu(OH)}_4]^2^- + 2\text{LA}^- \] (11)

\[k_9 = \frac{[\{\text{Cu(LA)}_2(\text{OH})_2]^+}{[\{\text{Cu(LA)}_2]^0 \times \{\text{OH}^-\}]} \]

\[k_{10} = \frac{[\{\text{Cu(OH)}_4]^2-}{[\{\text{Cu(LA)}_2(\text{OH})_2]^+ \times \{\text{OH}^-\}]} \]

and

Fig. 3. SEM morphologies of Cu2O films grown at different pH values: (a) pH = 8; (b) pH = 10; (c) pH = 12; and (d) pH = 14.
To assess the ionic composition of the mixture at high pH values the reaction (11) and the equilibrium k_{11} can be used. The following simplification and assumptions are made to obtain an analytical expression for the dependence of the equilibrium concentration of metal complexes on the pH value:

(i) Reactions (1), (2), (4)–(7) and (10) are omitted based on the assumption that complexes $[\text{Cu(LA)}_2]^0$ and $[\text{Cu(OH)}_4]^2^-$ are the predominant species. Reaction (9) is excluded from the calculation as formation constant of $[\text{Cu(LA)(OH)}_2]^0$ is unknown. So only processes (3), (8) and (11) are taken into consideration;

(ii) Based on the previous statement the material balance for lactate and copper can be written in the following formula:

$$c_2(\text{Cu}) = c_0(\text{Cu}^{2^+}) = [\text{Cu}^{2^+}] + [\text{Cu(LA)}_2]^0 + [\text{Cu(OH)}_4]^2^-$$ (12)

$$c_2(\text{LA}) = c_0(\text{LA}) = [\text{LA}^-] + 2 \times [\text{Cu(LA)}_2]^0$$ (13)

where $c_2(A)$ are the total concentrations of a compound A. The initial concentration $c_0(A)$ is known for every component and based on the amount of a corresponding substance added to the reaction mixture during the preparation.

$$k_{11} = \frac{[\text{Cu(OH)}_4]^2^- \times [\text{LA}^-]^2}{[\text{Cu(LA)}_2]^0 \times [\text{OH}^-]^4}$$

$$= \frac{[\text{Cu(OH)}_4]^2^-}{[\text{Cu}^{2^+}] \times [\text{OH}^-]^2} \times \frac{[\text{LA}^-]^2}{[\text{Cu(LA)}_2]^0}$$

$$= \frac{[\text{Cu}^{2^+}]}{[\text{LA}^-]}$$

Total concentrations of copper and lactate (lactic acid) are set as follows:

Taking into account the high values of the formation constants of the lactate and hydroxo-complexes of Cu(II) and the high initial concentration of the lactate anion and/or hydroxide (for the pH range above 10) it can be noticed that

$$[\text{Cu}^{2^+}] < < [\text{Cu(LA)}_2]^0 + [\text{Cu(OH)}_4]^2^-$$

That is, all copper(II) in solution are present in the form of complex compounds rather than in the form of hydrated Cu$^{2^+}$ cations. Accordingly, the formula (12) for Cu species can be rewritten as follows:

$$c_2(\text{Cu}) = c_0(\text{Cu}^{2^+}) = [\text{Cu(LA)}_2]^0 + [\text{Cu(OH)}_4]^2^-$$ (14)

Based on the expressions (13) and (14) the following substitution can be done:

$$[\text{Cu(LA)}_2]^0 = x,$$

$$[\text{Cu(OH)}_4]^2^- = c_0(\text{Cu}^{2^+}) - x$$

and

$$[\text{LA}^-] = c_0(\text{LA}) - 2x$$

The expression for k_{11} will be transformed into
Fig. 6. Chopped current density–potential curves of Cu₂O films under light illumination: (a) pH=8; (b) pH=10; (c) pH=12; and (d) pH=14.

Fig. 7. SEM images of Cu₂O films after PEC tests: (a) pH=8; (b) pH=10; (c) pH=12; and (d) pH=14.
\[k_{11} = \frac{n \rho(LA)_{12}}{n \rho(LA)} = \frac{(c_0(Cu^{2+}) - x) \times (c_0(LA) - 2x)^2}{x \times [OH^{-}]^2} \]

After simple algebraic transformation an equation can be obtained:

\[n^3 - n^2 (c_0(Cu^{2+}) + c_0(LA)) + 0.25n(4c_0(LA)c_0(Cu^{2+}) + c_0(LA)^2 + \frac{\rho(OH)_{14}}{\rho(LA)_{12}} [OH^{-}]^2) - 0.25c_0(Cu^{2+})c_0(LA)^2 = 0 \]

(15)

A rough temperature correction of the equilibrium constants for the deposition conditions (T=50 °C) is made suggesting that ΔG does not depend on the temperature in the region 20–50 °C. The formation constant at temperature \(T_2 \) can be calculated based on the values known for \(T_1 \):

\[\Delta G = const = \Delta G_1 = -RT_1 \ln K_1 \]

\[K_2 = e^{-\frac{\Delta G}{RT_2}} = e^{-\frac{RT_1 \ln K_1}{RT_2}} = K_1 \frac{n_1}{n_2} \]

(16)

Eq. (16) is used to assess the composition of the reaction mixture. Corrected and uncorrected constants and initial concentrations of the reagents are used to solve the cubic Eq. (15) in the pH region 7–14 (the influence of the temperature on the pH is assumed to be negligible). Therefore, based on the formation constants of the Cu(II) complexes with different ligands (LA and OH⁻), the ionic composition of the solution at different pH can be estimated (Fig. S1).

In the as-prepared alkaline solution the Cu(II) ions tend to form complex compounds with lactate and two types of complexes can exist, i.e. copper hydroxocomplexes [Cu(OH)n]²⁻⁻ and copper lactate complexes [Cu(LA)n]²⁻⁻. The dependence of the [Cu(LA)n] concentration on the pH value of the reaction mixture (Fig. S1) indicates that at lower pH the solution mainly contains [Cu(LA)n]²⁻⁻, whereas at higher pH [Cu(OH)n]²⁻⁻ dominates. Accordingly, it is contended that [Cu(OH)n]²⁻⁻ facilitates the growth of Cu₂O crystals along the (111) axis and [Cu(LA)n]²⁻⁻ stimulates the Cu₂O growth along the (100) axis.

SEM images of the Cu₂O thin films grown in solutions of varying pH are shown in Fig. 3. The surface of the films is found to be continuous and dense. From the SEM images it can be seen that the film grows preferably in the (200) orientation in the solution with pH=8 in line with the XRD results. At pH=10 or higher the films increasingly tend to grow with preferred (111) orientation. Although the film deposited at pH=10 already shows a preferred (111) orientation in the XRD pattern, the film is composed of very small crystallites compared with those grown at pH values of 12 and 14. In a solution pH of 14, the largest crystallites are grown as can be seen also from the SEM images. The crystallites expose triangular (111) facets. In order to follow the crystal growth in time, Cu₂O was electrodeposited on FTO glass substrate at varying time. SEM analysis shows that initially uniform cubic crystals are formed with random orientation on the FTO substrate (Fig. S2). With increasing deposition time, the crystals grow preferably along the (111) axis (Figs. S2 and S3).

XPS was applied to investigate the chemical state of the surface of the Cu₂O films. XP Cu 2p and O 1s core level spectra are shown in Fig.4. The Cu 2p doublet exhibits an asymmetric shape with Cu 2p₁₂ at 932.6 eV and Cu 2p₃₂ at 952.4 eV. These positions are in accordance with other reports, where preferably Cu(I) oxide was grown by electrodeposition in alkaline solutions [36,37]. However, since Cu 2p features at these positions can in principle also be assigned to metallic Cu [38], the Cu LMM Auger transition in the XPS spectrum is investigated as well. Fig. 5a shows the Cu LMM Auger spectrum of Cu₂O grown in the solution with pH=12 has a prominent peak around 570.0 eV. Metallic Cu would be expected in the binding energy range of 567.7–567.9 eV [39], while Cu₂O gives a signal at 570 eV and Cu(OH)₂ at 570.4 eV (at a similar position as Cu₂O) [40]. Fig. 5a confirms that the film consists of Cu₂O and possible Cu(OH)₂ and does not contain CuO. In order to confirm the existence of Cu(OH)₂ rather than CuO, the Cu₂O surface was sputtered in the XPS chamber and then re-analyzed by XPS. Fig. 5b shows the XP Cu 2p core level spectra measured before and after sputtering. It is found that the shoulder peak initially visible at the main Cu 2p₃₂ feature had disappeared after sputtering, indicating only Cu²⁺ was present at the surface. It is known that exposure of Cu₂O to air will lead to formation of a Cu hydroxide surface contamination [39]. As the Auger peak for CuO is not developed in the spectra, it can be concluded that the shoulder peak of Cu 2p₁₂ at 934.8 eV is due to Cu(OH)₂. Furthermore, Cu(OH)₂ signal corroborates possible mechanism of Cu²⁺ formation at higher pH’s. So, from XPS and XRD the as-grown Cu-based oxide films are Cu₂O without formation of Cu or CuO, yet with minor contributions of Cu(OH)₂ at the surface.

Photoresponse measurements of the Cu₂O photocathodes were carried out by means of a potentiosstat in a three-electrode setup with Ag/AgCl as the reference electrode and Pt as the counter electrode. The scanning rate was 10 mV/s. Fig. 6 shows the dependence of current density on the potential vs. Ag/AgCl under chopped light illumination for the Cu₂O films grown in the solutions of increasing pH. Fig. 6a–d shows that all Cu₂O films generate photocurrent when illuminated. The onset potentials of all electrodes are below 0 V vs. Ag/AgCl. The negative onset potential becomes smaller (less negative) for higher pH values of the chemical bath. For the Cu₂O film prepared at a pH of 8, the onset potential is at approximately −0.35 V vs. Ag/AgCl. When the applied potential is below this value, the electrode will generate a cathodic photocurrent. It can also generate a weak anodic photocurrent as a photoanode at higher than −0.35 V vs. Ag/AgCl. As it can start to generate the anodic photocurrent at more negative potential, it endured the oxidation on the surface much more than...
other samples. Therefore, when it generated the anodic photocurrent, the surface would be oxidized even at more negative potential. The Cu$_2$O film grown at a pH of 12 shows the best PEC performance for hydrogen generation, as demonstrated by the highest photocurrent at a given potential. As a typical example for the PEC performance trend, the photocurrent density at -0.6 V decreased in the order (pH = 12) $>(\text{pH} = 14) > (\text{pH} = 10) > (\text{pH} = 8)$.

After PEC measurements each sample was investigated by SEM to investigate possible changes on the morphology. Fig. 7 shows the representative SEM images of the tested Cu$_2$O films. XRD and SEM analysis of the composition, crystal morphology and crystal-lite sizes shows that no significant changes have taken place. Compared with Fig. 3, the only clear change in the SEM images is the appearance of dots on certain crystal planes. In Fig. 8, the film grown at a pH of 14 is displayed at higher magnification before and after PEC measurements, indicating a pronounced roughening of the (200) facets. In contrast, the (111) facets of the Cu$_2$O film remained unchanged with at least at this scale no obvious changes due to light illumination in the electrolyte.

Contrasting the reported surface energies of the (111) surface (-212.39 eV) and (200) surface (-215.25 eV) from first-principles DFT calculations [41], the Cu$_2$O (111) surface is the more stable one and Cu$_2$O (200) surface the most active. Different crystal facets possess different surface energy levels of conduction and valence bands [41]. Compared with the Cu$_2$O (111) facet, the valence band of Cu$_2$O (200) is known to be shifted to higher energies. Accordingly, it is surmised that photogenerated holes will move to higher energy facets such as (200) facets. At the same time, photogenerated electrons will preferentially move to energetically favorable (111) facets. Accordingly, it may be speculated that the oxidation reaction mainly takes place on the (200) facets and the reduction on the (111) facets. It is then reasonable to state that the (200) facets will be oxidized more easily than the (111) facets by an anodic photocurrent, which would deteriorate the PEC performance of the film terminated by predominantly (200) facets.

After PEC measurements, XPS was applied again to investigate changes in chemical surface composition and oxidation state of Cu of the Cu$_2$O electrodes. The survey spectrum confirmed that the O emission for Cu$_2$O film (pH = 8) is considerably increased after PEC experiments, whereas Cu 2p emission is decreased (Figs. S4 and S6), indicating that the films had been oxidized. XP core level spectra of Cu and O for all Cu$_2$O films after PEC measurements are shown in Fig. 9. For the sample grown at the pH of 8, the Cu 2p$_{3/2}$ peak is fitted into two peaks: one at 932.6 eV and the other one at 934.7 eV. The peak at 932.6 eV is attributed to Cu$_2$O, while the peak at 934.7 eV is assigned to CuO. The observed shifts of both Cu 2p$_{3/2}$ and O 1s peaks are consistent with the XRD results. The binding energy, FWHM, and contribution of O 1s peaks after PEC measurements are shown in Table 3. The binding energy, FWHM, and contribution of Cu 2p$_{3/2}$ peaks after PEC measurements are shown in Table 2.

Table 2: Binding energy, FWHM and contribution of Cu 2p$_{3/2}$ peaks after PEC measurements.

<table>
<thead>
<tr>
<th>pH</th>
<th>Binding energy (eV)</th>
<th>FWHM (eV)</th>
<th>Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu$^+$</td>
<td>Cu$_2$O$^+$</td>
<td>Cu$^+$</td>
</tr>
<tr>
<td>8</td>
<td>932.6</td>
<td>934.7</td>
<td>1.22</td>
</tr>
<tr>
<td>10</td>
<td>932.5</td>
<td>934.9</td>
<td>1.73</td>
</tr>
<tr>
<td>12</td>
<td>932.6</td>
<td>934.7</td>
<td>1.49</td>
</tr>
<tr>
<td>14</td>
<td>932.4</td>
<td>934.5</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Table 3: Binding energy, FWHM and contribution of O 1s peaks after PEC measurements.

<table>
<thead>
<tr>
<th>pH</th>
<th>Binding energy (eV)</th>
<th>FWHM (eV)</th>
<th>Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu$_2$O</td>
<td>Cu(OH)$_2$</td>
<td>Cu$_2$O</td>
</tr>
<tr>
<td>8</td>
<td>530.6</td>
<td>531.7</td>
<td>1.14</td>
</tr>
<tr>
<td>10</td>
<td>530.7</td>
<td>532.3</td>
<td>1.68</td>
</tr>
<tr>
<td>12</td>
<td>530.7</td>
<td>532.1</td>
<td>1.46</td>
</tr>
<tr>
<td>14</td>
<td>530.2</td>
<td>531.7</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Fig. 9. X-ray photoelectron core level spectra of Cu$_2$O films after PEC tests: (a) Cu 2p peaks; and (b) O 1s peaks.

Fig. 10. Dependence of current density on time for photostability tests of Cu$_2$O films.
peak at 934.7 eV attributed to Cu(OH)$_2$, indicating that the Cu$_2$O on the surface was partly oxidized into Cu(OH)$_2$ under the anodic photocurrent during the PEC measurement. The fitting results of Cu 2p$_{3/2}$ peaks for all the samples are listed in Table 2. The intensity of the Cu(OH)$_2$ peaks decreased with increasing bath pH. At pH = 14, the shoulder peak of Cu 2p$_{3/2}$ due to Cu(OH)$_2$ has the lower contribution (11.9%) among all films characterized after PEC measurements. Two component fitting of the O 1s peaks shows contributions from Cu$_2$O and Cu(OH)$_2$. The fitting results of the O 1s peaks are listed in Table 3. The O 1s core level spectra reveal that the Cu$_2$O film grown at the pH of 8 was oxidized to a larger degree during PEC tests than the films grown at higher pH.

The photostability tests on the synthesized Cu$_2$O films were performed in 1 M Na$_2$SO$_4$ electrolyte solution with 0 V (vs. Ag/AgCl 3 M NaCl) bias applied for 24 h under light illumination. The dependence of current density on time is showed in Fig. 10, indicating that the film grown at higher pH can generate more photocurrent for water splitting at 0 V and the photocurrent for all the films can still be observed after 24 h although the current decreased due to the photocorrosion. For the Cu$_2$O film grown at pH = 8, after the light on the photocurrent was increased slowly on the beginning due to the film photo-dissolution, as showed in the inset in the Fig. 10. Compare with other samples the photocurrent of the Cu$_2$O film with preferable (111) facets grown at pH = 14 stayed almost on the same level with the light on in 30 min. But for the film grown at pH = 8, some small spots were exposed with no film on the electrode after 24 h due to the severe photocorrosion. The photostability tests showed that the film growth at pH = 14 still has the photoactivity of over 60% left after 24 h while the film grown at pH = 8 just around 45% left.

The Auger measurements in Fig. 11 show that the Cu$_2$O on the surface of the electrodes was partly reduced to Cu metal after 24 h of the photostability tests and the film grown at pH = 8 endured severe corrosion more than that grown at pH = 14 observed from the relative intensity of Cu$_2$O and Cu peak. It also indicates that Cu$_2$O was still existed on the electrodes even after 24 h of the photostability tests. From the SEM morphologies in Fig. 12. It can be seen that the surface of the film with preferable (002) facets was corroded heavily while the surface on the film with preferable (111) facets still showed the smooth (111) facets, indicating that the (111) facets are more stable than (002) facets for solar water splitting.

4. Conclusions

Cu$_2$O films were grown by electrodeposition in aqueous lactate solutions of varying pH. The effect of bath pH on morphology, structural and photoelectrochemical properties of Cu$_2$O films was investigated. XRD patterns showed that all as-prepared films are polycrystalline, and, except for Cu$_2$O, no other phases, such as CuO and Cu, could be detected. The film grown at pH = 8 showed Cu$_2$O peaks with preferential orientation along (200) axis and films deposited at pH values of 10, 12 and 14 exhibited Cu$_2$O peaks with preferential orientation along (111) axis. ([Cu(OH)$_n$]$^{2-}$) complexes present at higher alkaline pH promote the Cu$_2$O growth along (111) axis and ([Cu(LA)$_n$]$^{2-}$) complexes stimulate the Cu$_2$O growth along (200) axis.
The average grain size along the (111) axis for the as-prepared films is found to be between 29 and 46 nm. The film grown at pH = 14 has the narrowest FWHM and thus the largest crystallites. Cu 2p shows a doublet peak with an asymmetric shape: Cu 2p1/2 at 932.6 eV and Cu 2p3/2 at 952.4 eV attributed to Cu2O. SEM images also showed that the films grew with preferable (200) orientation in lower pH solution. At pH ≥ 10 the films started to grow with preferable (111) orientation. All Cu2O films can generate photocurrent during light illumination. The PEC performance of Cu2O can be tuned by controlled facetting. The Cu2O film grown in the solution pH = 12 showed the best PEC performance for hydrogen generation. The photocatalytic tests showed that the film grown at pH = 14 still has the photocactivity of over 60% left after 24 h but the film grown at pH = 8 just around 45% left. The (111) facets of the Cu2O film are more stable than other facets for solar water splitting.

Acknowledgments

The authors gratefully acknowledge Mrs. Yi Zhang for the assistance with SEM measurements, Mr. Ad Wonders and Mr. Johan J.G. van Velzen for support during the experiments, and Mr. M.W.G.M. (Tiny) Verhoeven for XPS training and the assistance on XPS measurements.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.solmat.2015.05.025.

References