Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting

Citation for published version (APA):

DOI:
10.1016/j.solmat.2015.05.025

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 15. Jun. 2021
Cu$_2$O photoelectrodes for solar water splitting: Tuning photoelectrochemical performance by controlled faceting

Quan-Bao Ma *, Jan P. Hofmann, Anton Litke, Emiel J.M. Hensen *

Inorganic Materials Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Cuprous oxide (Cu$_2$O) films were grown by electrodeposition in aqueous solutions of varying pH. The effect of bath pH on morphology, structural, and photoelectrochemical (PEC) properties of Cu$_2$O films was investigated. XRD showed that all prepared films were polycrystalline Cu$_2$O, without formation of competing phases such as CuO and Cu. The film grown in the solution with a pH of 8 is made up of Cu$_2$O crystals with preferential (200) planes exposed. The films deposited at solution pH values of 10, 12 and 14 exhibit Cu$_2$O crystallites with preferential (111) planes exposed. As photoelectrodes these Cu$_2$O films generate photocurrent upon light illumination. The Cu$_2$O film grown in the solution with pH of 12 shows the best PEC performance for hydrogen generation. The (111) facets of the Cu$_2$O film were stable without corrosion during the PEC test. A mechanism for the preferred faceting in alkaline solution has been discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Photoelectrochemical (PEC) water splitting is a promising technology to produce renewable hydrogen with oxygen as a by-product from water and sunlight. Fujishima and Honda demonstrated PEC water splitting for the first time in 1972 using a TiO$_2$ photoelectrode [1]. Until now, materials such as GaInP$_2$ [2,3], Cu$_2$O [4-6], InGaN [7-10], InP [11], Fe$_2$O$_3$ [12] and SiC [13-15] have been used as photocathodes for PEC water splitting. Cu$_2$O is considered as one of the most promising photosensitive materials for PEC water splitting because of its low toxicity, abundance, good environmental acceptability and simple production process. Cu$_2$O is a p-type semiconductor with a direct band gap of 2.0 eV [4]. It can absorb solar radiation in the range of 300–620 nm, covering about 50% of the photons of the solar spectrum. Cu$_2$O is considered as a candidate photocathode in a PEC cell, because the conduction band edge of Cu$_2$O (ca. –1.35 V vs. Ag/AgCl at pH=7) is sufficiently more negative than the reduction potential of water (ca. –0.61 V vs. Ag/AgCl at pH=7) [16]. Therefore, Cu$_2$O is in principle capable of decomposing water into H$_2$ as a photocathode. Cu$_2$O can be synthesized by various methods such as sputtering [17,18], chemical vapor deposition [19,20], thermal oxidation [21], chemical bath deposition [22], and electrodeposition [23-25]. Among them, the electrodeposition technique has attracted special interest for the preparation of Cu$_2$O thin films in recent years. It has two major advantages, namely its simplicity and the low growth temperature, leading to low cost processes and a large number of industrial applications. Also, electrodeposition allows control of the stoichiometry, thickness, and microstructure of the films by adjusting the deposition parameters. Until now there have been some reports on investigating the influence of pH on the preferred orientation of the Cu$_2$O crystallites that make up the film [26-28] but few mechanistic details were discussed.

In this work, electrodeposition was used to prepare Cu$_2$O films with different preferred crystal orientations. The effect of the pH of the bath on the morphology and the structural properties of the Cu$_2$O films was investigated. A growth mechanism of preferred faceting in alkaline solution as a function of pH was devised. The stoichiometry, thickness, and microstructure of the films by adjusting the deposition parameters. Until now there have been some reports on investigating the influence of pH on the preferred orientation of the Cu$_2$O crystallites that make up the film [26-28] but few mechanistic details were discussed.

2. Experimental

Cu$_2$O films were electrodeposited in a two-electrode configuration in galvanostatic mode on fluorine-doped tin oxide (FTO) coated...
of electrodeposited Cu$_2$O

3. Results and discussion

The pH of the electrolyte solution has a strong influence on the structure of electrodeposited Cu$_2$O films. X-ray diffraction patterns of Cu$_2$O films prepared from solutions of varying pH in the range of 8–14 are shown in Fig. 1. The thickness of all Cu$_2$O films as determined by SEM was around 1 μm. According to the XRD patterns, all prepared films are polycrystalline and can be indexed to the cubic Cu$_2$O phase with a lattice constant of $a = 4.252$ Å. No other phases, in particular CuO and Cu, were detected by XRD. It was found that the film grown in the solution with pH = 8 exhibited a pattern with strong Cu$_2$O peaks along the (200) axis, while the films deposited at higher pH had preferential orientation along the (111) axis, that is the (111) facets tend to be parallel to the substrate. These observations agree with results of Jeong et al. [29], reporting that the preferred facet of the Cu$_2$O film was (200) at pH lower than 9 and (111) at pH values higher than 10.

To assess the quality of the as-deposited Cu$_2$O films, the full-width at half-maximum (FWHM) values of the (111) peaks were used to determine the crystallite size according to the Scherrer formula [30,31]. The FWHM and the grain size as a function of pH are shown in Fig. 2. With increasing pH, the crystallites of the Cu$_2$O films became larger. Fig. 2 shows that the average grain size along the (111) axis is between 29 and 46 nm. The film grown at pH = 14 contains the largest crystallites. At a pH higher than 12, the plating solution became unstable and a milky precipitate formed. To prepare Cu$_2$O film with the preferential (111) facets the solution with pH = 12 is preferred. It is suggested that the higher pH of the solution stimulates the grain growth of Cu$_2$O and forms films with large crystallites, therefore improve the crystallinity of Cu$_2$O films.

The total formation constants of the lactate and hydroxo-complexes of Cu(II) are listed in Table 1. At pH higher than 6.0 more than 99% of lactic acid in a solution is deprotonated (pK$_a$ = 3.86 [35]). Based on this the following equations

![Fig. 1. X-ray diffraction patterns of Cu$_2$O films grown at different pH values.](image)

![Fig. 2. Dependence of the FWHM and crystallite size on the bath pH for Cu$_2$O films.](image)

<table>
<thead>
<tr>
<th>Ligand</th>
<th>log β_1</th>
<th>log β_2</th>
<th>log β_3</th>
<th>log β_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>3.02</td>
<td>4.85</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OH</td>
<td>7.0</td>
<td>13.68</td>
<td>17.0</td>
<td>18.5</td>
</tr>
</tbody>
</table>

* Data were taken from Ref. [34]. Temperature for the listed values is between 20 and 25 °C. Values are given for zero ionic strength for OH$^-$ and finite ionic strength for LA.
For the formation of the lactate complexes can be derived:

\[
\text{Cu}^{2+} + \text{LA}^{-} \rightleftharpoons [\text{Cu(LA)}]^+ \tag{1}
\]

\[
[\text{Cu(LA)}]^+ + \text{LA}^{-} \rightleftharpoons [\text{Cu(LA)}_2]^0 \tag{2}
\]

\[
\text{Cu}^{2+} + 2\text{LA}^{-} \rightleftharpoons [\text{Cu(LA)}_2]^0 \tag{3}
\]

For the above listed reactions the equilibrium constants can be written as follows:

\[
k_1 = \beta(\text{LA})_1 = \frac{[\text{Cu(LA)}]^+}{[\text{Cu}^{2+}] \times [\text{LA}^{-}]} \tag{4}
\]

\[
k_2 = \beta(\text{LA})_2 = \frac{[\text{Cu(LA)}_2]^0}{[\text{Cu}^{2+}] \times [\text{LA}^{-}]} \tag{5}
\]

\[
k_3 = \beta(\text{LA})_2 = \frac{[\text{Cu(LA)}_2]^0}{[\text{Cu}^{2+}] \times [\text{LA}^{-}]} \tag{6}
\]

where \{A\} is an equilibrium concentration of species A, \(k_i\) is an equilibrium constant of the corresponding reaction and \(\beta(N)\) is a total formation constant of a complex with \(i\) ligands of type \(N\) in the coordination sphere.

Besides, reactions (1)–(3) at high pH values following competing processes can take place:

\[
\text{Cu}^{2+} + \text{OH}^{-} \rightleftharpoons [\text{Cu(OH)}]^+ \tag{7}
\]

\[
[\text{Cu(OH)}]^+ + \text{OH}^{-} \rightleftharpoons [\text{Cu(OH)}_2]^0 \tag{8}
\]

\[
[\text{Cu(OH)}_2]^0 + \text{OH}^{-} \rightleftharpoons [\text{Cu(OH)}_3]^+ \tag{9}
\]

\[
[\text{Cu(OH)}_3]^+ + \text{OH}^{-} \rightleftharpoons [\text{Cu(OH)}_4]^2- \tag{10}
\]

\[
\text{Cu}^{2+} + 4\text{OH}^{-} \rightleftharpoons [\text{Cu(OH)}_4]^2- \tag{11}
\]

\[
k_4 = \frac{\beta(\text{OH})_1}{[\text{Cu}^{2+}] \times [\text{OH}^{-}]} \tag{12}
\]

\[
k_5 = \frac{\beta(\text{OH})_2}{[\text{Cu}^{2+}] \times [\text{OH}^{-}]} \tag{13}
\]

\[
k_6 = \frac{\beta(\text{OH})_3}{[\text{Cu}^{2+}] \times [\text{OH}^{-}]} \tag{14}
\]

\[
k_7 = \frac{\beta(\text{OH})_4}{[\text{Cu}^{2+}] \times [\text{OH}^{-}]} \tag{15}
\]

\[
k_8 = \frac{[\text{Cu(OH)}_2]^0 \times [\text{OH}^{-}]^2}{[\text{Cu}^{2+}] \times [\text{OH}^{-}]} \tag{16}
\]

\[
[\text{Cu(LA)}_2]^0 + 2\text{OH}^{-} \rightleftharpoons [\text{Cu(LA)}_2\text{OH}]^+ + \text{LA}^{-} \tag{17}
\]

\[
[\text{Cu(LA)}_2\text{OH}]^+ + 2\text{OH}^{-} \rightleftharpoons [\text{Cu(LA)}_2\text{OH}_2]^2- + \text{LA}^{-} \tag{18}
\]

\[
[\text{Cu(LA)}_2]^0 + 4\text{OH}^{-} \rightleftharpoons [\text{Cu(LA)}_2\text{OH}_2]^2- + 2\text{LA}^{-} \tag{19}
\]

\[
k_9 = \frac{[\text{Cu(OH)}_2]^+}{[\text{Cu(LA)}_2]^0 \times [\text{LA}^{-}]} \tag{20}
\]

\[
k_{10} = \frac{[\text{Cu(OH)}_3]^+}{[\text{Cu(LA)}_2]^0 \times [\text{OH}^{-}]} \tag{21}
\]

and

Fig. 3. SEM morphologies of Cu₂O films grown at different pH values: (a) pH=8; (b) pH=10; (c) pH=12; and (d) pH=14.
To assess the ionic composition of the mixture at high pH values the reaction (11) and the equilibrium k_{11} can be used. The following simplification and assumptions are made to obtain an analytical expression for the dependence of the equilibrium concentration of metal complexes on the pH value:

(i) Reactions (1), (2), (4)–(7) and (10) are omitted based on the assumption that complexes $[\text{Cu(LA)}_2]^0$ and $[\text{Cu(OH)}_4]^2$ are the predominant species. Reaction (9) is excluded from the calculation as formation constant of $[\text{Cu(LA)(OH)}_2]^0$ is unknown. So only processes (3), (8) and (11) are taken into consideration;

(ii) Based on the previous statement the material balance for lactate and copper can be written in the following formula:

$$c_2(\text{Cu}) = c_0(\text{Cu}^{2+}) + \left[[\text{Cu(LA)}_2]^0 \right] + \left[[\text{Cu(OH)}_4]^2^- \right]$$ \hspace{1cm} (12)

$$c_2(\text{LA}) = c_0(\text{LA}) + 2 \times \left[[\text{Cu(LA)}_2]^0 \right]$$ \hspace{1cm} (13)

where $c_2(A)$ are the total concentrations of a compound A. The initial concentration $c_0(A)$ is known for every component and based on the amount of a corresponding substance added to the reaction mixture during the preparation.

Total concentrations of copper and lactate (lactic acid) are set as follows:

Taking into account the high values of the formation constants of the lactate and hydroxo-complexes of Cu(II) and the high initial concentration of the lactate anion and/or hydroxide (for the pH range above 10) it can be noticed that

$\left[\text{Cu}^{2+} \right] << \left[[\text{Cu(LA)}_2]^0 \right] + \left[[\text{Cu(OH)}_4]^2^- \right]$ \hspace{1cm} (14)

That is, all copper(II) in solution are present in the form of complex compounds rather than in the form of hydrated Cu$^{2+}$ cations. Accordingly, the formula (12) for Cu species can be rewritten as follows:

$$c_2(\text{Cu}) = c_0(\text{Cu}^{2+}) + [\text{Cu(LA)}_2]^0 + [\text{Cu(OH)}_4]^2^-$$ \hspace{1cm} (14)

Based on the expressions (13) and (14) the following substitution can be done:

$[\text{Cu(LA)}_2]^0 = x$, $[\text{Cu(OH)}_4]^2^- = c_0(\text{Cu}^{2+}) - x$

and

$\left[\text{LA}^- \right] = c_0(\text{LA}) - 2x$

The expression for k_{11} will be transformed into

\[k_{11} = \frac{\left[[\text{Cu(OH)}_4]^2^- \right] \times [\text{LA}^-]^2}{\left[[\text{Cu(LA)}_2]^0 \right] \times [\text{OH}^-]^4} \]

\[= \frac{[\text{Cu(OH)}_4]^2^-}{[\text{Cu}^{2+}] \times [\text{OH}^-]^4} \times \frac{[\text{Cu}^{2+}] \times [\text{LA}^-]^2}{[\text{Cu(LA)}_2]^0} \]

\[= \frac{\beta(\text{OH})_4}{\beta(\text{LA})_2} \]

Fig. 4. X-ray photoelectron core level spectra of as-grown Cu$_2$O films: (a) Cu 2p peaks; and (b) O 1s peaks

Fig. 5. (a) Binding energy data obtained for the Auger Cu LMM transition of the Cu$_2$O film grown at pH = 12; (b) Cu 2p peaks before and after sputtering.
Fig. 6. Chopped current density–potential curves of Cu$_2$O films under light illumination: (a) pH=8; (b) pH=10; (c) pH=12; and (d) pH=14.

Fig. 7. SEM images of Cu$_2$O films after PEC tests: (a) pH=8; (b) pH=10; (c) pH=12; and (d) pH=14.
Auger spectrum of Cu$_2$O grown in the solution with pH was investigated as well. Fig. 5a shows the Cu LMM assigned to metallic Cu$^{3+}$, the Cu LMM Auger transition in the since Cu 2p features at these positions can in principle also be estimated (Fig. S1).

A rough temperature correction of the equilibrium constants for the deposition conditions ($T=50\,^\circ C$) is made suggesting that ΔG does not depend on the temperature in the region 20–50 $^\circ C$. The formation constant at temperature T_f can be calculated based on the values known for T_1:

$$
\Delta G = \text{const} = \Delta G_1 = -RT_1 \ln K_1
$$

$$
K_2 = e^{-\frac{\Delta G}{RT_f}} = e^{\frac{\Delta G}{RT_f}} K_1^{\frac{-T_1}{T_f}}
$$

Eq. (16) is used to assess the composition of the reaction mixture. Corrected and uncorrected constants and initial concentrations of the reagents are used to solve the cubic Eq.(15) in the pH region 7–14 (the influence of the temperature on the pH is assumed to be negligible). Therefore, based on the formation constants of the Cu(II) complexes with different ligands (LA and OH$^-$), the ionic composition of the solution at different pH can be estimated (Fig. S1).

In the as-prepared alkaline solution the Cu(II) ions tend to form complex compounds with lactate and two types of complexes can exist, i.e. copper hydroxo-complexes [Cu(OH)$_2$]$_2$ and copper lactate-complexes [Cu(LA)$_2$]$_2$. The dependence of the [Cu(LA)$_2$] concentration on the pH value of the reaction mixture (Fig. S1) indicates that at lower pH the solution mainly contains [Cu(LA)$_2$]$_2$–, whereas at higher pH [Cu(OH)$_2$]$_2$– dominates. Accordingly, it is contended that [Cu(OH)$_2$]$_2$– facilitates the growth of Cu$_2$O crystals along the (111) axis and [Cu(LA)$_2$]$_2$– stimulates the Cu$_2$O growth along the (100) axis.

SEM images of the Cu$_2$O thin films grown in solutions of varying pH are shown in Fig. 3. The surface of the films is found to be continuous and dense. From the SEM images it can be seen that the film grows preferably in the (200) orientation in the solution with pH=8 in line with the XRD results. At pH=10 or higher the films increasingly tend to grow with preferred (111) orientation. Although the film deposited at pH=10 already shows a preferred (111) orientation in the XRD pattern, the film is composed of very small crystallites compared with those grown at pH values of 12 and 14. In a solution pH of 14, the largest crystallites are grown as can be seen also from the SEM images. The crystallites expose triangular (111) facets. In order to follow the crystal growth in time, Cu$_2$O was electrodeposited on FTO glass substrate at varying time. SEM analysis shows that initially uniform cubic crystals are formed with random orientation on the FTO substrate (Fig. S2). With increasing deposition time, the crystals grow preferably along the (111) axis (Figs. S2 and S3).

XPS was applied to investigate the chemical state of the surface of the Cu$_2$O films. XP Cu 2p and O 1s core level spectra are shown in Fig. 4. The Cu 2p doublet exhibits an asymmetric shape with Cu 2p$_{1/2}$ at 932.6 eV and Cu 2p$_{3/2}$ at 952.4 eV. These positions are in accordance with other reports, where preferably Cu(I) oxide was grown by electrodeposition in alkaline solutions [36,37]. However, since Cu 2p features at these positions can in principle also be assigned to metallic Cu [38], the Cu LMM Auger transition in the XP spectrum was investigated as well. Fig. 5a shows the Cu LMM Auger spectrum of Cu$_2$O grown in the solution with pH=12 has a prominent peak around 570.0 eV. Metallic Cu would be expected in the binding energy range of 567.7–567.9 eV [39], while Cu$_2$O gives a signal at 570 eV and Cu(OH)$_2$ at 570.4 eV (at a similar position as Cu$_2$O) [40]. Fig. 5a confirms that the film consists of Cu$_2$O and possible Cu(OH)$_2$ and does not contain CuO. In order to confirm the existence of Cu(OH)$_2$ rather than CuO, the Cu$_2$O surface was sputtered in the XPS chamber and then re-analyzed by XPS. Fig. 5b shows the XP Cu 2p core level spectra measured before and after sputtering. It is found that the shoulder peak initially visible at the main Cu 2p$_{3/2}$ feature had disappeared after sputtering, indicating only Cu$^{2+}$ was present at the surface. It is known that exposure of Cu$_2$O to air will lead to formation of a Cu hydroxide surface contamination [39]. As the Auger peak for CuO is not developed in the spectra, it can be concluded that the shoulder peak of Cu 2p$_{3/2}$ at 934.8 eV is due to Cu(OH)$_2$. Furthermore, Cu(OH)$_2$ signal corroborates possible mechanism of Cu$^{2+}$ formation at higher pH's. So, from XPS and XRD the as-grown Cu-based oxide films are Cu$_2$O without formation of Cu or CuO, yet with minor contributions of Cu(OH)$_2$ at the surface.

Photosresponse measurements of the Cu$_2$O photocathodes were carried out by means of a potentiosstat in a three-electrode setup with Ag/AgCl as the reference electrode and Pt as the counter electrode. The scanning rate was 10 mV/s. Fig. 6 shows the dependence of current density on the potential vs. Ag/AgCl under chopped light illumination for the Cu$_2$O films grown in the solution of increasing pH. Fig. 6a–d shows that all Cu$_2$O films generate photocurrent when illuminated. The onset potentials of all electrodes are below 0 V vs. Ag/AgCl. The negative onset potential becomes smaller (less negative) for higher pH values of the chemical bath. For the Cu$_2$O film prepared at a pH of 8, the onset potential is at approximately $-0.35\, V$ vs. Ag/AgCl. When the applied potential is below this value, the electrode will generate a cathodic photocurrent. It can also generate a weak anodic photocurrent as a photoanode at higher than $-0.35\, V$ vs. Ag/AgCl. As it can start to generate the anodic photocurrent at more negative potential, it endured the oxidation on the surface much more than

![Fig. 8. SEM images of the Cu$_2$O film grown at pH=14 before and after PEC tests (magnification 50,000x).](image)
other samples. Therefore, when it generated the anodic photocurrent, the surface would be oxidized even at more negative potential. The Cu_2O film grown at a pH of 12 shows the best PEC performance for hydrogen generation, as demonstrated by the highest photocurrent at a given potential. As a typical example for the PEC performance trend, the photocurrent density at \(-0.6 \) V decreased in the order \((\text{pH}=12) > (\text{pH}=14) > (\text{pH}=10) > (\text{pH}=8)\).

After PEC measurements each sample was investigated by SEM to investigate possible changes on the morphology. Fig. 7 shows the representative SEM images of the tested Cu_2O films. XRD and SEM analysis of the composition, crystal morphology and crystal-lite sizes shows that no significant changes have taken place. Compared with Fig. 3, the only clear change in the SEM images is the appearance of dots on certain crystal planes. In Fig. 8, the film grown at a pH of 14 is displayed at higher magnification before and after PEC measurements, indicating a pronounced roughening of the (200) facets. In contrast, the (111) facets of the Cu_2O film remained unchanged with at least at this scale no obvious changes due to light illumination in the electrolyte.

Constricting the reported surface energies of the (111) surface (\(-212.39\) eV) and (200) surface (\(-215.25\) eV) from first-principles DFT calculations [41], the Cu_2O (111) surface is the more stable one and Cu_2O (200) surface the most active. Different crystal facets possess different surface energy levels of conduction and valence bands [41]. Compared with the Cu_2O (111) facet, the valence band of Cu_2O (200) is known to be shifted to higher energies. Accordingly, it is surmised that photogenerated holes will move to higher energy facets such as (200) facets. At the same time, photogenerated electrons will preferentially move to energetically favorable (111) facets. Accordingly, it may be speculated that the oxidation reaction mainly takes place on the (200) facets and the reduction on the (111) facets. It is then reasonable to state that the (200) facets will be oxidized more easily than the (111) facets by an anodic photocurrent, which would deteriorate the PEC performance of the film terminated by predominantly (200) facets.

After PEC measurements, XPS was applied again to investigate changes in chemical surface composition and oxidation state of Cu of the Cu_2O electrodes. The survey spectrum confirmed that the O emission for Cu_2O film (pH = 8) is considerably increased after PEC experiments, whereas Cu 2p emission is decreased (Figs. S4 and S6), indicating that the films had been oxidized. XP core level spectra of Cu and O for all Cu_2O films after PEC measurements are shown in Fig. 9. For the sample grown at the pH of 8, the Cu 2p_{3/2} peak is fitted into two peaks: one at 932.6 eV and the other one at 934.7 eV. The peak at 932.6 eV is attributed to Cu_2O, while the other peak.

Table 2

<table>
<thead>
<tr>
<th>pH</th>
<th>Binding energy (eV)</th>
<th>FWHM (eV)</th>
<th>Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu⁺ (Cu(OH)₂)</td>
<td>Cu_2⁺ (Cu(OH)₂)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>932.6</td>
<td>934.7</td>
<td>1.22</td>
</tr>
<tr>
<td>10</td>
<td>932.5</td>
<td>934.9</td>
<td>1.73</td>
</tr>
<tr>
<td>12</td>
<td>932.6</td>
<td>934.7</td>
<td>1.49</td>
</tr>
<tr>
<td>14</td>
<td>932.4</td>
<td>934.5</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>pH</th>
<th>Binding energy (eV)</th>
<th>FWHM (eV)</th>
<th>Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu₂O (Cu(OH)₂)</td>
<td>Cu₂⁺ (Cu(OH)₂)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>530.6</td>
<td>531.7</td>
<td>1.14</td>
</tr>
<tr>
<td>10</td>
<td>530.7</td>
<td>532.3</td>
<td>1.68</td>
</tr>
<tr>
<td>12</td>
<td>530.7</td>
<td>532.1</td>
<td>1.46</td>
</tr>
<tr>
<td>14</td>
<td>530.2</td>
<td>531.7</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Fig. 9. X-ray photoelectron core level spectra of Cu₂O films after PEC tests: (a) Cu 2p peaks; and (b) O 1s peaks.

Fig. 10. Dependence of current density on time for photostability tests of Cu₂O films.
peak at 934.7 eV attributed to Cu(OH)$_2$, indicating that the Cu$_2$O on the surface was partly oxidized into Cu(OH)$_2$ under the anodic photocurrent during the PEC measurement. The fitting results of Cu 2p$_{3/2}$ peaks for all the samples are listed in Table 2. The intensity of the Cu(OH)$_2$ peaks decreased with increasing bath pH. At pH = 14, the shoulder peak of Cu 2p$_{3/2}$ due to Cu(OH)$_2$ has the lower contribution (11.9%) among all films characterized after PEC measurements. Two component fitting of the O 1s peaks shows contributions from Cu$_2$O and Cu(OH)$_2$. The fitting results of the O 1s peaks are listed in Table 3. The O 1s core level spectra reveal that the Cu$_2$O film grown at the pH of 8 was oxidized to a larger degree during PEC tests than the films grown at higher pH.

The photostability tests on the synthesized Cu$_2$O films were performed in 1 M Na$_2$SO$_4$ electrolyte solution with 0 V (vs. Ag/AgCl 3 M NaCl) bias applied for 24 h under light illumination. The dependence of current density on time is showed in Fig. 10, indicating that the film grown at higher pH can generate more photocurrent for water splitting at 0 V and the photocurrent for all the films can still be observed after 24 h although the current decreased due to the photocorrosion. For the Cu$_2$O film grown at pH = 8, after the light on the photocurrent was increased slowly on the beginning due to the film photo-dissolution, as showed in the inset in the Fig. 10. Compare with other samples the photocurrent of the Cu$_2$O film with preferable (111) facets grown at pH = 14 stayed almost on the same level with the light on in 30 min. But for the film grown at pH = 8, some small spots were exposed with no film on the electrode after 24 h due to the severe photocorrosion. The photostability tests showed that the film growth at pH = 14 still has the photoactivity of over 60% left after 24 h while the film grown at pH = 8 just around 45% left.

The photostability tests showed that the Cu$_2$O on the surface of the electrodes was partly reduced to Cu metal after 24 h of the photostability tests and the film grown at pH = 8 endured severe corrosion more than that grown at pH = 14 observed from the relative intensity of Cu$_2$O and Cu peak. It also indicates that Cu$_2$O was still existed on the electrodes even after 24 h of the photostability tests. From the SEM morphologies in Fig. 12. It can be seen that the surface of the film with preferable (002) facets was corroded heavily while the surface on the film with preferable (111) facets still showed the smooth (111) facets, indicating that the (111) facets are more stable than (002) facets for solar water splitting.

4. Conclusions

Cu$_2$O films were grown by electrodeposition in aqueous lactate solutions of varying pH. The effect of bath pH on morphology, structural and photoelectrochemical properties of Cu$_2$O films was investigated. XRD patterns showed that all as-prepared films are polycrystalline, and, except for Cu$_2$O, no other phases, such as CuO and Cu, could be detected. The film grown at pH = 8 showed Cu$_2$O peaks with preferential orientation along (200) axis and films deposited at pH values of 10, 12 and 14 exhibited Cu$_2$O peaks with preferential orientation along (111) axis. ([Cu(OH)$_{n}$]$_{2}$~$^{2-}$) complexes present at higher alkaline pH promote the Cu$_2$O growth along (111) axis and ([Cu(LA)$_{n}$]$_{2}$~$^{2-}$) complexes stimulate the Cu$_2$O growth along (200) axis.
The average grain size along the (111) axis for the as-prepared films is found to be between 29 and 46 nm. The film grown at pH = 14 has the narrowest FWHM and thus the largest crystallites. Cu 2p shows a doublet peak with an asymmetric shape: Cu 2p$_1/2$ at 932.6 eV and Cu 2p$_3/2$ at 952.4 eV attributed to Cu$_2$O. SEM images also showed that the films grew with preferable (200) orientation in lower pH solution. At pH ≥ 10 the films started to grow with preferable (111) orientation. All Cu$_2$O films can generate photocurrent during light illumination. The PEC performance of Cu$_2$O can be tuned by controlled faceting. The Cu$_2$O film grown in the solution pH=12 showed the best PEC performance for hydrogen generation. The photoresponse tests showed that the film grown at pH = 14 still has the photoactivity of over 60% left after 24 h but the film grown at pH = 8 just around 45% left. The (111) facets of the Cu$_2$O film are more stable than other facets for solar water splitting.

Acknowledgments

The authors gratefully acknowledge Mrs. Yi Zhang for the assistance with SEM measurements, Mr. Ad Wonders and Mr. Johan J.G. van Velzen for support during the experiments, and Mr. M.W.G.M. (Tiny) Verhoeven for XPS training and the assistance on XPS measurements.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.solmat.2015.05.025.

References