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Exploiting Spatial-redundancy of Image Sensor for
Motion Robust rPPG

Wenjin Wang, Sander Stuijk, and Gerard de Haan

Abstract—Remote photoplethysmography (rPPG) techniques
can measure cardiac activity by detecting pulse-induced colour
variations on human skin using an RGB camera. State-of-the-
art rPPG methods are sensitive to subject body motions (e.g.,
motion-induced colour distortions). This study proposes a novel
framework to improve the motion robustness of rPPG. The
basic idea of this work originates from the observation that
a camera can simultaneously sample multiple skin regions in
parallel, and each of them can be treated as an independent
sensor for pulse measurement. The spatial-redundancy of an
image sensor can thus be exploited to distinguish the pulse-
signal from motion-induced noise. To this end, the pixel-based
rPPG sensors are constructed to estimate a robust pulse-signal
using motion-compensated pixel-to-pixel pulse extraction, spatial
pruning, and temporal filtering. The evaluation of this strategy is
not based on a full clinical trial, but on 36 challenging benchmark
videos consisting of subjects that differ in gender, skin-types
and performed motion-categories. Experimental results show that
the proposed method improves the SNR of the state-of-the-art
rPPG technique from 3.34dB to 6.76dB, and the agreement
(�1:96�) with instantaneous reference pulse-rate from 55% to
80% correct. ANOVA with post-hoc comparison shows that the
improvement on motion robustness is significant. The rPPG
method developed in this study has a performance that is very
close to that of the contact-based sensor under realistic situations,
while its computational efficiency allows real-time processing on
an off-the-shelf computer.

Index Terms—Biomedical monitoring, photoplethysmography,
remote sensing, motion analysis.

I. INTRODUCTION

CARDIAC activity is measured by medical professionals
to monitor patients’ health and assist clinical diagnosis.

The conventional contact-based monitoring methods, i.e., elec-
trocardiogram (ECG) and photoplethysmography (PPG), are
somewhat obtrusive and may cause skin-irritation in sensitive
subjects (e.g., skin-damaged patients, neonates). In contrast,
camera-based vital signs monitoring triggers a growing inter-
est for non-invasive and non-obtrusive healthcare monitoring.

Earlier progress made in camera-based vital signs monitor-
ing can be categorised into two trends: (1) detecting the minute
optical absorption variations of the human skin induced by
blood volume changes during the cardiac cycle, i.e., remote-
PPG (rPPG) [1], [2], [3]; (2) detecting the periodic head
motions caused by the blood pulsing from heart to head via
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the abdominal aorta and carotid arteries [4]. However, both
the colour-based and motion-based approaches are sensitive to
body motions, since these can dramatically change the light
reflected from the skin surface and also corrupt the subtle
head motion driven by the cardiovascular pulse. Although
significant progress has been reported in the rPPG-category for
a fitness setting recently [3], the Signal-to-Noise Ratio (SNR)
of the pulse-signals obtained by all existing methods are still
reduced when the subject is moving relative to the camera.

The goal of this paper is to significantly improve the
SNR of the rPPG pulse-signal by better exploiting the spatial
redundancy of the image-sensor. To some extent, the spatial-
redundancy of the image-sensor has already been exploited
in previous rPPG methods [1], [2], [3] as they extract the
pulse-signal from the averaged pixel value in a skin region.
Such averaging of independent sensors is optimal only if
the (temporal) noise-level in skin pixels is comparable and
has a Gaussian distribution. However, the image-to-image
variations in skin pixels from a face may be very strong in
the mouth region of a talking subject, while relatively low on
the stationary forehead. If the outliers (pixels near the mouth)
could be removed from the average, the quality of the extracted
pulse-signal is expected to be improved significantly.

To this end, a motion robust rPPG method is proposed to
treat each skin pixel in an image as an independent rPPG
sensor and extract/combine multiple rPPG-signals in a way
that is immune to noise. The proposed method consists of three
steps: (1) creating pixel-based rPPG sensors from motion-
compensated image pixels, (2) rejecting motion-induced spa-
tial noise, and (3) optimising temporally extracted pulse-
traces into a single robust rPPG-signal. To demonstrate the
effectiveness, it has been evaluated on 36 challenging videos
with an equal number of male and female subjects in 3 skin-
type categories and 6 motion-type categories.

The contributions of this work are threefold: (1) a new strat-
egy is proposed to track pixels in the region of interest (e.g., a
subject’s face) for rPPG measurement using global and local
motion compensation; (2) exploiting the spatial-redundancy of
an image sensor, i.e., pixel-based rPPG sensors, is proved to
lead to a considerable gain in accuracy as compared to the
common approach that takes a single averaged colour trace;
and (3) a novel algorithm is introduced to optimise the pixel-
based rPPG sensors in spatial and temporal domain.

The rest of this paper is organised as follows. Section II
provides an overview of the related work. Section III analyses
the problem concerning this study and describes the proposed
method. The experimental setup is discussed in Section IV
while the proposed method is evaluated and discussed in
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Fig. 1. The flowchart of the proposed motion robust rPPG framework: A. a video sequence with a manually selected RoI is the input to the framework.
The global and local motion of the RoI are compensated, and pixel-based rPPG sensors between adjacent frames are constructed using motion-compensated
pixel-to-pixel correspondences; B. the outliers among the pixel-based rPPG sensors, i.e., the ones without skin information or distorted by motion noise, are
pruned in the spatial domain; and C. the spatially pruned inliers are chained up in the temporal domain as multiple pulse-traces, which are filtered and further
optimised into a single robust rPPG-signal.

Section V. Finally, the conclusions are drawn in Section VI.

II. RELATED WORK

In the cardiovascular system, the blood pulse propagating
throughout the body changes the blood volume in the vessels.
Given the fact that the optical absorption of haemoglobin
varies across the light spectrum, a specific cardiovascular event
can be revealed by measuring the colour variations of skin
reflections [1]. In 2008, Verkruysse et al. found that in an
ambient light condition, the PPG-signal has different relative
strength in three colour channels of an RGB camera that senses
the human skin [5]. Based on this finding, Poh et al. proposed
a linear combination of RGB channels defining three inde-
pendent signals with Independent Component Analysis (ICA)
using non-Gaussianity as the criterion for separating indepen-
dent resource signals [1]. As an alternative, Lewandowska et
al. suggested a Principal Component Analysis (PCA) based
solution to define three independent linear combinations of
RGB channels [2]. In 2012, MIT developed a method called
“Eulerian video magnification” to amplify the subtle colour
changes through band-pass filtering the temporal pyramidal
image differences [6]. However, any motion-induced colour
distortions within the same frequency band as that of the pulse
are unfortunately amplified. More recently, de Haan et al.
introduced the chrominance-based rPPG method (CHROM)
to consider the pulse as a linear combination of three colour
channels under a standardised skin-tone assumption [3]. This
method demonstrates the highest accuracy of all existing rPPG
methods. Based on a comparison of the state-of-art rPPG
methods, this study relies on the CHROM method as the
baseline to develop a motion robust rPPG method.

III. METHOD

The overview of the proposed motion robust rPPG frame-
work is shown in Figure 1, which takes a video sequence
containing a subject’s face as the input and returns the ex-
tracted pulse-signal as its output. There are three main steps in
the processing chain: motion-compensated pixel-to-pixel pulse
extraction, spatial pruning, and temporal filtering. Each step
is discussed in detail in the following subsections.

A. Motion-compensated pixel-to-pixel pulse extraction

To extract parallel pulse-signals from spatial-redundant pix-
els, the pixels belonging to the same part of skin should be
concatenated temporally. So this method compensates for the
subject motion and relates temporally corresponding pixels.

1) Global motion compensation: In previous rPPG methods
[1], [2], [3], the subject’s face is typically used as the Region
of Interest (RoI) for pulse measurement. The motion of the
face can be interpreted as a linear combination of global
rigid motion (head translation and rotation) and local non-
rigid motion (e.g., eye blinking and mouth talking). The
common approach to compensate for the global motion of a
face is using the Viola-Jones face detector to locate the face
in consecutive frames with a rectangular bounding-box [7].
However, a classifier that has for example been trained with
only the frontal-face samples cannot detect the side-view faces.
This fundamental limitation may lead to a discontinuous face
localisation across subsequent video frames.

As an alternative, a “Tracking-by-Detection” approach,
which enables the online updating of the target appearance
model while tracking the object, demonstrates the capability of
adapting to occasional appearance changes of the target as well
as handling the challenging environmental noise (e.g., partial
occlusions and background clutter). According to the latest
benchmark results of online object tracking presented in 2013
[8], the Circulant Structure of Tracking-by-detection with Ker-
nels (CSK) developed by Henriques et al. [9] has the highest
tracking speed among the top 10 accurate trackers, which can
achieve hundreds of frames-per-second [8]. Considering that
no significant accuracy difference can be observed among the
state-of-the-art trackers in the setting of this study, the fastest
CSK method is chosen to compensate for the global motion
of the subject’s face instead of a Viola-Jones face detector.

2) Local motion compensation: Based on the globally
tracked face, the pixels’ displacements can be more precisely
estimated in this step. The implementation of the Farneback
dense optical flow algorithm [10] in OpenCV 2.4 [11] is
utilised to measure the translational displacement of each
image pixel between adjacent frames. In addition, the idea
of forward-backward flow tracking proposed by Kalal et al.
[12] is adopted to detect the pixel-based tracking failures: in
a bi-directional tracking procedure, the motion vectors with
larger spatial errors yielded by abrupt motion are removed
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as noise, whereas the consistent motion vectors are retained
to associate the temporal corresponding pixels via spatial bi-
linear interpolation.

3) Pixel-to-pixel pulse extraction: After global and local
motion compensation, the pixels between adjacent frames have
been aligned into pairs. By concatenating them in a longer
frame interval, multiple pixel trajectories can be generated.
However, there is a problem in creating such longer pixel
trajectories: pixels belonging to the same trajectory may
disappear due to occlusions (e.g., face rotation).

In fact, under a constant lighting environment, the pixels in
different locations of the skin show the same relative PPG-
amplitude. It implies that if the pulse-induced colour changes
in each aligned pixel pair are temporally normalised, they
can be concatenated in an arbitrary order to derive a long-
term signal. Since the pixel-based motion vectors only need
to be estimated between two frames (the smallest possible
interval), it minimises the occlusion problem and also prevents
the propagation of errors in local motion estimation.

The temporally normalised RGB differences of the ith pixel
between frame t and t + 1 is denoted by a vector C

t!t+1

i ,
which is defined as:

C
t!t+1

i = C
t+1

i � Ct

i =

0B@ R
t!t+1

i

G
t!t+1

i

B
t!t+1

i

1CA : (1)

Assuming the spatial displacement of the ith pixel from frame
t to t+ 1 is

�!
d (dx; dy), Eq. (1) can be written as:

C
t!t+1
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0BBB@
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Figure 2 shows the histogram distribution of C
t!t+1

i on
three different skin-tones: the Gaussian-shaped distribution of
R

t!t+1

i , G
t!t+1

i and B
t!t+1

i on different skin-tones are all
within the range [�0:02; 0:02], which is very concentrated
compared to its theoretical variation range [�1; 1]. Thus it
can be concluded that in all skin pixels, pulse-induced colour
variations roughly exhibit the same strengths in temporally
normalised colour channels.
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Fig. 2. The histograms of temporally normalised RGB differences between
frame t and t+1 of three skin-types in a homogeneous lighting condition. The
histogram distributions show that all skin pixels describe the similar pulse-
induced RGB changes after temporal normalisation.

After that, the temporally normalised RGB differences are
projected onto the chrominance plane using the CHROM
method [3], which defines the pulse-signal as a linear com-
bination of RGB channels as:

X
t!t+1

i = 3R
t!t+1

i � 2G
t!t+1

i

Y
t!t+1

i = 1:5R
t!t+1

i +G
t!t+1

i � 1:5B
t!t+1

i

: (3)

By temporally concatenating (X
t!t+1

i ; Y
t!t+1

i ) estimated
from pixel pairs between adjacent frames and integrating them,
multiple chrominance-traces can be derived as:

~Xt!t+l
i = 1 +

Pl
0 X

t!t+1

i

~Y t!t+l
i = 1 +

Pl
0 Y

t!t+1

i

; (4)

where l is the interval length of the chrominance trace defined
by a temporal sliding window. In line with [3], l is specified
as 64 frames in case of a 20 FPS video recording rate. The
pulse-trace in the temporal window can be calculated as:

~P t!t+l
i = ~Xt!t+l

i � � ~Y t!t+l
i ; (5)

with

� =
�( ~Xt!t+l

i )

�( ~Y t!t+l
i )

; (6)

where �(�) corresponds to the standard deviation operator.
In order to avoid the signal drifting/explosion in a long-
term accumulation, the pulse-traces estimated from the sliding
window are overlap-added together with a Hann window [3].

Note that the spatial averaging of local pixels can reduce
quantisation errors during the temporal colour normalisation.
The face RoI is down-sampled starting from the local motion
compensation step, which not only reduces the noise sen-
sitivity of pixel-based rPPG sensors, but also increases the
processing speed of the dense optical flow. There is a trade-
off in selecting the optimal down-scaling size considering the
accuracy and efficiency. Since the size of all subjects’ face
used in this study are approximately 200�250 pixels, the RoI
is uniformly down-sampled to 36� 36 pixels.

B. Spatial pruning

Since the temporal noise-level in pixel-based rPPG sensors
is not Gaussian distributed, the next step is to optimally select
the inliers (reliable sensors) from a set of spatially redundant
sensors for a robust rPPG-signal measurement. In practice,
there are mainly two kinds of noise degrading the quality
of rPPG sensors: (1) non-skin pixels (e.g., eyebrow, beard
and nostril) that do not present pulse-signals; (2) skin pixels
that contain motion-induced colour distortions. Based on this
observation, a spatial pruning method including skin/non-skin
pixel classification and colour space pruning is designed to
pre-select the reliable sensors.

1) Skin/non-skin pixel classification: Most skin segmen-
tation methods use pre-defined thresholds of skin colour
composition or model a binary boundary between foreground
and background. However, these approaches suffer from
dilemmas in choosing suitable thresholds or defining fore-
ground/background. As a matter of fact, most of the pixels
inside a well-tracked face region represent the skin while only
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a small number of them are not skin. Since the skin pixels that
share some similarities are bound in one cluster, a clustered
feature-space can be constructed to detect the pixels that are
further away from the cluster centre as novelties (non-skin
pixels). In this method, the One Class Support Vector Machine
(OC-SVM) [13] is employed to estimate such a hyper-plane,
which encircles most of the pixel samples as a single class
(skin class) without any prior skin colour information.

In order to train an OC-SVM, a list of feature descriptors
x1; x2; x3; :::; xn should be created to represent the skin pixels.
Inspired by [14] that using the intensity-normalised rgb and
YCrCb to discriminate skin and non-skin regions, this method
represents each vector xi with four components: r� g, r� b,
Y � Cr and Y � Cb. The OC-SVM is only trained with the
first few frames to adapt to the subject skin-tone; then it is
used to predict the skin pixels in the subsequent frames, i.e.,
the pixels with the positive and negative response for f(x)
are classified as skin and non-skin pixels respectively. This
step significantly removes the pixel-based rPPG sensors that
are not pointing at the subject’s skin, and its performance is
invariant to different skin-tones, as shown in Figure 3.

Light skin subject Intermediate skin subject Dark skin subject

Fig. 3. An example of skin/non-skin pixel classification on three subjects
with different skin colours. The red bounding-box is the tracked face, and the
non-skin pixels inside the bounding-box are masked by black colour.

2) Colour space pruning: As explained before, the pulse-
induced colour variations exhibit similar changes in C

t!t+1

i

under a homogeneous lighting environment, i.e., in tempo-
rally normalised colour space, the transformation between
(R

t

i; G
t

i; B
t

i) and (R
t+1

i ; G
t+1

i ; B
t+1

i ) should ideally be the
translation. However, motion-induced colour distortions enter
this translation by adding additional residual transformations,
such as rotation. Therefore by checking the geometric trans-
formation of pixel-based rPPG sensors in the temporally nor-
malised colour space, a number of unreliable sensors distorted
during the transformation can be found and pruned. To realise
this step, the inner product � of the unit colour vectors between
frame t and t+ 1 is simply calculated as:

�t!t+1
i =<

C
t

i

jjCt

ijj
;
C

t+1

i

jjCt+1

i jj
>; (7)

where <;> denotes the inner product operation; jj � jj cor-
responds to the L2-normalisation. When �t!t+1

i is more
deviated from 1, the angle between C

t

i and C
t+1

i is larger,
which implies that the colour transformation is more likely
to be motion-induced. In this manner, all the rPPG sensors
are sorted based on their inner products and a fraction � (e.g.,
� = 1

8 ) of them ranking closest to 0 (orthogonal) are pruned as
outliers. Figure 4 shows an example of spatially pruned results
in this space: subject motion yields a more sparse distribution
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Fig. 4. An example of spatial pruning in the temporally normalised RGB
space. The distribution of pixel-based rPPG sensors in this space is different
between the stationary and motion scenarios. This step removes the sensors
containing explicit motion-induced colour distortions.

of rPPG sensors in the spatial domain as compared to the
stationary scenario.

Furthermore, the remaining rPPG sensors are pruned in the
temporally normalised XY space. On the projected chromi-
nance plane using Eq. (3), it can be observed that when
the subject is perfectly stationary, X � �Y (pulse direction)
is the principal direction while the projections are densely
distributed as an ellipse; when motion appears, the direction
orthogonal to X � �Y starts to dominate the space and the
projections are sparsely distributed like a stripe, as shown in
Figure 5. The direction orthogonal to the pulse direction on
this chrominance plane is named as the “motion direction”,
which can be expressed as:

M
t!t+1

i = X
t!t+1

i + �Y
t!t+1

i ; (8)

where � is identical to the one calculated in Eq. (6). The cri-
terion to prune sensors on the chrominance plane is: selecting
the sensors containing the least motion signals but the most
likely pulse-signals. Therefore in the first round, all sensors are
sorted in an ascending order based on the magnitude of their
motion signal jX+�Y j. The ones ranking at the high end are
more affected by motion and are thus pruned. In the second
round, the remaining sensors are sorted again in an ascending
order based on their pulse-signal X��Y . The ones ranking in
the median position represent the most probable pulse-signal
and are thus selected. Similarly, this step uses the same fraction
� to prune the outliers on the chrominance plane.
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Fig. 5. An example of spatial pruning in the temporally normalised chromi-
nance space. This step removes the sensors containing implicit motion-induced
distortion residues, but retains the sensors with the most likely pulse-signal.

C. Temporal filtering

Till this step, there are two alternatives to use the spatially
pruned rPPG sensors: (1) averaging the inliers for subsequent
pulse estimation that is further identical to previous rPPG
methods; (2) first extracting independent pulse-signals from
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the inliers in parallel, and then combining them into a single
robust pulse-signal after post-processing. Due to the residual
errors in motion estimation, the noise in spatial inliers still
shows no Gaussian distribution and is not zero mean. Further-
more, concatenating the local rPPG sensors separately allows
the local optimisation of the � in Eq. (5) when deriving the
pulse-signals. Consequently, option (2) is adopted to separate
the pulse-signal and noise by generating parallel pulse-traces.

Given the fact that the pulse derivatives in local rPPG
sensors are temporally normalised, they can be randomly
concatenated for creating long-term traces. But generating all
possible concatenations is an impossible task (e.g., (600!)64

different ways of concatenation in case of 600 skin pixels over
64 frames), so a simple solution is proposed to find favourable
concatenations: first sort all the pulse derivatives (sensors)
based on their distance to the mean, and concatenate them
in the sorted order. The signal-traces ranking at the top are
expected to be fairly reliable pulse-signals, whereas the ones
ranking at the bottom are likely to be sub-optimal. Afterwards,
the adaptive band-pass filtering and PCA decomposition steps
are designed to further enhance and combine the multiple
pulse-traces into a single robust rPPG-signal.

1) Adaptive band-pass filtering: Essentially, the pulse-rate
of a healthy subject falls within the frequency range [40; 240]
beats per minute (bpm), so the parts of signal that are not in
this frequency band can be safely blocked, i.e., in a temporal
sliding window with 64 frames length, the in-band frequency
range corresponds to [2; 12]. For a given moment, the instant
pulse frequency should be even more concentrated in a smaller
range such as [80; 90] bpm. So using the real-time pulse-rate
statistics, an adaptive band-pass filtering method is developed
to better limit the band-pass filter range.
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Fig. 6. An example of using the adaptive band-pass filtering on frequency
spectrums obtained from two subjects (e.g., light skin and dark skin subjects)
shown in Figure 3.

An example is shown in Figure 6: the mean frequency-
peak position of all pulse-traces in the current temporal
window is found as the most probable instantaneous pulse-
frequency of the subject, then a fraction (�) of pulse-traces
whose frequency-peak position has a large distance to the
most probable instantaneous pulse-frequency are pruned. After
that, the original pulse frequency band is adapted to the
first two harmonics derived from the mean frequency-peak
position, i.e., if the most probable peak position is at 4,
the pulse frequency range is reduced from original [2; 12] to
[3; 5] [ [6; 10] (first two harmonics). Similarly, if the most
probable peak position is at 5, the pulse frequency band is
narrowed down to [4; 6] [ [8; 12].

Note that the proposed adaptive band-pass filtering method

adjusts the pulse-frequency bandwidth based on instantaneous
statistics in the current sliding window, which does not rely on
any prior assumptions or previous observations (e.g., Kalman
filter) of a specific subject’s pulse-rate.

2) PCA decomposition: To derive a robust rPPG-signal
from multiple band-passed pulse-traces, the robust pulse-signal
is defined as a periodic signal with the highest variance. The
reasons are: (1) the subject motions are often occasional and
unintentional in a hospital/clinical use-case, i.e., non-periodic
motions; (2) the motion-induced variance has been reduced
by motion compensation, so the pulse-induced periodicity is
more obvious in a cleaner signal-trace.

Based on this observation, the periodicity of a pulse-signal is
defined as a ratio between the maximum power and total power
of the signal spectrum in the pulse-frequency band. When the
signal is more periodic, this ratio is larger. Similarly, the pulse-
traces are sorted based on their periodicity, and a fraction �
of traces with low periodicity are pruned.

Finally, PCA is performed on the periodic pulse-traces
to obtain the eigenvectors, which has two benefits: (1) the
decomposed eigenvectors are orthogonal to each other in the
subspace, which clearly separates the pulse-signal and noises;
(2) the eigenvectors are ordered in term of variance, which
simplifies the procedure of selecting the most variant trace.
In the temporal sliding window, the eigenvector (among the
top 5 eigenvectors) that has the best correlation with the mean
pulse-trace is selected to be the rPPG-signal after correcting
the arbitrary sign of the eigenvector as:

~P t!t+l
selected =

< ~P t!t+l
eigen ; ~P t!t+l

mean >

j < ~P t!t+l
eigen ; ~P t!t+l

mean > j
� ~P t!t+l

eigen ; (9)

where ~P t!t+l
eigen and ~P t!t+l

mean represent the eigenvector and mean
pulse-trace respectively; <;> corresponds to the inner product
(correlation) between two vectors; and j�j denotes the absolute
value operator.

IV. EXPERIMENT

This section presents the experimental setup for evaluating
the proposed rPPG method. First, it shows the way of creating
the benchmark video dataset. Next, it introduces two metrics
for evaluating the performance of rPPG methods. Finally, it
includes 5 (r)PPG methods for performance comparison.

A. Benchmark dataset

To evaluate the proposed rPPG method, 6 healthy subjects
(students) are recruited from Eindhoven University of Tech-
nology. The study is approved by the Internal Committee
Biomedical Experiments of Philips Research, and the informed
consent is obtained from each subject. The video sequences
are recorded with a global shutter RGB CCD camera (type
USB UI-2230SE-C of IDS) in an uncompressed data format,
at a frame rate of 20Hz, 768�576 pixels, 8 bit depth and has a
duration of 90 seconds per motion-category. During the video
recording, the subject wears a finger-based transmissive pulse
oximetry (model CMS50E from Contec Medical) for obtaining
the reference pulse-signal, which is synchronised with the
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Skin-type II male Skin-type II female Skin-type III male Skin-type III female Skin-type V femaleSkin-type V male

Fig. 7. A snapshot of the skin-types of six subjects in the benchmark dataset.
The subjects’ eyes are covered for protecting their identity only in the printing.

recorded video frames using the USB protocol available on
the device. The subjects sit in front of the camera with their
face visible and illuminated by a fluorescent light source (type:
Philips HF3319 - EnergyLight White).

Figure 7 shows a snapshot of the recorded subjects from
three skin-type categories according to the Fitzpatrick skin
scale [15]: Skin-category I with ‘Skin-type II’ male/female;
Skin-category II with ‘Skin-type III’ male/female; and Skin-
category III with ‘Skin-type V’ male/female. All subjects
are instructed to perform 6 different types of head motion:
stationary, translation, scaling, rotation, talking and mixed
motion (mixed motion is the mixture of all motions). For
each recording, the subject remains stationary in the first 15
seconds and then performs a specific motion till the end by
repeating it. There is no guidance to restrict the amount of
motion, so it leads to displacements up to the maximum 35
pixels per picture-period in practice. This is intended to better
mimic the practical use-cases and make the videos sufficiently
challenging for rPPG. Figure 8 shows some uniformly sampled
frames in the rotation video sequence of skin-category II male.

#300 #310 #320 #330

#340 #350 #360 #370

Fig. 8. An example of frames in skin-category II male rotation video. In this
video, the subject performs in-plane and out-of-plane rotations.

The goal of this study is aimed to improve the “motion
robustness” of rPPG, “motion” is considered the key variable
that is varied in the dataset. (As mentioned before, the gender
and skin-type are also varied.) So when recording each video
sequence, the subject is asked to perform a specific type of
motion repeatedly. Each motion is repeated approximately
15 times in each video sequence. Since motion is the most
important variable affecting the rPPG performance in a single
constant luminance environment, the measurement of the
whole video sequence with repeated subject motion can be
considered as a composition of multiple repeated short-term
measurements. Hence, the video sequences allow studying the
measurement repeatability. The Bland-Altman plots in Figure
10 shows for example the within-measurement repeatability
comparison between rPPG and PPG, in which each scat-
ter point represent the measurement of one complete pulse.
To prevent an explosion of test data, the subjects selected
for recording are representative/typical in each skin-category.
There are no subjects at all intermediate skin-types, which

makes it impossible for us to draw thorough conclusions on
skin-tone invariance of the rPPG methods.

B. Evaluation metrics

This study adopts the same SNR metric as used in [3] to
measure the signal quality for comparing the strength and
weakness of rPPG methods. In this SNR metric, a temporal
sliding window is utilised to segment the whole pulse-signal
into intervals for deriving the SNR-trace, i.e., the temporal
window has a 300 frames stride and a 1 frame sliding-step.
In the sliding window, the signal interval is transformed to
the frequency domain using FFT. The SNR is measured as
the ratio between the energy around the first two harmonics
(pulse in-band frequency) and the remaining energy (noises
out-of-band frequency) of the spectrum, which is defined as:

SNR = 10 log10(

P220
f=40(Ut(f) ~S(f))2P220

f=40(1� Ut(f) ~S(f))2
); (10)

where f is the pulse frequency in bpm; ~S(f) is the spectrum
of the pulse-signal; Ut(f) is a defined binary window to pass
the pulse in-band frequency and block the noisy out-of-band
frequencies. Consequently, the SNRa, an averaged value of
the SNR-trace, is used to summarise the quality of the pulse-
signal.

Additionally, Bland-Altman plots are included to show
the agreements of the instantaneous pulse-rate between the
rPPG and reference PPG-sensor. The instantaneous pulse-rate,
defined as the inverse of the peak-to-peak interval of the pulse-
signal, is derived by a simple peak detector in the time-domain.
The reasons of using it for signal comparison are twofold: (1)
the primitive pulse-signals obtained by rPPG and PPG have
good alignment with each other, thus their instantaneous rates
are comparable; (2) it captures the instantaneous changes of
the pulse-signal and reflects the occasional differences between
compared signals, as an example shown in Figure 10. In the
standard Bland-Altman plot, the Cartesian coordinate of a
pulse-rate’s sample si is calculated as:

si(x; y) = (
PRi +RRi

2
; PRi �RRi): (11)

where PRi and RRi are ith instantaneous pulse-rates obtained
by rPPG and PPG respectively. And RRi is smoothed by a 5-
point mean filter for suppressing the noise effect. Furthermore,
the Bland-Altman agreement A between PRi and RRi is
calculated as:

A =

Pn
i=1 ai

n
; (12)

with

ai =

(
1 if jPRi �RRij < 1:96�

0 if jPRi �RRij � 1:96�
; (13)

where n is the total number of samples in a pulse-rate; �
denotes the standard deviation of the difference between PRi

and RRi.
Finally, the Analysis of Variance (ANOVA) is applied on

SNRa values to analyse the significance of difference between
(r)PPG methods under certain categories (e.g., skin or motion),
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i.e., to show whether the main variation in SNRa is “between”
groups (rPPG methods) or “within” groups (video sequences).
Based on the results of ANOVA, the post-hoc comparison is
used to further evaluate the posteriori pairwise comparisons
between individual methods to see which one is significantly
better than the other. The ANOVA with post-hoc comparison
gives a clear overview of statistical comparison between
investigated (r)PPG methods.

C. Compared methods

Based on the benchmark dataset and evaluation metrics,
three comparisons have been performed for the evaluation: (1)
comparing the proposed method to the state-of-the-art rPPG
method CHROM [3]; (2) comparing the separate steps in the
developed framework to show their independent improvements
and contributions to the complete solution, since these separate
steps involve innovations that are not addressed in previous
rPPG studies; and (3) comparing the rPPG methods to the
PPG method to show the disparity between camera-based and
contact-based approaches. The details of the compared (r)PPG
methods are described below:
� Face-Detect-Mean (FDM) is a re-implementation of the

CHROM method. It uses the Viola-Jones face detector
to locate the face, and applies the OC-SVM method to
select the skin-pixels to derive the averaged RGB traces
for pulse-signal estimation.

� Face-Track-Mean (FTM) is the included sub-step of
the proposed method. It replaces the Viola-Jones face
detector in FDM with the CSK tracker for the better face
localisation.

� Pixel-Track-Mean (PTM) is the included sub-step of the
proposed method. It extends FTM with spatial redun-
dancy by creating pixel-based rPPG sensors, but takes
the averaged values of the temporally normalised colour
differences to derive the pulse-signal.

TABLE I
SNRA RESULTS GAINED BY (R)PPG METHODS ON BENCHMARK VIDEOS

(AVERAGED OVER GENDERS). BOLD ENTRIES INDICATE THE BEST
PERFORMANCE OF RPPG METHODS IN EACH CATEGORY.

Videos FDM FTM PTM PTC CBS
Skin-category I stationary 6.54 6.65 6.73 7.18 6.80
Skin-category I translation 6.20 6.75 6.33 8.40 7.16
Skin-category I scaling 3.90 5.48 5.44 8.26 7.14
Skin-category I rotation 1.53 6.83 6.78 7.91 8.72
Skin-category I talking 5.69 5.94 1.34 7.25 5.81
Skin-category I mixed motion 1.86 4.24 4.30 7.18 5.92
Skin-category II stationary 8.26 8.24 7.93 8.80 7.68
Skin-category II translation 6.13 6.95 6.52 6.91 4.64
Skin-category II scaling 7.43 7.39 7.20 8.11 5.48
Skin-category II rotation -0.20 4.29 4.30 5.90 7.46
Skin-category II talking 2.49 2.42 1.39 3.60 3.13
Skin-category II mixed motion 1.18 2.97 1.53 3.97 4.09
Skin-category III stationary 5.87 6.55 7.24 8.93 8.30
Skin-category III translation 2.81 3.89 3.90 5.97 6.24
Skin-category III scaling 2.16 2.29 2.55 7.37 5.52
Skin-category III rotation -1.80 -0.70 0.83 6.09 1.38
Skin-category III talking 0.30 1.24 -0.32 5.00 6.88
Skin-category III mixed motion -0.24 0.94 -0.21 4.93 5.44
Average 3.34 4.58 4.10 6.76 5.99

� Pixel-Track-Complete (PTC) is the complete version of
the proposed method, which adds the spatio-temporal
optimisation procedure (spatial pruning and temporal
filtering) to the PTM.

� Contact-Based-Sensor (CBS) is a finger-based pulse
oximetry. It is used to record the reference pulse-signal
for comparison.

V. RESULTS AND DISCUSSION

The proposed method is implemented in Java using the
OpenCV 2.4 libaray [11] and ran on a laptop with an Intel Core
i7 2.70 GHZ processor and 8 GB RAM. All 5 methods are
evaluated on 36 video sequences from the benchmark dataset.
For fair comparison, only the RoI (e.g., subject’s face) needs
to be manually initialised while the other parameters remained
identical when processing different videos.

The results show that the gender is not the key factor which
needs to be investigated in this dataset, i.e., the differences
between stationary male and female from the same skin-
category are rather small. Thus the results obtained by the
different genders in the same skin-category and motion-type
are averaged. Table I and Table II summarise the gender-
averaged SNRa and Bland-Altman agreements respectively.
Moreover, the SNRa values in Table I are further averaged
over (1) the three skin-categories for comparing the motion
robustness; (2) the six motion-types for comparing the skin-
tone invariance, as shown in Figure 9 (the standard deviation
of SNRa is also calculated to show the methods’ variability in
each category).

1) Stationary scenario: Figure 9a shows that all (r)PPG
methods gain similar performance on stationary subjects, i.e.,
the standard deviations of their SNRa are below 1:0dB. The
reason is that these methods are all using the chrominance-
based method [3] for pulse extraction. Their main difference
is in motion estimation and outlier rejection. No significant
improvements can be expected for static subjects.

TABLE II
AGREEMENTS GAINED BY RPPG METHODS ON BENCHMARK VIDEOS

(AVERAGED OVER GENDERS). BOLD ENTRIES INDICATE THE BEST
PERFORMANCE OF RPPG METHODS IN EACH CATEGORY.

Videos FDM FTM PTM PTC
Skin-category I stationary 96% 95% 96% 96%
Skin-category I translation 80% 77% 86% 97%
Skin-category I scaling 63% 79% 80% 97%
Skin-category I rotation 41% 75% 71% 95%
Skin-category I talking 66% 70% 45% 93%
Skin-category I mixed motion 36% 62% 57% 88%
Skin-category II stationary 98% 98% 97% 99%
Skin-category II translation 65% 62% 58% 76%
Skin-category II scaling 83% 84% 80% 83%
Skin-category II rotation 27% 57% 54% 84%
Skin-category II talking 57% 58% 47% 65%
Skin-category II mixed motion 48% 67% 57% 78%
Skin-category III stationary 74% 79% 84% 85%
Skin-category III translation 45% 52% 52% 75%
Skin-category III scaling 31% 53% 50% 68%
Skin-category III rotation 19% 25% 33% 43%
Skin-category III talking 40% 49% 34% 65%
Skin-category III mixed motion 24% 32% 28% 49%
Average 55% 65% 62% 80%
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Fig. 9. In each category, the colour bar is the averaged SNRa while the black bar is the standard deviation. (a) Motion SNRa: it compares the SNRa obtained
by the (r)PPG methods in different motion-types (averaged over genders and skin-categories). (b) Skin SNRa: it compares the SNRa obtained by the (r)PPG
methods in different skin-categories (averaged over genders and motion-types).

2) Motion scenarios: In videos where the subjects’ frontal
face can be detected by the Viola-Jones method (e.g., transla-
tion, scaling and talking), FDM still works properly, whereas
FTM that relies on the online object tracker is approximately
1:0dB better. The improvement is due to the object tracker,
which leads to a smoother face localisation between consec-
utive frames compared to the face detector by exploiting the
target’s appearance consistency and position coherence.

However, the comparison between FTM and PTM implies
that only exploiting the spatial-redundancy cannot consistently
improve the signal quality, i.e., in talking videos that con-
taining local non-rigid mouth/lips motions, PTM increases the
noise sensitivity in local pixel-based rPPG sensors and thus
exhibits more quantisation errors (even 2:4dB less than FTM).
This problem is solved in PTC that incorporates an outliers
pruning procedure to remove the motion-distorted sensors.

In videos with vigorous motions (e.g., rotation and mixed
motion), PTC including its substeps (FTM and PTM) show
superior performance against FDM in Figure 9a. The failure
of FDM in these two types of motion (�0:15dB and 0:93dB
respectively) is mainly caused by the face detector, which
cannot locate the side-view faces in some frames. Another
significant challenge is from the large motion-induced colour
distortions on the skin surface, i.e., both the magnitude and
orientation of skin-reflected light are dramatically changed
during the rotation. In such a case, PTC achieves the largest
improvement over FDM compared to other motion-types

(6:79dB and 4:43dB more respectively), which indicates that
the proposed method can better deal with the subject motions
in challenging use-cases. Comparing the subject variability
(standard deviation) between the videos with and without
motion, FDM, FTM and PTM increase around �2:0dB while
PTC increases around �0:7dB, which is fairly stable.

Figure 10 shows the instantaneous pulse-rate and Bland-
Altman plots of 6 motion-types in Skin-category II male.
In videos with regular motions (e.g., stationary, translation,
scaling and talking), all rPPG methods are able to precisely
capture the instantaneous abrupt changes of pulse-rate and
have good alignments with corresponding reference-signal.
In videos with vigorous motions (e.g., rotation and mixed
motion), PTC particularly outperforms other rPPG methods,
i.e., the agreement of PTC achieves 98% and 89% respectively.

3) Different skin-categories: In addition to the motion
robustness comparison, the skin-tone invariance of rPPG
methods is analysed. Figure 9b shows that FDM, FTM and
PTM have difficulties in dealing with the darker skin-type
(Skin-category III) as compared to the brighter skin-types
((Skin-category I and II) (around 3dB less). The performance
degradation is caused by using the skin-chromaticity based
method for pulse extraction: the higher melanin contents in
darker skin absorbs part of the diffuse light reflections that
carry the pulse-signal, whereas the specular reflection is not
reduced [3]. In contrast, PTC obtains a relatively consistent
performance across the different skin-categories, since the skin
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Fig. 10. The instantaneous pulse-rate plot (first row) and Bland-Altman plot (second row) for six motion-types of the male subject in skin-category II.
The subject’s appearance is shown in Figure 8. The Bland-Altman agreements are calculated between rPPG-signals and reference-signals (REF), where the
reference-signals are the smoothed signals recorded by CBS. To visually compare the agreements between rPPG methods and reference, the Bland-Altman
plots of four rPPG methods are put in one graph and use the � of �1:96� obtained between PTC and the reference to denote the variance range.
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Fig. 12. An example of instantaneous pulse-rate plot (first row) and Bland-
Altman plot (second row) for stationary male subjects in three skin-categories.
The facial appearance of three male subjects are shown in Figure 3.

pixels with specular reflections caused by either the subject
motion or skin absorption are all pruned as outliers. Besides,
its temporal filtering suppresses the out-of-band frequency
noise and strengthens the pulse-frequency. Figure 12 shows
the instantaneous pulse-rate and the Bland-Altman agreement
of the stationary male subjects in three skin-categories. It is
apparent that only PTC shows consistently high agreements
with the reference-signal.

4) ANOVA with post-hoc comparison: To analyse the sig-
nificance of differences in motion and skin-tone robustness
between methods, the SNRa values in Table I are grouped
into five categories: the skin-categories (I, II and III), the
stationary-category and the overall-category. In each of the
skin categories, the significance of differences between meth-
ods on motion robustness is measured (results on moving
videos). In the stationary category, the significance of differ-
ences between methods on skin-tone robustness is investigated.
Finally in the overall category, the overall significance of
difference between methods is shown using the entire dataset.
This paper applied the balanced one-way ANOVA on these five
categories, and post-hoc comparison using Tukeys honestly
significant difference criterion. In each category, a common
significance threshold (p-value < 0:05) is used. Figure 11

TABLE III
THE STATISTICS OBTAINED BY ANOVA IN FIVE CATEGORIES. BOLD

ENTRIES INDICATE THE CATEGORY WITH p-VALUE LARGER THAN 0:05.

Categories MS-within MS-between F-ratio p-value
Skin-category I 2.42 12.62 5.2 0.0049
Skin-category II 5.89 3.71 0.63 0.6466
Skin-category III 3.07 28.74 9.36 0.0002
Stationary 0.86 0.88 1.03 0.4398
Overall 5.90 35.23 5.97 0.0003

shows the results, while Table III lists the main ANOVA
statistics.

In skin-categories I and III, the compared methods have
significant differences (both are < 0:05). In skin-category II,
the differences are not significant (p-value = 0:6466). This
high p-value reflects a limited variation between groups (3:71)
as compared to that within groups (5:89). Indeed the subjects
in this group caused rather large motion variations as compared
to subjects in the other groups. This could happen as limited
instructions for the precise movements to be made were given
to the subjects. In Figure 11, the ANOVA plots show that
PTC achieves the best performance in all three skin-categories
with respect to the subject motion. The post-hoc plots show
that PTC is the only method that is significantly different
from the baseline method (FDM) for skin-categories I and III.
CBS, the contact-based reference method, only has significant
difference with FDM in skin-category I. FTM and PTM have
no significant pairwise differences with FDM in any skin-
category, i.e., their possible motion-robustness improvement
is very limited.

In the stationary-category, the p-value is 0:4398 (> 0:05)
and thus the differences between methods are not significant
in terms of the skin-tone robustness. Figure 11 shows that on
average PTC does score best.

Also in the overall-category, the differences between meth-
ods in the complete benchmark dataset are significant 0:0003
(< 0:05). Figure 11 shows that PTC again yields the largest
improvement over the baseline method (FDM) and has a
performance that is similar to the contact-based method (CBS),
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Fig. 11. The statistical comparison between five (r)PPG methods in five categories using ANOVA with post-hoc analysis. The ANOVA plots in the first row
show the overview of performance variation between methods in each category, i.e., median (red bar), standard deviation (blue box), minimum and maximum
(black bar) SNRa values. The post-hoc plots in the second row show the pairwise differences between the methods in each category and highlight the pairs
that are significantly different (in blue and red).
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i.e., PTC and CBS have significant pairwise differences with
FDM in the post-hoc comparison.

It can be concluded that the proposed method, PTC, leads to
significantly improved motion robustness, while for stationary
videos the skin-tone robustness on average is the best though
the differences with other methods are not significant.

VI. CONCLUSION

This study introduces a motion robust rPPG method that
enables the remote detection of a pulse-signal from subjects
using an RGB camera. This work integrates the latest methods
in motion estimation and pulse extraction, and proposes novel
algorithms to create and optimise pixel-based rPPG sensors in
the spatial and temporal domain for robust pulse measurement.
Experimental results on 36 challenging benchmark video se-
quences show that the proposed method significantly improves
the SNR of the state-of-the-art rPPG method from 3.34dB
(�2:91) to 6.76dB (�1:56), and improves the Bland-Altman
agreement (�1:96�) with instantaneous reference pulse-rate
from 55% to 80% correct, i.e., a performance that is very close
to the contact-based sensor. ANOVA with post-hoc comparison
shows that the proposed method, PTC, leads to significantly
improved motion robustness, while on stationary videos with
skin-tone variance it is also the best on average though the
difference with the baseline method is not significant.
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