Comments on "A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds" [J. Acoust. Soc. Am. 130, 389-403 (2011)]
Hirschberg, A.

Published in:
Journal of the Acoustical Society of America

DOI:
10.1121/1.4807816

Published: 01/01/2013

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Oct. 2018
Comments on “A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds” [J. Acoust. Soc. Am. 130, 389–403 (2011)] (L)

Avraham Hirschberg

Department of Applied Physics, CC.3.01b, MTP Group, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, Netherlands

(Received 9 April 2013; accepted 8 May 2013)

After demonstrating by means of an *in vitro* model experiment that the flow in the glottis can become asymmetric, Erath et al. [J. Acoust. Soc. Am. 130, 389–403 (2011)] propose a theory to estimate the resulting asymmetry in the lateral hydrodynamic force on the vocal folds. A wall-jet attached to one side of the divergent downstream part of the glottis is considered. The model assumes that the wall is a flat plate and that the jet separates at the glottal exit. They implement this so-called Boundary Layer Estimation of Asymmetric Pressure force model in a lumped two mass model of the vocal folds. This should allow them to study the impact of the asymmetry on voiced sound production. A critical discussion of the merits and shortcomings of the model is provided. It predicts discontinuities in the time dependency of the lateral force. It predicts this force to be independent from the glottal opening, which is not reasonable. An alternative model is proposed, which avoids these problems and predicts that there is a minimum glottal opening below which the wall-jet does not separate from the wall at the glottal exit. This is in agreement with the experimental results provided by Erath et al. © 2013 Acoustical Society of America.

http://dx.doi.org/10.1121/1.4807816

PACS number(s): 43.70.Aj, 43.70.Bk, 43.70.Jt [ADP]

Pages: 9–12

I. INTRODUCTION

In a series of recent papers Erath et al.\(^1\)–3 consider the interesting problem of the asymmetry of the flow in the downstream part of the glottis during the closing phase of the vocal fold oscillation cycle. The glottis is then a slit shaped converging-diverging channel with a neck (width \(a_{mn}\)) at the upstream side of the glottis. In first approximation the flow is two-dimensional (see Fig. 1). The downstream part can be described as a diffuser of length \(l_e\) terminated by a strong widening. The diffuser part is assumed to have straight walls at an angle \(\gamma\) with the channel axis (x-direction), where \(x = L\) for left and \(x = R\) for right. At the beginning of the closing phase the opening angle \((\gamma_l + \gamma_r)\) is so small that the flow only separates from the walls at the diffuser exit \(x = l_e\) where the channel height \(a(x)\) increases abruptly. A free jet is formed downstream of the glottis. The radius of curvature of the walls at \(x = l_e\) is \(R_e\). The angle of divergence \((\gamma_l + \gamma_r)\) of the downstream part of the glottis increases as \(a_{mn}\) decreases during the closing phase. Above a critical value of the divergence angle \((\gamma_l + \gamma_r) \approx \pi/15\) flow separation occurs within the diffuser. The separation points move toward the neck of the glottis with increasing angle. Under steady flow conditions in such a configuration the jet will tend to attach to one of the walls of the diffuser (Fig. 1). This is the result of entrainment of the fluid surrounding the jet by momentum transfer from the jet. A small asymmetry results into a pressure difference that bends the jet toward the closest wall. In the case of the glottis the flow remains usually laminar in the diffuser so that this is driven by viscous (molecular) momentum transfer. When the jet attaches to one of the walls it remains there. We have assumed attachment to the right wall in Fig. 1 (\(x = R\)).

For a curved wall a pressure gradient necessary to curve the streamlines is established, resulting in a low pressure at the wall on which the jet is attached. Hence the jet exerts a transversal force on that wall. Once established this asymmetric flow can be described, in first order approximation, as a frictionless flow. Of course a viscous boundary layer will grow between the jet and the wall to meet the no-slip viscous boundary condition at the wall. The flow separation of the attached jet from the wall is determined by the momentum thickness \(\theta\) of this boundary layer and adverse pressure gradient that occurs as the radius of curvature of the wall increases. The build-up and maintenance of this asymmetric flow is referred to as the Coanda effect.\(^1\)–6 While Mittal et al.\(^2\) does not like this terminology, we will use it because it is the most commonly used by fluid dynamicists.

Asymmetry in the flow due to the Coanda effect was first observed by Teager and Teager\(^7\) downstream of the glottis in a static model of the upper airways (within the mouth). The intraglottal Coanda effect was observed in *in vitro* static models of the glottis by, among others, Pelorson et al.\(^5\) and Scherer et al.\(^9\). It was argued by Hofmans et al.\(^10\) that the time scale needed to establish such an asymmetric flow was too long to allow asymmetry in glottal flow. It is one of the merits of Erath et al.\(^1\) that they have carried out experiments with an oscillating *in vitro* model of vocal folds, demonstrating the existence of the Coanda effect during the closing phase of the oscillation

\(^{a}a\)Author to whom correspondence should be addressed. Electronic mail: A.Hirschberg@tue.nl

cycle. Once this fact was established, Erath et al. made an attempt to estimate the impact of such an asymmetry on the motion of the vocal folds and the sound production. They have developed a semi-empirical model, which they call Boundary Layer Estimation of Asymmetric Pressure (BLEAP) aiming at calculating the transversal force on the wall on which the jet is attached. Combining this with a simplified two-mass lumped element model for the dynamics of the vocal folds, they estimate the influence of the asymmetry on the movement of the folds. Mittal et al. place this work in a broader context and provide a review of literature on the subject. The work done and, in particular, the use of a simplified model allowing a quantitative discussion of the problem is greatly appreciated.

The basic assumptions made by Erath et al. are summarized in Sec. II, criticisms are provided in Sec. III, and an alternative model with the same level of approximation is provided in Sec. IV. The notation of Erath et al. is used.

II. BLEAP Method

The BLEAP model assumes that the downstream part of the glottis can be approximated by a two-dimensional diverging part of the channel.

Once this fact was established, Erath et al. made an attempt to estimate the impact of such an asymmetry on the motion of the vocal folds and the sound production. They have developed a semi-empirical model, which they call Boundary Layer Estimation of Asymmetric Pressure (BLEAP) aiming at calculating the transversal force on the wall on which the jet is attached. Combining this with a simplified two-mass lumped element model for the dynamics of the vocal folds, they estimate the influence of the asymmetry on the movement of the folds. Mittal et al. place this work in a broader context and provide a review of literature on the subject. The work done and, in particular, the use of a simplified model allowing a quantitative discussion of the problem is greatly appreciated.

The basic assumptions made by Erath et al. are summarized in Sec. II, criticisms are provided in Sec. III, and an alternative model with the same level of approximation is provided in Sec. IV. The notation of Erath et al. is used.

II. BLEAP METHOD

The BLEAP model assumes that the downstream part of the glottis can be approximated by a two-dimensional diverging part of the channel. Assuming jet attachment to the right side (index $a = R$) as shown in Fig. 1, the wall has an angle $\gamma_R > 0$ with respect to the diffuser axis (x axis). Following Erath et al. flow separation occurs at the neck $x = 0$ during the closing phase of the oscillation when the angle γ_R becomes larger than $\pi/30$. At lower angles it is assumed that there is no flow separation upstream of the diffuser exit $x = d_e$. When the wall-jet is formed, the authors assume a frictionless, quasi-steady and incompressible flow in the jet at the edge of the viscous boundary layer formed at the wall. The pressure $p(x)$ there is related by Erath et al. to the magnitude of the local velocity $U(x)$ in the frictionless core of the jet by the equation of Bernoulli for an incompressible, stationary, and frictionless flow

\[p(x) = p_i + \frac{1}{2} \rho [U_i^2 - U(x)^2], \]

(1)

where $p_i = p(0)$ and $U_i = U(0)$ refer to the flow at the neck of the glottis. The pressure p_c at the exit of the diffuser $x = d_e$ is taken as a reference. The jet separates there from the wall and the pressure $p(x) = p_c$ is assumed to be equal to the pressure downstream of the glottis. The pressure along the wall up to the neck is calculated from Eq. (1) by using a fit of data obtained by means of Particle Image Velocimetry,

\[U(x) = c_0 (x - x_{eff})^n, \]

(2)

where c_0, x_{eff}, and n are empirical fit constants. For simplicity, in first order approximation these constants are assumed to be independent of the glottis opening a_{min}. Typically Erath et al. find $-0.09 \leq n \leq -0.04$. This implies that the velocity decreases along the jet. As a consequence the pressure $p(x)$ is predicted to increase with increasing x so that $p_i < p_c$. At sufficiently high Reynolds numbers $Re = [U_i d_{min} / \nu] \geq 10^5$ (with ν the kinematic viscosity of air) one expects a thin viscous boundary layer for which the equations of Prandtl are valid. As they find an adverse pressure gradient $\partial p / \partial x > 0$ so that the pressure at the wall is equal to the pressure $p(x)$ in the jet. As the angles $|\gamma_R|$ are small we do not distinguish here between the direction normal to the wall and the x-direction.

Erath et al. consider the normal pressure gradient induced by the rotation of the wall and come to the conclusion that it is negligible. They do consider the axial pressure gradient due to the centrifugal acceleration $\alpha \Omega_z$, where Ω_z is the angular velocity of the wall. As they use Eq. (1) it is not clear to the author whether they actually do correct for this centrifugal effect. It seems, however, that neglecting this term would be consistent with the use of a quasi-steady approximation.

As a confirmation for the validity of their approach, Erath et al. show that the viscous boundary layer profile is correctly predicted from the measured velocity $U(x)$ by using a locally self-similar solution of Falkner and Skan. As they find an adverse pressure gradient $\partial p / \partial x > 0$ they worry about possible separation of this viscous boundary layer within the diffuser. Using the method of Thwaites, they come to the conclusion that this will not occur within the glottis.

The force $G_{z,close}$ per unit length of the vocal fold (z-direction) acting on the wall is calculated by the integration of $p(x)$,

\[G_{z,close} = \int_0^x p(x) dx, \]

(3)

assumed to be valid when $|\gamma_{le}| + |\gamma_{pe}| > \pi/15$ and for $d\theta_{min}/dt < 0$. This is the force per unit length of the vocal folds.

III. CRITICISMS

Using the same argument as for the viscous boundary layer one can demonstrate that the boundary layer approximation of Prandtl is also valid for a jet flow at sufficiently high Reynolds number $Re = U_i d_{min} / \nu$. The typical
The neck width a_{min} is used here as an estimation for the wall-jet thickness because Erath et al. assume separation at the neck ($x = 0$). The authors neglect this effect and we will accept this as it is consistent with the use of a quasi-steady approximation in Eq. (1).

Erath et al. assume that when $|y_L| + |y_R| \geq \pi/15$ the flow separates at the neck $x = 0$ and a wall-jet is formed on one of the walls for $x > 0$. Assuming flow separation at the neck $x = 0$ and assuming that the pressure on the left wall is equal to $p_L = p(x)$, by applying Bernoulli [Eq. (1)] in combination with Eq. (2), Erath et al. find a pressure $p(x) < p_c$ in the wall-jet for $(0 \leq x < l_s)$. At the neck they find $p_L(x = 0) = p_c$. Hence they predict a transversal pressure discontinuity across the shear layer separating the wall-jet from the dead-water region (left of the jet in Fig. 1). This is physically impossible because a shear layer (or streamline in a frictionless model) cannot sustain a pressure difference, $\partial p/\partial y = 0$. In the separated flow region the pressure gradient is negligible, because the velocity is low compared to that in the wall-jet. Hence the pressure $p(x)$ should be the same for both walls $p(x = 0) = p_c$ if we assume that the wall is a flat plate.

This contradiction is a consequence of the use of the equation of Bernoulli [Eq. (1)] in the jet. If the observed decrease of $U(x)$ is due to viscous momentum transfer this would explain this paradox. The equation of Bernoulli is not valid. However part of the problem is due to the fact that the wall-jet is formed downstream of the neck rather than at the neck $x = 0$ as assumed by Erath et al. We now consider both aspects. The dimensionless parameter $Re(\delta_{\text{min}}/l_s) = U_{\text{j}}\delta_{\text{min}}^2/(\nu l_s)$ allows to estimate the effect of viscosity on the wall-jet velocity $U(x)$ for laminar flow conditions. When $Re(\delta_{\text{min}}/l_s) \leq 10$ the viscous boundary layers have reached the jet centerline. This will typically occur for normal phonation ($U_{\text{j}} = 20 \text{m/s}$ and $l_s \approx 3 \text{mm}$) when $a_{\text{min}} \leq 0.2 \text{mm}$. This corresponds to the phase condition $t/T_{\text{open}} > 0.80$ following the data shown in Fig. 3 of Erath et al. For shorter times such as $t/T_{\text{open}} = 0.7$ or 0.60 the flow separates downstream of the neck. This can explain the strong decrease of $U(x)$ just downstream of the neck, observed by Erath et al. Between the neck and the separation point $x = x_s$, the equation of Bernoulli (1) can be used to estimate $p(x)$; however, the same pressure applies to both walls. More information can be obtained by considering the study of Scherer et al.

The flow conditions shown by Erath et al. for $t/T_{\text{open}} = 0.7$ correspond to the experimental data and numerical simulation provided by Scherer et al. and consider steady flow conditions. In their in vitro model $|y_L| = |y_R|$ = 5°. The jet separates from the left wall at about $x = l_s/3$. The difference in pressure shows that the left wall pressure is very close to the exit pressure p_e for $x > l_s/3$. The right wall pressure $p(x)$ is lower than p_e. This effect is most pronounced as the jet approaches the glottal exit where the wall curvature becomes strong, just before the jet separates from the right wall.

This confirms our assumption that a difference in pressure between the right wall and the glottal exit is mainly due to wall curvature or to the non-uniformity of the flow in the neighborhood of the separation point ($x = x_s$). For simplicity Erath et al. assume the fit constants n, c_0, and x_{eff} [in Eq. (2)] to be independent of a_{min}. As a consequence the predicted force $G_{x,c} \approx 0$ for a_{min} and displays a discontinuous behavior as $a_{\text{min}} \rightarrow 0$. Also the assumption that flow separation appears at the neck $x = 0$ when $|y_L| + |y_R| > \pi/15$ induces a discontinuous behavior of $G_{x,c}$. Discontinuous time dependence of forces can induce chaotic behavior, making conclusions on the impact of asymmetry based on a two-mass lumped model rather hazardous.

IV. A MODIFIED MODEL

Using the basic assumptions of Erath et al.: frictionless, quasi-steady incompressible flow, we now propose an alternative model. We assume attachment of the free jet to the right side of the diffuser and that the wall-jet separates from the right wall at the glottal exit $x > l_s$. The jet width corresponds to the diffuser width $a(x) = a_s$ at the position $x = x_s$. The flow separates from the left wall (see Fig. 1). The velocity $U_R = \sqrt{2(p_e - p_L)/\rho}$ in the jet is determined by applying Bernoulli from a position upstream of the glottis (where $p = p_u$) to the jet [where $p(x) \approx p_u$]. Considering an integral y-momentum balance, for the volume enclosed by the control surface sketched in Fig. 1, we see that the jet leaving the glottis with an angle y_R at $x = x_s$ carries a y-momentum flux per unit length of the vocal folds,

$$\Phi_y = a_s \rho U_R^2 \sin y_R.$$ \hspace{1cm} (5)

This must be induced by a force from the walls on the flow. The reaction to this force is the net force of the flow on the walls in the y-direction. Hence we have: $G_{R,c} = -\Phi_y$. This is actually the sum of the lateral forces (y-components) acting on the right and left walls of the glottis, respectively. As the deflection of the jet occurs around the separation point $x = x_s$, which is the position where this force should be applied, in a dynamical model, on the wall on which the jet remains attached (right wall for the conditions shown in Fig. 1). Note that upstream from the separation point $x < x_s$ the pressure $p(x)$ can be estimated by using the equation of Bernoulli (1) in combination with the equation of continuity $U(x)a(x) = U_R a_s$, where $a(x)$ is the width of the glottal channel. We assume here a quasi-one-dimensional flow...
[uniform velocity $U(x)$ within a cross section]. The lateral force on each wall (left and right) can be obtained by integration of the pressure $p(x)$ along the wall. The y-component of these forces ($y < x$) have equal magnitudes and opposite signs.

Obviously the main problem is to obtain an estimation for the position x_s of the separation point. A simplified method to obtain such an estimate is the method of Thwaites.6,14–16 The momentum thickness θ of the viscous boundary layer is estimated by using the expression of Thwaites,

$$\theta(x)^2 - \theta(0)^2 = \frac{0.45\nu}{U_B} \int_0^x \frac{a(x)}{dU/dx} \, dx. \quad (6)$$

In principle we should integrate over a coordinate s along the wall. As we are using a Prandtl boundary layer approximation for the flow we can approximate this integration along s by an integration along x. We also neglected here the effect of viscous boundary layer growth on the velocity $U(x)$, which is only valid for $6\theta/a(\theta) \ll 1$. Using an iterative procedure one can correct for this effect. We will ignore this subtlety. Separation occurs when

$$\left(\frac{\theta^2}{\nu}\right) (dU/dx) = -0.09. \quad (7)$$

Assuming a diffuser with plane side wall, we have for small opening angles

$$a(x) = a_{\text{min}} + x \sin(|\gamma_L| + |\gamma_R|), \quad (8)$$

where we implicitly assumed a paraxial approximation (small angles corresponding to Prandtl’s boundary layer approximation). Combining Eqs. (6), (7), and (8) yields an implicit equation for x_s, which should be solved numerically. An initial guess can be obtained by assuming a plane wall behavior $\theta \approx \sqrt{\nu x/(9U_B)}$ without pressure gradient, which combined with Eqs. (7) and (8) and yields an explicit expression for x_s.

We finally consider the separation of the wall-jet at the glottal channel exit, using the method of Thwaites. Assuming a radius of curvature $R_c \gg a_s$ at $x = l_c$ we can estimate the adverse pressure gradient experienced by the wall boundary layer as

$$d\theta/dx \approx \rho U_B^2 a_s / R_c. \quad (9)$$

Using the plane wall approximation $\theta_e \approx \sqrt{\nu l_c/(9U_B)}$, we find from Eq. (7) that separation occurs at $x = l_c$ when $l_c a_s / R_c^2 \approx 0.8$. This explains that for $t/T_{\text{open}} = 0.9$ the wall-jet does not separate from the wall at the wall exit in the experiment shown in Fig. 3 of Erath et al.2 For $t/T_{\text{open}} = 0.8$ we have $l_c a_s / R_c^2 \approx 0.7$, and the jet separates just downstream at $x = l_c$. This example demonstrates the power of the theory of Thwaites. When the jet follows the wall further downstream than $x = l_c$ an additional force should in principle be applied in the dynamical model at $x = l_c$ to take into account the force induced on the wall by the bending of the jet at the exit of the glottis. As this only occurs for very thin jets, this can probably be neglected. While very crude, the proposed model does not display an unrealistic discontinuous behavior as the BLEAP model.

\section*{ACKNOWLEDGMENT}

The support of M. E. H. van Dongen is acknowledged.

\begin{thebibliography}{99}
\bibitem{15} B. Thwaites, “Approximate calculation of the laminar boundary layer,” Aeronaut. Q. \textbf{1}, 245–280 (1949).
\end{thebibliography}