A systematic classification and analysis of NFRs

Citation for published version (APA):

Document status and date:
Published: 01/01/2013

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Aug. 2023
ABSTRACT

The main agenda of Requirements Engineering (RE) is the development of tools, techniques and languages for the elicitation, specification, negotiation, and validation of software requirements. However, this development has traditionally been focused on functional requirements (FRs), rather than non-functional requirements (NFRs). Consequently, NFR approaches developed over the years have been fragmental and there is a lack of clear understanding of the positions of these approaches in the RE process. This paper provides a systematic classification and analysis of 89 NFR approaches.

Keywords
Non-functional requirements; NFRs; NFR approaches; quality requirements; requirements engineering; systematic classification and analysis of NFRs approaches.

INTRODUCTION

The importance of Requirements Engineering (RE) has long been established both in research and in practice. There is a significant intellectual activity in the RE field as evidenced by the large volume of papers published in journals and conferences c.f. [1] and by the adoption of a variety of techniques by industry c.f. [2]. A number of initiatives have been put forward to support the RE lifecycle, initiatives such as risk-driven methodologies [3], requirements tracing [4, 5], model re-use [6], use of scenarios [7], use of visualization [8], use of business rules [9, 10], enterprise modeling [11] and goal modeling [12, 13] to name but a few.

Historically, there has been a distinction between two classes of requirement, functional requirements (FRs) and non-functional requirements (NFRs), the former referring to the operational properties and the latter to the quality properties that the desired system must posses. It is generally agreed that more emphasis has been placed to date on FRs rather than NFRs. However, the changing landscape of requirements demands an increased attention to those aspects of requirements that deal with quality factors, the NFRs. There is a whole set of new advanced design requirements [14] that demand now more than ever close attention to the effectiveness of the SE process. The field’s focus and scope have shifted from engineering of individual systems and components towards the generation, adaptation and maintenance of software-intensive ecosystems consisting of software, hardware, human and organizational agents, business processes and more. Such software ecosystems require attention in three areas namely those of design and evolution, orchestration and control, and monitoring and assessment [15].

The context and motivation for this paper is the changing landscape of RE that demands now more than ever particular attention to NFRs. Whilst there is ample evidence (c.f. [16]) that NFRs play a significant role in systems, there is surprisingly an absence of an agreed position regarding the definition of NFRs, their classification and presentation [17].

To address this problem, the paper presents a systematic literature review (SLR) of the field of NFRs. Recent years have witnessed an increase in the use of evidence based approaches in SE [18, 19] with

---

1 Presented at the 19th Americas Conference on Information Systems (AMCIS 2013). A copy of the full paper may be obtained from the Association for Information Systems (AIS) http://start.aisnet.org.
SLR c.f. [20] being regarded as the most reliable method. To this end procedures for evidence-based SE are presented in [21, 22]. A study of 33 unique studies, carried out between 2004-2007, revealed 35 SLRs in the field of SE [23]. This paper provides an aggregated view about research efforts to date on NFRs.

The paper is organized as follows. First, the methodology adopted for the classification framework is defined, introducing also the classification scheme. Second, using this classification scheme the 89 approaches are defined according to their relevance in each one of the possible classes of evaluation. Third, an analysis is provided in terms of the contribution of the 89 approaches. Finally, the paper concludes with some reflections and a number of observations for future research challenges in the field of NFRs.
REFERENCES

Part I: General References

34. Hillier, B., Musgrove, J., and O'Sullivan, P., Knowledge and design, in Developments in design methodology, N. Cross, Editor. 1984, John Wiley & Sons, Inc. 245-264.


OMG (2009) Uml™ profile for modeling quality of service and fault tolerance characteristics and mechanisms specification. formal/2009-04-05


Robertson, J. and Robertson, S. (2000) Vecore: Requirements specification template,


Anton, A.J., Bolchini, D., and He, Q. (2003) The use of goals to extract privacy and security requirements from policy statements. TR-2003-17


