Crumpling of a Stiff Tethered Membrane

J. A. Åström,1 J. Timonen,2 and Mikko Karttunen3

1Centre for Scientific Computing, P.O. Box 405, FIN-02101 Espoo, Finland
2Department of Physics, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland
3Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland

(Received 22 September 2003; published 8 December 2004)

A first-principles numerical model for crumpling of a stiff tethered membrane is introduced. This model displays wrinkles, ridge formation, ridge collapse, and initiation of stiffness divergence. The amplitude and wavelength of the wrinkles and the scaling exponent of the stiffness divergence are consistent with both theory and experiment. Close to the stiffness divergence further buckling is hindered by the nonzero thickness of the membrane, and its elastic behavior becomes similar to that of dry granular media. No change in the distribution of contact forces can be observed at the crossover, implying that the network of ridges is then simultaneously a granular force-chain network.

DOI: 10.1103/PhysRevLett.93.244301

Crumpling of, e.g., sheets of paper, is an everyday phenomenon that one easily passes without much extra attention. In physics, however, crumpling has become a challenging topic of research. In addition to basic statistical mechanics properties [1], issues such as scaling of strength and energy [2,3], geometry and singularities [4,5], acoustic emission [6], and related phenomena in soft-matter systems [7] have become topics of interest. In this Letter, we present a first-principles numerical model for crumpling of a stiff tethered membrane, and relate the problem to the formation of force-chain networks in granular media [8,9].

Crumpling of a thin elastic sheet or a stiff membrane demands deformation energy. At very small strains, a membrane is uniformly compressed. Thin structures are, however, prone to buckling. At first, buckling appears as wrinkles or elliptical ridges. The wavelength and amplitude of the wrinkles depend on loading and on the dimensions of the membrane [10]. At constant strain the wavelength and amplitude of the ripples grow according to a unique scaling law [11,12]. As crumpling proceeds, the deformation energy begins to concentrate in narrow ridges and conical peaks [2,4], and eventually the strain there becomes so large that irreversible plastic yielding takes place. If the sheet is stretched out again, the ridge pattern can clearly be observed.

Another characteristic feature of the process is that the effective stiffness of the membrane increases fast with increasing degree of crumpling. The ultimate limit of crumpling would be to press the membrane into a volume equal to that of its own. In practice this limit cannot be reached. A ball that results from squeezing a piece of paper very hard contains about 75% air [13]. The effective stiffness of a membrane under crumpling has been found by careful experiments to display a power-law divergence in the dense-packing limit [13]. This divergence has been suggested to arise from the total ridge length diverging in this limit in a scale-invariant way.

In order to study wrinkles, ridge formation, and the effective stiffness in crumpled membranes, we constructed a numerical model for stiff tethered membranes. Our tethered membrane consisted of frictionless spheres with stiffness Y_s arranged in a triangular lattice. Each sphere had mass m and moment of inertia I_s, and was connected to its neighbors by massless elastic beams with both bending and tensile stiffness. We used a higher Young’s modulus for the spheres (Y_s) than for the beams (Y_b). In the simulations reported here, we chose $Y_s = 10^7$ for spheres of radius 0.57. The beams had Young’s modulus $Y_b = 5 \times 10^3$, length $1/\sqrt{3}$, and a square cross section of size 0.6^2. This implies a tensile modulus of 3.1×10^3 and a bending modulus of 3.7×10^2. The membrane had a thickness of ~ 0.6 and was placed horizontally (in the xy plane) in the middle of a rigid cube of time dependent size $X(t)$. Small random fluctuations in the z components of the spheres were introduced to avoid perfect symmetry, and the membrane was slightly broader in the y direction to allow initial wrinkles to form. Newtonian dynamics was applied.

The environment inside the box was strongly dissipative (as, e.g., a viscous fluid) such that a velocity dependent force $d \cdot \dot{x}$ opposed the motion of spheres. The membrane dimensions were large enough for temperature fluctuations to be negligible. For computational reasons we did not include more than about 10^5 degrees of freedom in the system. Wrinkles and the onset of ridge formation were nevertheless observed, as well as the beginning of a power-law divergence of the effective stiffness with an exponent close to the experimental one. At low porosities the effective stiffness of the crumpled system deviates from the power law and behaves like that for a packing of solid spheres [14]. By separating the elastic-energy components in this limit, we found that the total ridge length indeed tended to diverge with zero critical porosity. The nonzero thickness of the membrane (~ 0.6) hindered the actual divergence, and a crossover to a different behavior took place in agreement with experiments.

Figure 1 shows a snapshot from a simulation that displays a few wrinkles at $t = 200$. Minimization of the elastic energy leads to an amplitude (A) to wavelength
At $A = \lambda^3$, for our model membrane. The scaling relation can also be expressed as $F \propto \lambda^{1/4}$. For benchmarking, the time evolution of λ as a function of dissipation coefficient d is compared to a theoretical prediction: d corresponds to the “effective elastic foundation stiffness” of Ref. [10]. (The time evolution of λ is determined by competition of bending stiffness and out-of-plane motion [10], and now the only force opposing this motion is damping.) For benchmarking, the time evolution of A is compared to the predicted scaling law, $A \propto l^{0.28}$ [11,12]. (c) The time evolution of Δ at constant strain. The simulation result is compared to the predicted $1/\lambda \propto l^{0.28}$ [11,12]. (d) The time evolution of λ at constant strain. The simulation result is compared to the predicted $1/\lambda \propto t^{0.28}$ [11,12]. All predicted results are shown with a broken line. Figures 2(c) and 2(d) result from different simulations and the indicated times t are not comparable. The scaling regimes of A and λ appear simultaneously.

To investigate ridge formation in the simulations, we compared local bending to local energy. We used the sum of dot products of the nearest-neighbor bonds in the three principal directions of triangular lattice as a measure for local bending of the membrane,

$$p(\vec{x}, t) = \frac{1}{3} \sum_{i=1}^{3} \frac{\vec{F}_i(t) \cdot \vec{F}_i(t)}{l_i^m l_i^n}.$$ \hspace{1cm} (1)

This was compared to the local elastic energies of the beams,

$$E_b(\vec{x}, t) = \sum_{i=1}^{6} \int_0^1 F(Y_b, \vec{x}(t))d\vec{x}(t).$$ \hspace{1cm} (2)

In Eq. (1), l^m and l^n are beam lengths on opposite sides of a lattice site. In Eq. (2), the elastic force $F(Y_b, \vec{x}(t))$ is inte-

FIG. 1. Snapshots of a crumpling membrane: top views (above) and side views (below) for 3 times t. At $t = 200$ wrinkles are observed. At $t = 500$ ridges have begun to collapse. At $t = 700$ the membrane is entering the stiffness scaling regime, $(X - X_c)/X_c \approx 1.6$.

FIG. 2. (a) The ratio of amplitude to wavelength of the wrinkles A/λ as a function of membrane compression $\Delta = 0.02t$. The simulation result is compared to the predicted $A/\lambda \propto \sqrt{\Delta}$ [10], (b) λ as a function of dissipation constant d. The simulation result is compared to the predicted $\lambda \propto d^{-1/4}$ [10]. (c) The time evolution of λ at constant strain. The simulation result is compared to the predicted $1/\lambda \propto t^{0.28}$ [11,12]. (d) The time evolution of Δ at constant strain. The simulation result is compared to the predicted $1/\lambda \propto t^{0.28}$ [11,12]. All predicted results are shown with a broken line. Figures 2(c) and 2(d) result from different simulations and the indicated times t are not comparable. The scaling regimes of A and λ appear simultaneously.

FIG. 3. Contour maps (at $t = 400$) of the spatial locations of (a) the highest local bendings $p(\vec{x}, t) < 0.6$, of (b) the highest elastic energies of the beams $E_b(\vec{x}, t)$, and of (c) the highest contact elastic energies of the spheres $E_c(\vec{x}, t)$.
grated over the related displacement, and the sum is over the six local degrees of freedom.

The elastic deformation energy of spheres in contact can also be used to identify ridges. This energy can be written as

$$E_b(\vec{x}, t) = \sum_{i=1}^{n} \frac{1}{2} Y_s \delta_s^2,$$

with δ_s the virtual “overlap” of spheres in contact. The sum is taken over all contacts.

Figure 3 shows contour plots of the lowest values of $p(\vec{x}, t)$ and the highest values of $E_b(\vec{x}, t)$ and $E_s(\vec{x}, t)$ at an early stage of the crumpling process ($t = 400$). It is obvious that E_b and E_s reach their highest values at locations of high local bending, and elongated structures, i.e., ridges, can clearly be seen. As crumpling proceeds, ridges grow and collapse, and the membrane folds. At later stages of crumpling it is not easy to detect ridges as the membrane profile becomes very complex.

The effective bulk stiffness of a membrane can be analyzed, e.g., by its stress-strain curve. The latter is the total force F on the confining box divided by the linear size of the membrane (F/W) as a function of $X(t)$. $F(t)/W$ increases fairly linearly before the membrane begins to buckle and fold. As the dense-packing limit is approached, F/W increases rapidly, until finally a saturation regime is entered.

Notice that there are three types of dense-packing limits: (1) For the tightest packing, the volume of the confining box equals that of the membrane, and the solid-volume fraction is $\phi_f = 1.0$. (2) For hard-core spheres, the tightest packing is an fcc lattice with $\phi_2 = \pi \sqrt{2}/6 = 0.74$. (3) For a random dense-packing of spheres, $\phi_3 \approx 0.63$. For our model membrane, stiffness divergence takes place at $\phi_c \approx 0.75$, which is close to ϕ_2. This value was achieved for initial configurations close to that of a triangular lattice. Apart from very late phases of crumpling, the system may have some fcc type order, which explains the fairly high value of ϕ_c. (See also below.) Crossover to saturation behavior occurs, however, well before this ϕ_c is reached.

Figure 4(a) shows $F/(W Y_s)$ for membranes with 10^4 and 4×10^4 degrees of freedom (simulations require about $10^6 - 10^7$ time steps). Simulation results are compared to the experimental result by Matan et al. [13], $F(X) \propto (X - X_c)^{-\alpha + 1}$, with $\alpha = 2.85$. Good agreement is found until saturation sets in at $(X - X_c)/X_c = 0.03$. The critical values X_c were chosen so as to give the straightest lines in Fig. 4(a), and correspond to $\phi = 0.78$ and $\phi = 0.75$ for $W = 40$ and $W = 80$, respectively.

After saturation, stiffness behavior becomes different as beams no longer affect membrane stiffness. Instead, the membrane begins to resemble a granular packing. The stiffness of a 3D packing of solid spherical grains scales [14] like $(\phi - \phi_g)^{\beta}$, with $\beta = 1.62$ and a critical volume close to ϕ_3, $\phi_c \approx 0.63$, depending somewhat on the interaction between grains. Figure 4(b) shows a comparison between simulations and the scaling of $F(\phi)$ in these two regimes. The fairly high $\phi_c \approx 0.67$ is expected to result from deformation of spheres, which becomes non-negligible for high values of ϕ (hard-core spheres would be unstable numerically).

By following the energy of the membrane from the initially flat to a fully crumpled state, it is possible to determine the energy component responsible for the stiffness divergence seen in Fig. 4. The external energy $\int_0^t F(\vec{\omega}) dX(t)$ was also compared to the internal energy of the membrane, and the two were found to be equal, consistent with conservation of energy.

The internal energy can be split into five terms that are related to the force terms in the general equation of motion,

$$m \ddot{\vec{x}} + d \dot{\vec{x}} + K \vec{x} + Y_s \vec{\delta}_s = \vec{f}_{\text{ext}}.$$

Here, x is the displacement, m the mass, d the damping coefficient, K the stiffness matrix, $\vec{\delta}_s$ the deformations (virtual overlap) of spheres in contact, and \vec{f}_{ext} are forces applied on the walls of the confining box. The related energy terms are the following: (1) The elastic energy of the beams, E_b. (2) The compression energy at the contacts between spheres, E_c. (3) The compression energy of the spheres against external walls, $E_w = 0.5 \sum Y_w \delta_w^2$. (4) The energy dissipated through damping, $E_d = \int_0^t \dot{F}_d d\vec{\omega}$. (5) The kinetic energy of the spheres, $E_m = 0.5 \sum m \vec{\omega}^2$. The
beams and the contact deformations of spheres. The diver-
stage ridges can be traced by the elastic deformations of
experimentally observed stiffness divergence. The early-
cally predicted wrinkle and ridge formation and the ex-
model of a tethered membrane can reproduce the theoreti-
network lines.

not separate phenomena, but different manifestations of a
deformation energy. It is tempting to conclude that they are
the crossover, ridges form the force chains of the
contacts between spheres. We could not, however,
contact forces between spheres. There was no change either at the crossover in the
distributions of elastic energy or
haviors, are compared in Fig. 5. (Notice that deformations of
1
Es
The two energy terms
and
Eb
5
are com-
1
Es
(b)
Es
(a)
FIG. 6. (a) Distribution functions for the deformation energies
at contacts between spheres for \(\phi = 0.04, 0.37, 0.57, 0.76 \). The
data are compared to the equilibrium distribution \(\exp(-E_s) \) [21].
(b) \(E_s \) as a function of \(\phi \). No crossover at \(\phi \approx 0.72 \) is visible.

dominating terms in the scaling regime are \(E_s \) and \(E_{ext} \). The divergence of \(E_{ext} \) is rather trivial as it is just the
deformation energy of the confining box. It is thus \(E_s \)
that dominates the stiffness divergence. This explains to
some extent why there is crossover to granular packings.
When the deformation energy at the contacts between
spheres dominates over the other energy terms, the beams
no longer play a role in membrane stiffness.

If the membrane had no thickness, its folding would
continue without limit. Then, according to the scaling
arguments above, the energy related to deformation of
beams would behave as

\[
E_b \propto (\phi)^{5/3}
\]

at small \(\phi \). In analogy with Ref. [13], at high compression

\[
1/\phi \to (1/\phi - 1/\phi_c)
\]

Setting \(\phi_c = 1 \), we obtain

\[
E_b \propto [(1 - \phi)/\phi]^{-5/3}.
\]

The two energy terms \(E_s \) and \(E_b \), and their scaling behav-
ors, are compared in Fig. 5. (Notice that deformations of
both beams and spheres are included in Fig. 4(b).)

Since there are two qualitatively different scaling be-
haviors of stiffness, one would expect a qualitative change
at the crossover in the distribution of elastic energy or
contact forces between spheres. We could not, however,
detect any such change as demonstrated by the distribu-
tions shown in Fig. 6 for the deformation energies at the
contacts. There was no change either at the crossover in the
(changing) set of spheres that experienced the highest
contact forces. This behavior strongly suggests that, at
the crossover, ridges form the force chains of the
granular-packing regime [8,9]. Notice that both are com-
licated 3D networks of essentially 1D lines of localized
deformation energy. It is tempting to conclude that they are
not separate phenomena, but different manifestations of a
single phenomenon. The crossover would then be related
to membrane thickness beginning to limit the density of
network lines.

In conclusion, we have demonstrated that a numerical
model of a tethered membrane can reproduce the theoreti-
cally predicted wrinkle and ridge formation and the ex-
perimentally observed stiffness divergence. The early-
stage ridges can be traced by the elastic deformations of
beams and the contact deformations of spheres. The diver-
gence of the effective stiffness is initially dominated by
bending and stretching of beams, and finally by the contact
energy of spheres. When the solid-volume fraction is far
below that of dense granular packings, the scaling of stiff-
ness is “membranic,” and when dense-packing is ap-
proached, it becomes “granular.” There is no detectable
change in the distribution of deformation energy when
ridges turn into force chains.

20. See EPAPS Document No. E-PRLTAO-93-076542 for a figure of a stretching ridge in a folded membrane, the
strain along the ridge as function of folding time (t) and the scaling of stretching energy (W) as function of ridge
length (L). A direct link to this document may be found in the online article’s HTML reference section. The
document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from
ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.