Controlling Break-The-Glass Through Alignment

Arya Adriansyah
Eindhoven University of Technology
Email: a.adriansyah@tue.nl

Boudewijn F. van Dongen
Eindhoven University of Technology
Email: b.f.v.dongen@tue.nl

Nicola Zannone
Eindhoven University of Technology
Email: n.zannone@tue.nl

ABSTRACT

Modern IT systems have to deal with unpredictable situations and exceptions more and more often. In contrast, security mechanisms are usually very rigid. This causes organizations to employ functionality like break-the-glass that allows users to bypass security mechanisms in case of emergencies. However, break-the-glass introduces a weak point in the system and can be misused. In this paper, we present a flexible framework for controlling the use of break-the-glass using the notion of alignments. The framework measures to what extent a process execution diverges from the specification (i.e., using optimal alignments) and revokes the exceptional permissions granted to cope with the emergency when the severity of deviations cannot be tolerated. To measure the severity of deviations, we extend alignment-based deviation analysis techniques. In particular, our technique is able to identify high-level deviations such as activity replacements and swaps; hence it provides a more accurate diagnosis of deviations than classical optimal alignments. Our work is implemented as a ProM 6 plug-in and evaluated using both synthetic and real-life data.

1 INTRODUCTION

Recent studies show that insider abuse is a significant problem for organizations. According to the 2008 CSI Computer Crime and Security Survey [2], 44% of reported incidents belong to the category of insider abuse, second only to virus incidents (50%). Moreover, damage caused by insiders can be particularly expensive: a US Secret Service study shows that more than 50% of respondents on insider frauds claimed losses over $20,000 with 12 respondents claimed a loss over $1.0 million.

The underlying fundamental problem is that nowadays policy specification and enforcement, which guarantee that data are used and distributed according to established policies, are done exclusively by preventive means. The basic notion of enforcement relies on the idea that infringements (i.e., deviations from policies and procedures) are violations and as such should not be permitted [3,4]. Preventive security mechanisms are too inflexible to be used in dynamic and open environments like healthcare. While posing strict constraints on the access to sensitive information, the system has also to cope with the potential exceptions raised in case of emergencies. For instance, doctors may deviate from the specification to react to an emergency. Preventing such actions can result in undesirable consequences (e.g., the loss of a patient).

The inflexibility of existing enforcement mechanisms often forces users to bypass them and just switch off security measures, which leads to insecurity. Most healthcare systems, for instance, include “break-the-glass” functionality which allow users to bypass access control rules in emergency situations [5,6]. The deployment of break-the-glass functionality, however, introduces a weak point in the system that can be misused [7]. To regulate the use of break-the-glass and thus reduce security risks, it is advisable to develop flexible yet automated tools able to analyze user behavior at run-time and take compensation actions when the consequences of infringements cannot be tolerated.

Several approaches [8,9] have been proposed to check compliance of user behavior with specification. Although these techniques are able to detect that a deviation occurred, they do not explicitly identify its root causes, making it difficult to quantify its severity. In contrast, the notion of alignments [10] provides a robust approach to determine the root causes of deviations. Intuitively, alignments are used to identify and measure the differences between a process execution and a process model by comparing the process execution against the possible runs of the process model. However, constructing optimal alignments is computationally expensive. Existing techniques [11,12] impose restrictions on the type of optimal alignments to compute them efficiently. In particular, alignments only identify events that occur in the process execution although they not allowed according to the process model (i.e., insertions) and activities that must

1 This paper is an expanded version of [1].
occur according to the process model but they are absent in the process execution (i.e., suppressions). Nonetheless, the severity of deviations should be assessed in terms of high level deviations like replacements and swaps [13]. Therefore, low level deviations have to be analyzed and possibly related for a diagnosis of the actual deviations which occurred. Identifying low level deviations and then using them to diagnose high level deviations, however, may lead to misinterpret the root causes of deviations. The fundamental problem is that, although high level deviations can be seen as combinations of low level deviations, their severity cannot be defined in terms of those deviations [14].

In this paper we propose a flexible framework for controlled break-the-glass based on the notion of alignments. In case of an emergency, users may require exceptional permissions. The framework grants users such permissions and thus allows them to deviate from the specification in order to face the emergency. However, deviations can only be within a certain range: if the severity of those deviations becomes too high, the framework revokes the exceptional permissions.

We use online and offline conformance checking based on alignments to assess the severity of deviations. Online conformance checking measures the extent user behavior deviates from specification at run-time. Thus, it does not penalize executions that did not reach proper termination according to the model. This, however, may result in an underestimation of deviations. Offline conformance checking is performed after process execution is declared to be complete. Thus, it considers improper termination as deviations.

To provide a more accurate diagnosis of user behavior and deviations, we extend alignment techniques to support the detection of replacements and swaps. In particular, we propose constructs that explicitly represent these types of deviations in the process model. Assuming that all activities can be replaced/swapped with all other activities, however, may reveal misleading diagnostic information and unnecessarily increase computation complexity. Therefore, we also provide guidelines to obtain accurate diagnostic information while preserving efficiency.

Our technique has been implemented as a ProM 6 plug-in and evaluated using both synthetic and real-life logs. In particular, we use synthetic data to assess the ability of the approach to detect deviations. Real-life logs from a Dutch Hospital are used to evaluate the approach for controlled break-the-glass functionality.

The paper is structured as follows. Section II introduces preliminary concepts. Section III presents our approach for controlled break-the-glass, and Section IV presents an extension of alignment techniques to deal with replacements and swaps. Section V presents experimental results. Finally, Section VI discusses related work, and Section VII concludes the paper providing directions for future work.

II PRELIMINARIES

This section introduces the preliminary concepts used in the remainder of the paper.

Process models describe how processes should be carried out. We consider process models in the form of Petri nets [15]. Our approach is extendable to any modeling language for which a translation to Petri nets is available. A Petri net consists of transitions, places, arcs connecting places and transitions, and a labeling function. The labeling function maps transitions to the activities they represent, while places and arcs describe the routing of activities and dependency between them.

Figure 1 shows a simplified procedure of a healthcare treatment in a hospital. A process instance starts when a patient makes an Appointment. Then, the patient needs to go through Radiology check, followed by Lab test. Meanwhile, a Check history on his/her previous medical record is performed. Gathered information is then Evaluated and decision is made whether the patient should go on Operation or Home treatment instead. Evaluation can be performed multiple times, but it has to be performed at least once. After an operation, a patient stays at Nursing ward until his/her condition permits dehospitalization. Notice that transitions \(t_5 \) and \(t_6 \) are both labeled with activity Evaluation in Figure 1.

The state of a Petri net is represented by a marking,
i.e. a multiset of tokens on the places of the net. A Petri net has an initial marking and a final marking. The initial marking of the net in Figure 1 consists of one token in place p_1. This place is the input place of transition Appointment, therefore only transition Appointment is enabled according to the net and marking. When a transition is executed (i.e., fired), a token is taken from each of its input places and a token is added to each of its output places. A Petri net terminates properly if it reaches its final marking (i.e., one token in place p_9 in Figure 1). A sequence of transitions from the initial to the final marking of a Petri net is a complete run of the net.

A trace is a sequence of activities, representing a process instance. An instance of an activity in a trace is called an event. An event log is a multiset of traces. Figure 2 shows some examples of traces for the process in Figure 1 where activities are abbreviated according to their initial letter. Note that an activity may occur many times in a trace, e.g. Evaluation can be performed multiple times (see trace σ_1 in Figure 2).

$$\sigma_1 = (a,r,l,c,e,o,n) \quad \sigma_2 = (a,l,r,c,e) \quad \sigma_3 = (a,r,l,e,l,t)$$

Figure 2: Example of traces for the model in Figure 1

Not all traces can be reproduced by the net, i.e. not all traces perfectly fit the process description. If a trace perfectly fits a Petri net, each “move” in the trace, i.e. an activity observed in the trace, can be mimicked by a “move” in the model, i.e. a transition fired in the net. Take for example the net in Figure 1 and its perfectly fitting trace σ_1 in Figure 2. For every occurrence of an activity in the trace, there is a transition in the net mapped to the same activity that can be fired. Moreover, after all activities in the trace are mimicked, the net reaches its final marking.

In cases where deviations occur, some movements that occur in the trace cannot be mimicked by the net or vice versa. We explicitly denote “no move” by \gg. A legal movement is a pair (x,y) such that

- (x,y) is a synchronous move if x is an activity in the trace and y is a transition in the net, and
- (x,y) is a move on log if x is an activity in the trace and $y = \gg$,
- (x,y) is a move on model if x is \gg and y is a transition in the net.

A (prefix) alignment between the trace and the net is a sequence of legal movements such that its sequence of activities (ignoring \gg) yields the original trace, and its sequence of transitions (ignoring \gg) yields a (prefix of a) complete run of the net. Take for example the Petri net in Figure 1 and trace σ_2 in Figure 2. γ_1 in Figure 3 is an alignment between σ_2 and the net. The top row of γ_1 shows the sequence of “moves” in the trace, and the bottom row shows the sequence of “moves” in the model (both ignoring \gg). For every transition, we indicate the corresponding activity on top of it. As shown in γ_1, the sequence of activities in the top row yields the original trace σ_2 and the sequence of transitions in the bottom row is a complete run of the net.

$$\gamma_1 = \begin{array}{ccccccc}
\sigma_1 & \{a\} & \{\gg\} & \{r\} & \{c\} & \{\gg\} & \{e\} & \{\gg\} \\
\sigma_2 & \{a\} & \{r\} & \{c\} & \{l\} & \{e\} & \{h\} \\
t_1 & \gg & t_2 & t_4 & t_5 & t_5 & t_9
\end{array}$$

$$\gamma_2 = \begin{array}{ccccccc}
\sigma_1 & \{a\} & \{\gg\} & \{r\} & \{c\} & \{\gg\} & \{e\} \\
\sigma_2 & \{a\} & \{r\} & \{c\} & \{l\} & \{e\} \\
t_1 & \gg & t_2 & t_4 & t_5 & t_5 & t_9
\end{array}$$

Figure 3: An alignment (top) and a prefix alignment (bottom) between trace σ_2 in Figure 2 and the model in Figure 1

Given a trace representing an incomplete process execution, an alignment between the trace and the model highlights the transitions that still need to be fired to reach proper termination as deviations. In contrast, prefix alignments highlight deviations without penalizing for non-completion. For example, γ_2 in Figure 3 is a prefix alignment between the net in Figure 1 and trace σ_2 in Figure 2. Notice that the top row of the alignment yields trace σ_2 (the same as γ_1 in Figure 3), but the bottom row yields a prefix of a complete run.

For a given process model and a trace, there can be more than one possible (prefix) alignment. For instance, γ_3 in Figure 4 is another possible alignment between trace σ_2 and the net in Figure 1. Notice that there are more deviations according to γ_3 than according to γ_1 (4 compared to 3).

$$\gamma_3 = \begin{array}{ccccccc}
\sigma_1 & \{a\} & \{\gg\} & \{r\} & \{c\} & \{\gg\} & \{\gg\} \\
\sigma_2 & \{a\} & \{r\} & \{c\} & \{l\} & \{e\} & \{\gg\} \\
t_1 & \gg & t_2 & t_4 & t_5 & t_7 & t_8
\end{array}$$

Figure 4: A non optimal alignment between trace σ_2 in Figure 2 and the model in Figure 1

The quality of a (prefix) alignment is measured based on a predefined cost function. A cost function defines the cost of movements that can occur in the alignment. An optimal (prefix) alignment between a process model and a trace is the one that has the
least total cost according to the cost function. Various cost functions can be defined, depending on the application domain and purpose of the analysis. For example, the standard cost function \[16\] defines the cost of each move on model/move on log equal to 1, the cost of each synchronous move between an activity and a transition labeled with the same activity equal to 0, and the cost is \(+\infty\) otherwise. The total cost of alignment \(\gamma_1\) is 3 and the total cost of alignment \(\gamma_3\) is 4. Thus, \(\gamma_1\) is better than \(\gamma_3\) according to the standard cost function. Since there is no other alignment between the trace and the model that has total cost lower than 3, \(\gamma_1\) is an optimal alignment.

Constructing optimal (prefix) alignments requires exploration of the (possibly infinite) state space of a Petri net, which is computationally expensive. Given a Petri net and a trace, the complexity of computing optimal alignments between the trace and the net is exponential in the number of transitions in the net and the number of activities in the trace. Existing approaches (e.g., [11,12]) exploit structural properties of both Petri nets and traces to construct optimal alignments efficiently. In particular, to increase efficiency these approaches only allow synchronous moves between an activity and a transition labeled with the same activity.

III CONTROLLED BREAK-THE-GLASS

In this section, we present a flexible enforcement mechanism that enables a controlled use of break-the-glass functionality. Its architecture is given in **Figure 5**. In the remainder of the section, we introduce the basic concepts and provide an overview of the architecture.

In case of an emergency, users may need to take actions that deviate from the specification to react to the emergency. A user may execute an activity which is not allowed by the specification (insertion). For instance, a doctor may perform additional tests to better evaluate the patient’s health condition. A user may not execute an activity which is required by the specification (suppression). A user may execute an activity instead of another activity (replacement). For instance, a doctor may perform a CT-scan instead of an MRI test because of the temporary unavailability of technical equipment. A user may execute activities in a different order than the one defined in the specification (swap). Each deviation is associated with a cost that represents the severity of the deviation.

The process model defines the allowed behavior of the system. The access control mechanism keeps track of the state of the process execution and blocks the execution of those activities that are not compliant with the process model. At any point of the process execution, users can invoke the break-the-glass control to perform actions that they are usually not authorized to perform. This functionality takes priority over the access control mechanism allowing the user to perform the requested actions. While deviations from the specification may be necessary to react to the emergency, they pose security risks (e.g., data misuse). Therefore, the use of the break-the-glass functionality needs to be monitored. To this end, the break-the-glass control activates the logging server to record the user behavior in an event log and, therefore, make users accountable for their actions.

When a user invokes break-the-glass functionality, a deviation budget is assigned to such an invocation. Intuitively, the deviation budget represents to what extent users can deviate from the specification. The amount of the assigned budget may depend on the business value of the process or on the user requesting the exceptional permissions. Every time a user deviates from the specification, the cost of the deviation is subtracted from the deviation budget. When the deviation budget is completely spent, the exceptional permissions are revoked, and the security officer is notified about the infringement.

The diagnostic information necessary to assess the severity of deviations is obtained through the conformance checker. This component takes as input a process model and an event log, and determines the optimal alignment between them by replaying the event log over the process model. The state of the process

Figure 5: Controlled Break-the-glass Architecture

execution in which break-the-glass functionality is invoked, is used to determine the initial marking on the process model. The conformance checker determines the cost-optimal alignment starting from this initial marking using the defined cost function.

The severity of deviation is assessed both online and offline. Online conformance checking is performed at run-time by replaying the trace of executed activities over the process model. Since traces that have not reached proper termination according to the model should not be penalized, prefix alignments are used to provide diagnostics information about the deviations in the log and quantify them. However, online conformance checking may underestimate the total cost of deviations if the process execution ends without reaching proper termination according to the model. Offline conformance checking, which is performed after the process execution is declared to be complete, addresses this issue by also penalizing activities that should have been performed according to the model, but do not occur in the trace. Both online and offline conformance checking provide diagnostics information about the deviations beyond simple severity measurements, which is reported to the security officer.

Take for example the process in Figure 1. Suppose that a user invokes break-the-glass after Appointment and a deviation budget equal to 1 is assigned to the user. The break-the-glass control activates the logging server which logs the process instance; conformance checking is performed online using the standard cost function. The initial state used for conformance checking is the marking of the net after firing t_1 (Appointment) as shown in Figure 6 (left). After the user invoked break-the-glass, he performs Lab test. Figure 6(i) shows the optimal prefix alignment between the recorded trace and the model, returned by the checker. As shown in the figure, the checker recognizes the event as a move on log.

After Lab test, the user performs activities Radiology, Check history, and Evaluation consecutively. The first two events are allowed according to the model, and the conformance checker returns the prefix alignment in Figure 6(ii). However, after the occurrence of Evaluation, conformance checking returns an optimal prefix alignment with deviation cost of 2 (Figure 6(iii)). The allocated deviation budget is overspent. Thus, the exceptional permissions are revoked and the security officer is informed about the infringement.

Suppose that the deviation budget assigned to the user is 2 (instead of 1). In this case, the user would still be allowed to proceed with the execution of the process. If the instance is declared to be complete after Evaluation, conformance checker then computes offline an optimal alignment between trace $\langle l, r, c, e \rangle$ and the process model with initial marking in Figure 6. The optimal alignment has cost of 3 (a move on model for t_9 (Home treatment) is added to the alignment in Figure 6(iii)). Since the allocated deviation budget is overspent, an alert is sent to the security officer.

Existing alignment techniques only allow moves on log, moves on model, and synchronous moves between an activity and a transition labeled with the same activity. Therefore, alignments obtained using such techniques only show deviations of types insertion (i.e., moves on log) and suppression (i.e., moves on model). Replacements and swaps have to be identified as combinations of such deviations. For instance, the move on log and move on model for Lab test in Figure 6 correspond to a swap between Lab test and Radiology. However, analyzing replaced and swapped activities from identified insertions and suppressions
may lead to undesirable results [14]. In our example, if the cost of the swap is 1, the total cost of deviations after execution of Evaluation is still within deviation budget and so exceptional permissions should not have been revoked from the user. Therefore, it is desirable to identify replacements and swaps directly in alignments. In the next section, we show how to extend existing approaches to deal with replacements and swaps.

IV IDENTIFYING DEVIATIONS

The extension to identify replacements and swaps are explained in Sections 1 and 2 respectively. Section 3 provides guidelines for setting the cost of these deviations.

1 REPLACEMENT

Given a (prefix) alignment, replacements manifest in the alignment as synchronous moves between activities and transitions that do not refer to the same activities. Take for example the model in Figure 1 and trace σ3 in Figure 2. Suppose that a patient may undergo a therapy instead of home treatment in cases of emergency, but doing it in a non-emergency case is not recommended. Thus, doing Therapy instead of Home treatment is considered a replacement deviation with low cost (Notice that activity Therapy is not modeled in the model of Figure 1). To consider this in the deviation analysis, let consider cost function δ1 where the cost of all movements are the same as the standard cost function, except for the cost of the synchronous move between activity Therapy and transition τ9 (Home treatment) that is set to 1. With cost function δ1, the expected optimal alignment between σ3 and the model is represented by alignment γ4 in Figure 7. Here, the synchronous move between activity Therapy and transition τ9 (Home treatment) shows the replacement of activity Home treatment with activity Therapy.

Figure 7: An alignment between trace σ3 in Figure 2 and the model in Figure 1 showing replacement of activity h with activity t

To efficiently compute optimal alignments, existing approaches (e.g., [11, 12]) cannot construct optimal alignments that show replacements such as γ3 because they assume that synchronous moves can only occur between an activity and a transition labeled with the same activity. We overcome this limitation by explicitly modeling replacements in the net. For all pairs of activities a, a’, a ≠ a’ where a can be replaced by a’, we duplicate all transitions labeled with a and map the duplicates to activity a’ instead of a. We call the duplicates substitution transitions. Figure 8 shows a substitution transition which models the replacement of activity Home treatment with activity Therapy. As shown in the figure, firing substitution transition τ9 leads to the same state of the net as if transition τ9 is fired.

Figure 8: Modeling a replacement of activity Home treatment with activity Therapy as transition τ9

We extend the cost function for insertions and suppressions with the cost of movements involving substitution transitions. The cost of synchronous moves (x, y) where x is an activity and y is its substitution transition, is the cost of the replacement defined by the substitution transition. The cost of move on model for substitution transitions is infinitely high (i.e., +∞). This way, there cannot be any move on model for substitution transitions in any (prefix) alignment. An optimal alignment between trace σ3 in Figure 2 and the net of Figure 1 augmented with the substitution transition in Figure 8 using the extended cost function derived from δ1, is shown in Figure 9.

Figure 9: An optimal alignment between trace σ3 in Figure 2 and the net of Figure 1 extended with substitution transitions

Translating the deviations in γ5 (Figure 9) back to deviations in the original model is done by considering synchronous moves that involve substitution transitions as replacements. Alignment γ5 shows a synchronous move between substitution transition τ9 and
activity Therapy. Therefore, we know that execution of activity Home treatment has been replaced by activity Therapy. This is exactly the same interpretation that we get from the optimal alignment γ₄ in Figure 7.

The proposed solution comes with a price of computation complexity. Suppose that the trace consists of n unique activities, then its extended net with substitution transitions has n times transitions more than the original net. Thus, the use of extended nets increases the computation complexity of computing optimal alignments by a constant factor n.

2 SWAPPED ACTIVITIES

A deviation of type insertion, suppression, or replacement manifests in alignments as an individual move, i.e. a move on log, a move on model, or a synchronous move; in contrast, swaps are defined over pairs of activities. Hence, they cannot be directly identified from individual movements in optimal alignments. Consider again the model in Figure 1, trace σ₂ in Figure 2 and their alignment γ₁ in Figure 3. Suppose that activity Radiology can be swapped with activity Lab test without any cost. Instead of having one insertion (i.e., activity Lab test) and two suppressions (i.e., activities Lab test and Home treatment) as shown by γ₁, the deviations should be a pair of swapped activities (i.e., Radiology with Lab test) and one suppression (i.e., Home treatment).

We translate the problem of finding swapped activities into the problem of finding a (prefix) alignment between them. Similarly to the approach for identifying replacements, we augment the original model with interchange transitions that model swapped activities explicitly. Let a and a’ be two activities where a can be swapped with a’. For all pairs of transitions (t₁, t₂) where t₁ and t₂ are labeled a and a’ respectively, we duplicate t₁ and t₂ as a pair of interchange transitions t₂→t₁ and t₁→t₂ respectively and reverse their label. Moreover, a place pᵣ→p₁ is added to connect t₁→p₁ and t₂→p₁ such that proper completion on the model is reached if and only if both transitions are fired or none of them are fired. Figure 10 shows an example of interchange transitions that explicitly models swapping activity Radiology with Lab test (i.e., swapping t₂ with t₃). Every firing of interchange transition t₃→t₂ must be followed by firing of t₁→t₂, otherwise there is a remaining token in place p₃→p₁ which implies that proper termination is not reached.

We extend the original cost function for insertions and suppressions as follows. The cost of swapping two activities is distributed equally among the corresponding interchange transitions. Note that interchange transitions are not part of the original model and, thus, they cannot be considered independently in alignments. To this end, we set the cost of moves on model for interchange transitions to +∞. This way, moves on model on interchange transitions cannot occur in any optimal alignment between the net and traces.

Consider again the net in Figure 1 and trace σ₂ in Figure 2 where the cost of insertions/suppressions follows the standard cost function, the cost of swapping activities Radiology with Lab test is 1, and the cost is +∞ otherwise. An optimal alignment between σ₂ and the net augmented with the interchange transitions in Figure 10 is shown in Figure 11.

\[
\gamma_{6} = \begin{bmatrix}
 a & l & r & c & e & \ast \\
 t_1 & t_3 \rightarrow t_2 & t_3 \rightarrow t_2 & t_4 & t_5 & t_6
\end{bmatrix}
\]

Swaps can be identified by pairing synchronous moves that involve interchange transitions. The optimal alignment γ₆ in Figure 11 shows two synchronous moves that involve interchange transitions t₃→t₂ and t₃′→t₂. By pairing them and then refer to their labels, we know that activity Radiology has been swapped with activity Lab test.

Note that prefix alignments show an optimistic view of deviations with respect to swapped activities, i.e. an optimal prefix alignment may assume that swaps will eventually occur in the future. For example, us-
ing the same cost function as the one used in the construction of γ_6, the alignment γ_7 in Figure 12 is an optimal prefix alignment between trace (a,l) and the model in Figure 1. The synchronous move between activity Lab test and interchange transition $t_3 \rightarrow 2$ suggests that activity Radiology is swapped with activity Lab test, although no event in the trace refers to activity Radiology.

$\gamma_7 = \begin{array}{c|c|c} a & l \\ \hline a & l (r \text{ swapped with l}) & t_1 \\ t_3 \rightarrow 2 & \\ \end{array}$

Figure 12: An optimal prefix alignment, showing optimistic interpretation on deviations

The idea of interchange transitions can be generalized to identify swaps of sequences of activities. Given a process model and a trace, for all pairs of sequences of activities μ and μ' that can be swapped (i.e., μ' can occur first instead of μ while the original model shows the other way around), we duplicate all transitions in the model that correspond to activities in both sequences. Places are added between duplicate transitions of μ' and μ according to the ordering of their activities in the original sequences. Then, we swap the ordering between the sequences of duplicate transitions μ' and μ and add a place between the last duplicate transition of μ' and the first duplicate transition of μ. By augmenting the model with such constructs, optimal (prefix) alignment between the extended net and the original trace may reveal swapped sequences of activities in the trace. The sketch of this generalized approach is shown in Figure 13.

The sketch of solutions for the identification of swaps between two sequences of activities.

Given a trace and a Petri net, in the worst case where all activities in the trace can be swapped with one another, the number of possible swaps is $n(n-1)$, where n is the number of unique activities in the trace. If we allow sequences of activities to be swapped, the complexity is hyper-exponential in the number of activities because the number of possible sequences grows exponentially in the number of their elements.

3 GUIDELINES FOR SETTING COST FUNCTION

To identify all types of deviations at once, i.e., insertion, suppression, replacement, and swap, a Petri net can be augmented with both interchange and substitution transitions. The cost of movements involving these transitions is defined as shown in Sections 1 and 2. Note that our approach ensures that an event in the trace is involved in at most one type of deviation, e.g., if an occurrence of an activity is swapped with another activity according to an optimal alignment, the same occurrence cannot be identified as inserted or swapped with another activity. Thus, our approach provides clarity in deviation analysis that can be exploited for further analysis.

So far, we assume that the costs of replacements and swaps are given. However, defining such costs is often not trivial in practice. For instance, a naïve extension of the standard cost function for replacements and swaps would assign a cost equal to 1 to every replacement and swap. This function, however, causes an increase of the complexity of computing optimal alignments because all replacements and swaps between activities need to be explicitly modeled. Furthermore, such a function may yield misleading deviation diagnostics. For instance, in the net of Figure 8, allowing the replacement of Home Treatment with Appointment can provide misleading diagnostic information, as in reality they are two significantly different activities. To reduce the complexity while providing accurate diagnosis, substitution transitions and interchange transitions should be added only when they provide intuitive deviation analysis.

Possible replacements should be determined by analyzing the activities in the process model and event log. In particular, it is necessary to identify which activities can be replaced by other activities in the process execution and estimate the severity of such replacements. The process for the identification of replacements and estimation of their costs can be supported by the use of metrics for assessing the similarity degree between activities. For instance, the work in [17] uses the Latent Semantic Analysis (LSA) [18], a semantic relatedness metric, to assess the similarity between two activities based on their name. Ontology alignment techniques [19,20] can be also employed to
assess the similarity degree between two activities. The application of these techniques requires representing activities as concepts in an ontology. Ontology alignment techniques then can compute the degree of semantic resemblance between concepts based on the ontology structure. The cost of replacements can be defined as a function of the degree of similarity: higher the similarity degree between two activities, lower it is the cost of replacing one activity with the other.

Swaps can be determined by analyzing the activities and control flow in the process model. The control flow defines a precise ordering in which activities should be performed. In some case, when the swap of two activities has an insignificant or limited impact on the process execution, the constraints imposed by the control flow can be relaxed (e.g., activities Radiology and Lab test in Figure 1). However, not every swap may be allowable. In particular, an activity cannot be swapped with another activity if the execution of the latter is required for the execution of the former (e.g., in Figure 1 Evaluation is required for Operation). We call such a pair of activities unswappable activities and write \((\text{Evaluation}, \text{Operation})\) to indicate that Evaluation cannot be swapped with activity Operation.

The set of unswappable activities specifies the basic pairs of activities that cannot be swapped. The constraints imposed by this set may entail constraints on other pairs of activities. For instance, an activity should not be swapped with the predecessors of an activity whose execution is necessary for the execution of the former activity. Indeed, allowing such a swap will result in an undesirable alignment. Consider, for instance, the net in Figure 1 and the trace \((\text{Appointment}, \text{Radiology}, \text{Operation}, \text{Check history}, \text{Evaluation}, \text{Lab test}, \text{Nursing ward})\). If Lab test is swapped with Operation, this would allow Operation before an Evaluation.

To prevent the approach from identifying misleading swapping, we define the unswappable activity closure. Given a Petri net and a pair of unswappable activities \((a, b)\), the closure of \((a, b)\) consists of the set of pairs of activities \((c, b)\) such that \(c\) is a predecessor of \(a\) in the net and the set of pairs of activities \((a, d)\) such that \(d\) is a successor of \(b\) in the net. For instance, the closure of \((\text{Evaluation}, \text{Operation})\) with respect to the net in Figure 1 is the set \(\{(\text{Appointment}, \text{Operation}), (\text{Radiology}, \text{Operation}), (\text{Lab test}, \text{Operation}), (\text{Check history}, \text{Operation})\} \cup \{(\text{Evaluation}, \text{Nursing ward})\}\). The costs of pairs of activities in the unswappable activity closure is set to infinitely large \(+\infty\). A pair of activities can be swapped only if, given a set of pairs of unswappable activities \(S\), such a pair does not belong the unswappable activity closure of \(S\). Its cost should be proportional to its impact on the process execution.

We stress that only replacements and swaps whose cost is lower than the sum of the costs of the moves on model and moves on log forming such replacements and swaps need to be considered, while the cost of other deviations can be safely assumed to be infinitely high. If the cost of a replacement or a swap is greater than that sum, the replacement or the swap will never be considered in the alignment.

V EXPERIMENTS

We have implemented the proposed conformance checking technique as a ProM 6 plug-in, publicly available at www.processmining.org. We performed a number of experiments to demonstrate the conformance checking technique using both synthetic data and real data logs. In particular, we evaluate offline conformance checking, i.e., we assume that traces of execution have reached proper termination, as it provides non-optimistic deviation diagnostics. The experiments were performed using an Intel Core i7 processor (2.80 GHz) with 8GB RAM.

1 SYNTHETIC DATA

The first set of experiments aims to evaluate the robustness of the approach and, in particular, its ability to detect deviations. The event log used in the experiments was obtained by generating a number of traces from a process model. These traces were then modified to introduce deviations of different types (first block in Table 1). Three groups of experiments were performed. For each experiment, we report the identified deviations and the total cost for the optimal alignment (TC). For each group of experiments, we also report the average calculation time per trace.
In the first group of experiments (Exp. 1), we use existing alignment techniques (e.g., [21]) to detect deviations which occurred. These techniques consider only moves on log (INS) and moves on model (SUP) when determining deviations. In the experiments, we assigned a cost to every move on log and move on model equal to 1. The total cost of the optimal alignment is therefore equal to the number of identified deviations in the trace. The results of this group of experiments are presented in the second block of Table 1. The results show that, although existing techniques are efficient, they overestimate the cost of alignments as replacements and swaps are detected as combinations of moves on log and moves on model. As a consequence, the low level alignment cannot be used to construct high level deviations. For instance, in trace 6 we expect two replacements (first block of Table 1). At a low level, they would correspond to four deviations since replacements can be identified as a combination of a move on log and a move on model. In contrast, the optimal alignment for trace 6 has total cost of 3, given by an insertion and two suppressions. This example shows that if the cost function does not include the cost of replacements and swaps, these deviations may not be diagnosed from the alignment.

The aim of the second and third groups of experiments is to evaluate the ability of the method proposed in this work to identify deviations without any knowledge in advance about occurring deviations. In the second group of experiments (Exp. 2), we did not consider any prior knowledge about deviations. Thus, we use a standard cost function where the cost of all possible deviations (including replacements and swaps between all pairs of activities) is equal to 1. The results are presented in the third block of Table 1.

In general, the results of the second group coincide with the first block in the table. An exception is given by trace 11, for which the plug-in found a different interpretation for the deviations which occurred (i.e., three insertions and two replacements instead of four insertions, one suppression and one swap). However, a closer look at the trace revealed that the alignment determined by the plug-in does not correspond to a valid interpretation of the deviations which occurred. The alignment shows the replacement of two pairs of incompatible activities. This highlights the importance of assigning appropriate costs to deviations. In particular, assigning arbitrary costs requires analyzing the identified alignments for validity. Notice that the average computation time increases significantly in comparison with the one of Exp. 1. This increment confirms the exponential complexity introduced when considering all possible replacements and swaps.

<table>
<thead>
<tr>
<th>Trace</th>
<th>Exp. 1</th>
<th>Exp. 2</th>
<th>Exp. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>INS</td>
<td>SUP</td>
<td>REP</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Deviation detection for experiments on synthetic data

Average calculation time

| 0.26ms/trace | 114.51ms/trace | 0.26ms/trace |
In the third group of experiments (Exp. 3), we consider cases where we have background knowledge on the activities that can be swapped/replaced. We set the cost of allowed replacements and swaps to 1, while the cost of replacements and swaps for other pairs of activities was set to $+\infty$. The cost of moves on log (INS) and moves on model (SUP) was set to 1. The results are presented in the last block of Table 1. These results show that our technique is able to detect all deviations as the last block coincides with the first block in the table. Moreover, the computation time decreases significantly compared to Exp. 2. This shows that with proper knowledge about activities that can be replaced/swapped, one can set the cost of deviations properly to get a meaningful analysis as well as reducing computation time. Note that without such knowledge, one can perform an iterative procedure to obtain well-founded results by first using the standard cost function as we did for Exp. 2, and then setting the cost for identified incompatible swapped/replaced activities to high (i.e., $+\infty$) in the next iterations.

2 REAL-LIFE LOGS

To evaluate the applicability of the approach in a real scenario, we use a real-life event log from a Dutch academic hospital which has been made available for the BPI Challenge 2011 [22]. Since no process model is available for the log, a model was mined from the log. The original log contains cases referring to different diagnoses (i.e., different treatment processes), which makes the log to be heterogeneous. Mining heterogeneous logs, however, may lead to inaccurate process models [23]. We considered only cases related to diagnosis for cancer of the vulva. The obtained log contains 493 events in 94 cases. 70% of these cases (i.e., 66 cases) were used to mine the process model using the Alpha Miner ProM plug-ins [24]. For the purpose of the experiments, we assumed that the mined process model provides the correct representation of the selected diagnosis. This model was analyzed to determine the costs of deviations. In particular, we analyzed the activities in the model and the control flow to identify which activities can be replaced by other activities (e.g., similar medical tests or procedures) as well as which activities can be swapped without a significant impact on the process execution. A cost for such deviations was defined on the basis of their severity. The remaining 30% of cases (i.e., 28 cases) was manually analyzed to evaluate the output of the plug-in. In particular, we analyzed the events executed in each case and compared them with the control flow specified in the process model. The analyzed cases were assessed using a five-scale system (i.e., low, low/medium, medium, medium/high, and high); each scale represents the overall severity of the deviations in a case.

The cases that were analyzed manually together with the defined cost function were given as input to the plug-in. The average calculation time per trace was 115.53 ms. The results are presented in Figure 14. As shown in the figure, the results of the plug-in coincide with the ones obtained through manual analysis in 16 cases (out of the 28 cases analyzed). For the other 12 cases, there is a slight difference between the results of the plug-in and the ones of manual analysis. Here, we analyze and discuss the reasons behind such differences. A summary is presented in Table 2.

<table>
<thead>
<tr>
<th>n. cases</th>
<th>Result</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overestimation</td>
<td>Repetition of the same transition</td>
</tr>
<tr>
<td>6</td>
<td>Overestimation</td>
<td>Reordering</td>
</tr>
<tr>
<td>5</td>
<td>Underestimation</td>
<td>Difficult to manually identify a corresponding run of the process model</td>
</tr>
</tbody>
</table>

Table 2: Analysis of mismatches between manual and automated investigation

The plug-in overestimates the results of manual analysis in seven cases and underestimate them in five
cases. In one case (#8), an activity, which is allowed by the specification, was repeated several times. Although these deviations were correctly identified by the plug-in as moves on log, the plug-in does not discriminate which activities were inserted. In contrast, the repetition of the same activity was considered as a mitigating factor during manual analysis.

In six cases, the plug-in overestimates the results of manual analysis because the swap of sequences of activities is not supported by the plug-in. An analysis of these cases showed that in two cases (#784 and #793) the alignment identified through manual inspection and by the plug-in was exactly the same: the higher cost is caused by the fact that swaps of sequences of activities were accounted as combinations of moves on log and moves on model. In the other cases (#68, #132, #546, and #783), the plug-in aligned the log with a run of the process model which was different from the one indicated by manual analysis. Note that, although our implementation only considers swaps of two activities, our approach is general enough to deal with swaps of sequences of activities (see Section IV).

The cases in which the plug-in returned a severity level lower than the level indicated by manual analysis correspond to cases for which it was difficult to identify an alignment. As a consequence, the severity of these cases might have been overestimated in the manual assessment. In three cases (#73, #344 and #1048), the alignment determined by the plug-in was reliable. This demonstrates that the plug-in can help in understanding the root causes of deviations. In the other two cases (#92 and #1110) the plug-in aligned the cases with very short run of the process model and accounted most events in the log as moves on log. This is reflected in the move-log fitness metric of alignments, i.e. the ratio between the total cost of synchronous moves in the alignment and the total cost obtained by considering all activities in the trace as moves on log. This metric provides an intuition on how much the activities in the trace are deviating from the model. In the last two cases, this metric value is very low (below 0.14 from scale of 0.0 to 1.0). This indicates that the execution of activities in the traces is rather random and does not follow the flow of activities described in the model.

VI RELATED WORK

Little work in the literature considers how to incorporate break-the-glass functionality in existing infrastructures. For instance, Brucker and Petritsch [25] present a break-the-glass enforcement architecture which extend access control models with the set of emergency policies. This approach, however, is not practical as it requires identifying all possible exceptions at design time. Ferreira et al. [5] extend the access control system with a break-the-glass policy that can be invoked in case of emergency. Although such a policy is coupled with logging mechanisms that record users’ actions and non-repudiation mechanisms, methods for the analysis of user behavior are not discussed. In contrast, we presented a flexible architecture that allows users to invoke the break-the-glass functionality at any time and alerts when deviations from specifications cannot be tolerated.

Many approaches have been proposed to check recorded process executions against predefined rules/process models. van der Aalst et al. [24] proposed an LTL-based approach to check the satisfiability of a set of properties in a given trace. In this approach, the satisfiability of each property is checked independently. Hence, correlations between deviations in one rule and other deviations in other rules cannot be easily identified. An approach based on the behavioral profile is proposed in [27]. Given a set of traces and a process model, this approach encodes the behavior of both the model and traces in metric representations before comparison. Although the approach supports root-cause analysis, the metric representation may abstract away behavior that is important for analysis. Banescu et al. [14] present an approach for identifying and measuring privacy deviations based on token-based replay techniques [28]. The genetic mining algorithm in [29] uses similar replay technique to measure the quality of process models with respect to given executions. Token-based replay techniques, however, may allow behavior that is not allowed by the model due to the used heuristic and thus may provide misleading diagnostic information [30].

The notion of alignments [10] provides a robust approach to correlate occurrences of recorded activities with transitions in predefined process models using their semantics. In particular, the notion of alignments is based on the “edit distance” of a trace from a process model. This idea has been used to extend the theory of runtime enforcement by introducing the notion of predictability [31]. In particular, edit distance metrics are used to map “almost valid” traces into the predictable (closest valid) trace. In [17] edit distance metrics have been enhanced to measure the privacy distance between expected and actual user
behavior. The problem of these metrics is that they cannot be applied to analyze logs against complex process models, for instance including loops. Moreover, constructing alignments is computationally expensive. Adriansyah et al. [11, 12, 21] propose efficient approaches to construct optimal alignments by restricting the map of process executions to process models, and thus improve the applicability of techniques based on alignments to handle real-life cases. Nevertheless, these approaches only identify low level deviations (i.e., moves on log and moves on model). This may lead to misinterpret the root causes of deviations when low level deviations are analyzed to identify high level deviations. Our approach extends the work in [11, 12, 21] by allowing the identification of high level deviations through alignment, while preserving efficiency.

VII CONCLUSIONS AND FUTURE WORK

In this paper we presented a flexible framework for controlled break-the-glass based on alignments. The framework allows users to deviate from the specification within a given range. The severity of deviations is determined using alignment-based online and offline conformance checking. Online conformance checking analyzes user behavior at run time. This verification, however, may underestimate the severity of deviations when the process execution does not reach proper termination. Offline conformance checking addresses this issue by computing an optimal alignment between traces in the event log and complete runs of the process model. Moreover, we extend the alignment approach to explicitly show high level deviations, i.e. replacements and swaps. The experiment results show that the proposed approach is robust in the sense that it is able to identify and quantify deviations without proper knowledge about deviations. Prior knowledge on possible deviations can be used to tune the cost function in order to improve the quality of deviation diagnostics and computation performance.

The work presented in this paper suggests some interesting directions for future work. The proposed approach determines optimal alignments only based on the executed activities and the control flow defined in the process model. Other information like the users responsible for the deviations and the data that have been accessed as well as information about the context may be considered to quantify the severity of deviations, leading to more accurate security decisions. Moreover, a systematic way for determining the deviation budget is needed. To this end, we are investigating methods that assess the risks caused by the invocation of the break-the-glass functionality based on historical data.

Acknowledgments. This work has been funded by the Dutch program COMMIT under the THecS project, by the Cyber Security program under the PriC3E project, and by the EU Commission under the Seventh Framework Project “PoSecCo”.

References

