Mitigation and adaptation: energy efficient climate control in historic building
Brostrom, T.; van Schijndel, A.W.M.; Wessberg, M.; Larsen, P.K.

Published in:
Climate for Culture: Built Cultural Heritage in times of Climate Change

Published: 01/01/2015

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
CHAPTER 3

Mitigation and adaptation strategies

Tomáš Vyhlídal

One of the key objectives of the Climate for Culture project was to perform an assessment of existing microclimate control strategies with respect to their energy consumption as well as their applicability to a wide spectrum of cultural heritage sites preserved in historic buildings of different structure, utilisation and climatic region in Europe. This was done with the help of building simulation models and is based on the analysis of an extensive number of project case studies spread over Europe. By coupling the building simulation models with results of high resolution climate change predictions, an outlook to the near (2020-2040) and to the far (2071-2100) future could be performed to assess energy demand predictions of selected control strategies. Along with the sustainability objectives concerning the expected rise of energy needs and costs, a lot of attention was also paid to the applicability of renewable energies to historic buildings. The above mentioned aspects are addressed in more detail in section 3.2.

The next key objective of the project was to develop indoor climate control strategies for the optimal control of relative humidity and temperature in typical historic buildings and exhibitions. In this research field, several approaches have been proposed utilising the mathematical models and damage functions. The key objective of the methods was to achieve a risk-free environment under minimised energy consumption. These methods, as well as classical approaches have been implemented on a low cost controller, which can be applied to switching on and off the indoor climate control devices (dehumidifiers, humidifiers, heaters, coolers, ventilators), both portable and permanent. In addition to the classical building simulation software such as WUFI®Plus and HAMBase-MatLab, Fluent software has been used to model and analyse airflows in selected spacious historic interiors. The simulation based analysis was also supplemented by the analysis of existing implementations of a wide range of control methods. The results are summed up in the implemented Decision Support System for indoor climate risk assessment and control. More detailed information on the topics mentioned here can be found in section 3.2.

Section 3.3 deals with revitalisation and enhancement of historic climatisation systems. This part of research consisted of both the detailed analysis of existing solutions as well as of concept studies supported by the simulation tools. Altogether, twelve key case studies have been addressed in the project. Section 3.4 then deals with “Temperierungen”, i.e. wall heating systems, which mainly distribute heat via radiation from heating pipes inside or in front of the walls. On the one hand these systems have advantages in reducing cold wall effects and mould risk. On the other hand, in combination with reducing the infiltration rate of buildings, they can be used to improve climate stability when used in properly. A study on the Brezice castle “Temperierung” project in Slovenia and about the conservation heating control system to stabilise relative humidity at St. Renatus Chapel in Germany are presented. The last section 3.5 presents further contributions to promoting the radiative heating in historic buildings. Following on from the research of earlier EU project Friendly Heating on designing optimal heating strategy in historic churches, a series of experiments have been performed to study the efficiency of various heating elements regarding the heating source and the elements shape. Besides, energy efficiency and various environmental aspects of the friendly heating system have been studied by modelling the indoor climate of the church in Rocca Piretore in Italy.

CHAPTER 3.1

Energy efficient climate control in historic buildings

Tor Broström, Jor van Schijndel, Magnus Wesberg, Poul Klenz Larsen et al.

An overarching goal of the Climate for Culture project is to promote efficient energy use in historic buildings. We firstly assessed how indoor climate and energy demand is affected by climate change. We then developed new strategies and concepts for the sustainable solutions for energy-efficient climate control and compared them with state of the art solutions. Historic buildings without any climate control are vulnerable to climate change because indoor climate is strongly influenced by outdoor climate and the properties of the building envelope. In these buildings, however, climate change may require active climate control which causes a new energy demand. Normally the indoor climate of historic buildings with proper climate control will not be strongly affected by climate change but the energy demand for climate control will be affected: it may either increase or decrease. Energy demand for climate control can be due to:

- Temperature control: heating or cooling
- Humidity control: humidification or dehumidification
Based on building simulations, the project has shown how the energy demand for a historic building under climate change is affected by climate change (see Figure 1). We can see that energy demand for heating is expected to decrease all over Europe, however the energy demand for cooling and dehumidification is expected to increase. The overall energy demand, shown in the map on the right, shows a distinct geographic pattern where overall energy demands expected to increase in Northern Europe and decrease south of the Alps. This is only one example; the results will be different for other types of buildings.

3.1. Assessment of control strategies

Having shown the overall effects, we have a rather complex effect on the energy demand for indoor climate control, we have investigated ways to control the indoor climate while minimising the energy demand.

Passive strategies. The basic strategy for stabilising the indoor climate in a historic building should be to minimise the influence from the outdoor climate through the passive function of the building envelope. Passive control is determined by the insulation, air tightness and hygrothermal buffering of the building envelope. Case studies within the project and simulations show how the indoor climate can be stabilised by reducing the air exchange and by reducing solar heat gain from windows.

Active strategies. If active climate control is needed, it should aim to control the indoor climate as energy-efficient as possible regarding given climate requirements. We assessed these using building simulations based on the case study experience and have made a cross comparison of their energy consumption using the building simulation software (Brostrom et al., 2012, Antretter et al. in 2012, where the overall energy consumption was several times higher compared to the direct humidity control method.

Having shown that climate change will have a rather complex effect on the energy demand for cooling and dehumidification is expected to increase. The overall energy demand, shown in the map on the right, shows a distinct geographic pattern where overall energy demands expected to increase in Northern Europe and decrease south of the Alps. This is only one example; the results will be different for other types of buildings.

3.1.1 Assessment of control strategies

Having shown that climate change will have a rather complex effect on the energy demand for indoor climate control, we have investigated ways to control the indoor climate while minimising the energy demand.

Passive strategies. The basic strategy for stabilising the indoor climate in a historic building should be to minimise the influence from the outdoor climate through the passive function of the building envelope. Passive control is determined by the insulation, air tightness and hygrothermal buffering of the building envelope. Case studies within the project and simulations show how the indoor climate can be stabilised by reducing the air exchange and by reducing solar heat gain from windows.

Active strategies. If active climate control is needed, it should aim to control the indoor climate as energy-efficient as possible regarding given climate requirements. We assessed these using building simulations based on the case study experience and have made a cross comparison of their energy consumption using the building simulation software (Brostrom et al., 2012, Antretter et al. in 2012, where the overall energy consumption was several times higher compared to the direct humidity control method.

Having shown that climate change will have a rather complex effect on the energy demand for cooling and dehumidification is expected to increase. The overall energy demand, shown in the map on the right, shows a distinct geographic pattern where overall energy demands expected to increase in Northern Europe and decrease south of the Alps. This is only one example; the results will be different for other types of buildings.

3.1.2 Renewable energy

Having shown the overall effects, we have a rather complex effect on the energy demand for indoor climate control, we have investigated ways to control the indoor climate while minimising the energy demand. Renewable energy is becoming an increasingly important consideration in all types of buildings whether historic or modern. In the context of the Climate for Culture project, the introduction of renewable energy can be both a preventive and mitigative measure. The introduction of renewable energy will obviously reduce greenhouse gas emissions. Furthermore, the results from the Climate for Culture project show how climate change will have an effect on the energy demand for climate control in historic buildings and how they can be a sustainable and cost-effective solution for climate control aiming to mitigate the effects of climate change.

3.1.3 Conclusions

No single strategy or solution exists that can be used to mitigate the effects of climate change on all buildings. It depends on the building type and use of the building as well as geographic location. This part of the project has provided new knowledge that will allow end users to better select appropriate solutions for a specific building in a specific region.

A case study example. In the next 50 years the outdoor climate in most of Scandinavia is expected to be warmer and more humid. Timber buildings that so far have done well without any climate control will face new threats. Insects such as woodworm will migrate north. Unheated or intermittently heated stone buildings such as churches and castles will be exposed to higher risks of mould growth.

Figure 2a: At Skokloster Castle in Sweden, different climate control strategies have been tested and compared.