Electronic mode of control to obtain increased torque and improved power factor from an asynchronous machine

Wyk, van, J.D.

Published in:
Electronics Letters

DOI:
10.1049/el:19700281

Published: 01/01/1970

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Wyk, van, J. D. (1970). Electronic mode of control to obtain increased torque and improved power factor from an asynchronous machine. Electronics Letters, 6(13), 399-401. DOI: 10.1049/el:19700281

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Dec. 2018
that of Fig. 2, but, for this case,
\[C_0 = \frac{wt\varepsilon_5^2 (1 - k_5^2)}{l} \]
\[w = \varepsilon_5^p = \frac{1}{(1/p\varepsilon_5^p) + \frac{1}{Z_0}} \]
\[Z_0 = \frac{wvt\varepsilon_5^p}{\Phi} \]
\[\Phi = \left(\frac{1}{2M} \right) \sec \left(\frac{1}{2\omega t\varepsilon_5^p} \right) \]
\[X_1 = Z_0 M^2 \sin \left(\frac{1}{2\omega} \right) \]
\[y = \frac{M}{g_33^n (\omega Z_0)^n} \]
and \(l, w, \) and \(t \) are defined in Fig. 2.

Side-electroded length-expander bar: The new equivalent circuit for the side-electroded length-expander bar is shown in Fig. 3. Here
\[C_0 = \frac{lw\varepsilon_5^2 (1 - k_5^2)}{l} \]
\[v = \varepsilon_5^p = \left(\frac{1}{(1/p\varepsilon_5^p) + \frac{1}{Z_0}} \right) \]
\[Z_0 = \frac{wvt\varepsilon_5^p}{\Phi} \]
\[B_1 = \frac{1}{(2Z_0)} M^2 \sin \left(\frac{1}{2\omega} \right) \]
\[J = |B_2| \]
where
\[B_2 = -\left(\frac{2}{Z_0} \right) M \sin \left(\frac{1}{2\omega} \right) \]
\[M = w_d\phi_1^n \]
and \(l, w, \) and \(t \) are defined in Fig. 3.

The circuit of Fig. 3 contains an ideal ‘admittance inverter’, with an inverter parameter \(J = |B_2| \). This is a 2-port network with the property that, when an admittance \(Y \) is connected to one port, the input admittance at the other port is \(J/Y \). The inverter in Fig. 3 is defined by its general-circuit-parameter-matrix:
\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix} = \begin{pmatrix}
0 & jB_2 \\
\left(B_2 \right) & 0
\end{pmatrix}
\]
(Note that this inverter behaves like a section of transmission line of characteristic admittance \(J \) with a phase shift of \(+90^\circ \) if \(B_2 \) is negative and \(-90^\circ \) if \(B_2 \) is positive.) By checking the open-circuit impedance parameters for the new thickness-expander plate circuit (Fig. 2) against those for the circuit of Fig. 1, an exact equivalence may be demonstrated between these two circuits. Similar analyses show that the new circuits for the other two transducer types also correspond exactly to their counterparts in Reference 1.

To demonstrate the simplification afforded by use of the new circuits, consider the effect of open-circuiting the electrical port in Fig. 1. The result is an impedance
\[j\omega C_0^{-1} \left(j\omega C_0^{-1} \right) = 0 \]
across the transformer primary. This short circuit, reflected through the transformer, connects together points \(P \) and \(P' \). The result may be shown to be the lumped-element T equivalent circuit of an acoustic transmission line with no electrical loading. By contrast, this result is immediately apparent from the new circuit for the thickness-expander plate (Fig. 2).

It is possible to interpret the three elements on the secondary side of the transformer in Mason’s circuit (Fig. 1) as an acoustic transmission line \(^2\) (by again recognising that they form the T equivalent circuit of the line); however, note that the acoustic forces \(V_1 \) and \(V_2 \) are not developed across this transmission line alone, but are developed partly across the line terminals and partly across the secondary of the transformer. In the new circuits, on the other hand, the acoustic forces appear directly across the transmission-line terminals. This is physically more reasonable, and permits a clear distinction to be drawn between the lumped-element electrical behaviour and the wave acoustic behaviour of the transducer.

In each of the new circuits, it is easy to see the effect on the acoustic transmission line of an arbitrary impedance connected to the electrical port. This is not the case in the corresponding circuits of References 1 and 2.

Circuits similar to those presented here may be derived for transducers excited by nonuniform field distributions or with nonuniform piezoelectric properties. In particular, for certain electrical interconnections, a simple single circuit resembling those in Figs. 2 and 3 may be drawn to represent an array of transducers of alternating polarities. Such circuits will be discussed in an article currently in preparation.

R. KRAMHOLTZ
D. A. LEEBOM
G. L. MATTHAEI

Department of Electrical Engineering
University of California
Santa Barbara, Calif. 93106, USA

References

ELECTRONIC MODE OF CONTROL TO OBTAIN INCREASED TORQUE AND IMPROVED POWER FACTOR FROM AN ASYNOCHRONOUS MACHINE

Indexing terms: Asynchronous machines, Power-factor correction, Torque

It is indicated that, by changing the electronic switching mode of the rotor current of an induction machine, it is possible to operate the machine at improved (capacitive) power factors and increased torque, or conversely at lower effective current and capacitive power factors at rated torque.

Introduction: The control of wound-rotor slip-ring induction machines by insertion of an external impedance in the rotor circuit has been applied in the past. To a certain extent these methods have had electronic or static counterparts for a long time. The advent of compact and reliable semiconductor switching elements has stimulated the interest in all types of electronic control schemes anew. Electronic control of the rotor current of induction machines by employing thyatrons or thyristors to switch in a delayed ignition angle mode has been proposed and investigated, for instance, by Erlicki et al. \(^1\) and Shepherd et al. \(^2\) These methods employ an antiparallel arrangement of controlled rectifiers utilising natural commutation as had been proposed long ago by Lenz. \(^3\) The purpose of this letter is to suggest a new mode of control without the drawbacks of the above-mentioned schemes, and to present some experimental results.

Theoretical considerations: Consider a multiphase induction machine to be controlled in its rotor. When the angle of ignition of a pair of antiparallel controlled rectifiers is delayed, it is found that the power factor of the circuit decreases with the decrease in current. This is brought about by the natural commutation employed by this method. To compare the conventional method of electronic control and the method to be proposed, an extremely simplified model for the controlled induction machine will be assumed. This should serve only to illustrate the essentials.

Assume that the stator resistance and leakage reactance of the considered machine to be so low that air-gap flux of essentially constant magnitude, rotating with uniform velocity, is established in the machine. This results in a sinusoidally

25th June 1970 Vol.6 No. 13

ELECTRONICS LETTERS

25th June 1970 Vol. 6 No. 13

399
induced e.m.f. \(e_x^* \) as shown in Fig. 1. Consider the \(x \)th phase:

\[
e_x^* = \sqrt{2} E_x \sin \omega_t t = sE_{r0} \sin \omega_t t \quad \ldots \quad (1)
\]

where \(\omega_t \) is the rotor angular frequency, and \(s \) is the electromagnetic slip. (Refer to Fig. 1a.) Conventionally the con-

duction is delayed over an angle \(\alpha_r \), where \(\alpha_r \) is subject to the constraint

\[
\alpha_r > \psi_r
\]

for symmetrical operation, and \(\psi_r \) is the steady-state uncontrolled phase angle between induced voltage \(e_x^* \) and rotor phase current \(i_x^* \). The extinction angle \(\gamma_r \) is subject to

\[
\gamma_r < \pi + \psi_r
\]

resulting in the current flow indicated in Fig. 1a.

Now power-factor improvements for passive inductive circuits have been suggested recently by Emanuel-Eigels et al.,* and will now be applied to the present instance of a rotating machine. It is proposed that the current be started at the condition of zero induced rotor voltage, and extinguished by forced commutation at angle \(\beta_r \), where periodicity results in the constraint

\[
\beta_r < \pi \quad \text{(see Fig. 1b)}
\]

An approximate expression for the electromagnetic torque of the machine may now be taken to be

\[
T_e = \frac{mpE_{r0}}{2\omega_t} I_1 \cos \psi_1 \quad \ldots \quad \ldots \quad (2)
\]

with the rotor current expressed as the series

\[
i_x^*(t) = i_r \sum_{n=1}^{\infty} [\sqrt{(a_n^2 + b_n^2)}(\sin (n\omega_t t + \psi_0))] \quad \ldots \quad (3)
\]

where

\[
I_r = sE_{r0}(R^2 + \omega_s^2 L_{re})^{-1} \quad \ldots \quad \ldots \quad (4)
\]

and \(R \) and \(L_{re} \) are the equivalent rotor resistance and leakage inductance, respectively, where the \(m \)-phase, \(2p \)-pole machine has a peak value of induced rotor voltage \(E_{r0} \) at standstill, and \(\psi_r \) is the phase angle between the fundamental current component and the induced voltage. The usual Fourier coefficients of \(n \)th order are given by \(a_n \) and \(b_n \). Evaluation of the coefficients results in the torque for the two cases being

\[
T_{es} = \frac{mpE_{r0}^2}{2\pi \omega_a (R^2 + (\omega_s^2 L_{re})^2)^{\frac{1}{2}}}
\]

\[
\times \left[\left(\psi_r - \alpha_r \right) \cos \psi_r - \frac{\sin (2\gamma_r - \psi_r) - \sin (2\alpha_r - \psi_r)}{2} \right]
\]

\[
+ \frac{2 \sin (\alpha_r - \psi_r)}{\csc^2 \psi_r} \left(\cot \psi_r \sin \gamma_r + \cos \gamma_r \right)
\]

\[
\times \exp \left(-\left(\psi_r - \alpha_r \right) \cot \psi_r - (\cot \psi_r \sin \alpha_r - \cos \alpha_r) \right) \quad \ldots \quad \ldots \quad (5)
\]

\[
T_{es} = \frac{mpE_{r0}^2}{2\pi \omega_a (R^2 + (\omega_s^2 L_{re})^2)^{\frac{1}{2}}}
\]

\[
\times \left[\left(\beta_r \cos \psi_r - \frac{\sin (2\beta_r - \psi_r) + \sin \psi_r}{2} \right) \right]
\]

\[
- \frac{2 \sin \psi_r}{\csc^2 \psi_r} \left(\cot \psi_r \sin \beta_r + \cos \beta_r \right) \exp \left(-\beta_r \cot \psi_r - 1 \right) \quad \ldots \quad \ldots \quad (6)
\]

Calculation of the torque/speed characteristics from eqns. 2-6, with the control angles \(\alpha_r, \beta_r \) as parameters for a 2-pole 2-phase machine represented by the basic parameters \(E_{r0} = 39 \) \(V \), \(R = 0.995 \) \(\Omega \)/phase and \(L_{re} = 14.4 \) \(mH \)/phase, results in the relations shown in Figs. 2a and 2b for the two cases, respectively. These Figures indicate the interesting fact that without changing the machine parameters, but merely the switching mode, it becomes possible to obtain torques much in excess of the normal maximum torque attainable with the machine. On the other hand, the same torque should be obtainable at a much lower machine current, since the power factor has been increased.

Regarding the calculations for the current extinction or \(\beta_r \) control, it must be remarked that Fig. 2b reflects pessimistic values for the basic system parameters cited above. In order to approach the true experimental arrangement more closely, the basic values were adapted in order to take into account resistive and reactive effects of the forced commutation switch inserted into the rotor of the experimental machines. The values were \(E_{r0} = 39 \) \(V \), \(R = 2.04 \) \(\Omega \)/phase and \(L_{re} = 17.5 \) \(mH \)/phase.

Experimental verification: Although it is not to be expected that the simple model used would adequately describe the asynchronous machine with a periodically operated electronic switch in the rotor, preliminary experiments have indicated that the same type of effect may be observed on a practical machine. A pair of antiparallel thyristors for \(\alpha_r \) control and

*Fig. 1 Definitions and idealised waveforms

*Fig. 2 Examples of torque/speed characteristics for the electronic rotor-control systems

ELECTRONICS LETTERS 25th June 1970 Vol. 6 No. 13
a forced commutation switch for \(\beta \), control for each rotor phase of a 2-phase Westinghouse generalised machine operated as an induction motor with a wound rotor were used. The effects resulting in a difference between the experimental system and the simplified model presented are:

(i) iron losses and magnetising current
(ii) nonzero stator resistance and leakage reactance
(iii) tooth and winding harmonics
(iv) finite voltage drop across the naturally or forced commutation switch in the rotor
(v) impossibility to reduce the rotor current instantaneously to zero.

The experimental ratio

\[
\frac{T_{\text{exp}}}{T_{\text{max}}} = 2.2
\]

while theoretically

\[
\frac{T_{\text{theor}}}{T_{\text{max}}} = 1.7
\]

The improvement in power factor is clearly indicated by the experimental results in Tables 1 and 2, while the reduction in

Table 1 COMPARISON BETWEEN OPERATING MODES FOR CITED INDUCTION MACHINE

<table>
<thead>
<tr>
<th>Speed (rev/min)</th>
<th>Stator voltage (V_s)</th>
<th>Stator current (I_s)</th>
<th>Rotor current (I_r)</th>
<th>Power factor ((PF))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>110</td>
<td>4.20</td>
<td>9.80</td>
<td>0.306</td>
</tr>
<tr>
<td>300</td>
<td>110</td>
<td>4.14</td>
<td>9.70</td>
<td>0.319</td>
</tr>
<tr>
<td>2000</td>
<td>110</td>
<td>3.55</td>
<td>8.35</td>
<td>0.534</td>
</tr>
</tbody>
</table>

\(V_s', I_s', (PF)' \) refer to normal uncontrolled operation
\(V_s, I_s, (PF) \) refer to operation with the proposed current-extinction control

\(V_r, I_r, \beta \) control enables the operation of an induction machine at a capacitive power factor.

Fig. 3 gives an indication of the rotor current. The top trace records the input voltage to the rotor-power electronic switch, which has not been discussed in this letter. This trace gives an indication of the rotor zero-voltage condition as shown. It may be seen that, owing to electronic-control considerations, the rotor current was not started at \(\theta = 0 \), but some time later. The time necessary to commutate the rotor current to zero is also evident from Fig. 3.

Conclusion: It has been indicated theoretically and experimentally that, by employing electronic current-extinction control in the rotor circuit of an induction machine, it is possible to achieve much lower currents at rated torques, or conversely much higher torques at rated currents. This method of control results in capacitive power factors for the induction-machine electronic-control system.

The author is indebted to the Group on Electromechanics of the Technological University Eindhoven, Netherlands, where this work has been performed, personally to Prof. J. G. Niesten for his interest and to J. G. M. van de Laak and W. A. M. van den Boom for aid in experimental work and calculations.

J. D. VAN WYK
27th May 1970
Group on Automation
ISCOR
Vanderbijlpark, South Africa

References

EXCESS LEAKAGE-CURRENT NOISE IN JUNCTION FIELD-EFFECT TRANSISTORS

Indexing terms: Field-effect transistors, Leakage current, Noise

Measurements are reported of the excess gate leakage current \(I_G \) in several \(n \)-channel f.e.t.s, showing that \(I_G \) varies exponentially with the inverse square root of the bias voltage between drain and gate. \(I_G \) shows full shot noise, together with a component of the form \(I_G^2 \propto I_D^2/f^2 \), where values of 1-4 and 1-6 have been found for \(a \) and \(\beta \), respectively.

Fowler has given measurements of the gate leakage current of junction field-effect transistors, showing that the leakage current under certain operating conditions can be considerably larger than that measured with zero drain current. The excess leakage current was found to be proportional to drain current \(I_D \), and increased very rapidly.

Fig. 3 Observed waveforms on \(\beta \), control system

5 m/s/division horizontal
Top trace: input voltage to electronic power switch
Bottom trace: rotor current
Taken at 300 rev/min, and 0-5 p.u. torque (see Table 2)