Methane partial oxidation for future fuels


Published in:
14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV), 21-26 September 2014, Zinnowitz, Germany

Published: 01/01/2014

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Partial oxidation of methane yields a very interesting spectrum of hydrocarbons. By converting methane into the most simple liquid oxygen-functional fuel i.e. methanol CH₃OH, the fuel energy density is already increased from 0.04 MJ/L to 18 MJ/L. Higher values are observed with longer chain hydrocarbons including oxygen functionality, also products of partial oxidation of methane.

A pulsed corona discharge reactor has been applied for studying the conversion of CH₄/O₂ and CH₄/CO₂ mixtures. Gas discharges are applied in a wire-to-water film capacitive discharge reactor with typical energy densities of 15-45 kJ/L, using a drift-step-recovery-dioide based high voltage circuit [1]. Typical pulse parameters are peak voltage 65 kV, rise time 10 ns and repetition rates up to 65 Hz. The mainly applied diagnostic tool is a gas chromatograph-mass spectrometer with parallel flame ionization detector and oxygen-functional hydrocarbon separation column.

The chemistry of methane partial oxidation is explained via methyl and alkyl radical formation via reactive oxygen species, electron impact or vibrational excitation [2,3,4]. Polymerization of alkyl radicals is a major process. Molecular oxygen attachment to the methyl radical CH₃ gives the peroxymethyl radical CH₃OO, the precursor to the methoxy radical CH₃O and methanol.

Observed methane conversion levels are generally 6-20% at an efficiency of approximately 100-200 nmol/J. Observed products are mainly ethane C₂H₆ (<17800 ppm), ethylene C₂H₄ (<523 ppm) and acetylene C₂H₂ (<1640 ppm). Methanol was detected at maximum 234 ppm level, while ethanol C₂H₅OH occurred at levels up to 57 ppm. Methanol seems exclusively produced with CH₄/O₂ mixtures. Higher alkanes up to C₆ have been especially observed with CH₄/CO₂ mixtures: propane, butane, isobutene, pentane and 3-methylpentane. The same is true for the detected oxygen-functional hydrocarbons: C₂-C₄ aldehydes, acetone, 2-butaneone, dimethylether and methylformate. Maximum observed selectivities are C₂H₆: 30.1%, C₂H₄: 1.1%, C₂H₂: 3.3%, CH₃OH: 0.2%, C₃H₇OH: 0.1%. Analysis of the aqueous phase has revealed that, together with a significant pH decrease, high molecular weight species may be formed.