The potential of generalised viscoelasticity for joining band gaps in acoustic metamaterials
Lewinska, M.A.; Kouznetsova, V.; van Dommelen, J.A.W.; Krushynska, A.O.; Geers, M.G.D.

Document license:
Unspecified

Published: 01/01/2016

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 05. Dec. 2018
The potential of generalised viscoelasticity for joining band gaps in acoustic metamaterials

Acoustic metamaterials

Acoustic metamaterials can present some extraordinary behaviour in terms of wave propagation (Fig. 2a). In locally resonant acoustic metamaterials, sound effects such as band gap formation, are governed by the internal resonance introduced by the special microstructure design [1]. So far, studies concerning metamaterials have been restricted to elastic behaviour, neglecting unavoidable losses due to material damping.

![Figure 1: (a) Illustration of the phenomenon of acoustic cloaking [2], (b) metamaterial samples [3]](image)

Recently, numerical and experimental analysis conducted by Molerón et al. [3] has showed that these effects may play a dominant role in the actual response of the material. In this work the influence of viscous losses on the metamaterial performance has been investigated.

Multicoated inclusions and complex material model

In this study, a metamaterial with multicoaxial cylindrical inclusions [4] is considered (Fig. 2) and a viscoelastic material model is used to describe the behaviour of the rubber coating.

![Figure 2: Frequency dependent response of a single-mode Maxwell model with different relaxation times (left) and the geometry of the unit cell with the schematic of a generalised Maxwell model (right)](image)

For the purpose of modeling the rubber layer, a generalised Maxwell model has been chosen which accounts for the nonlinear frequency dependence of both the real and imaginary components of the complex elastic properties (Fig. 2).

![Figure 3: Transmission spectra for shear wave for two viscoelastic metamaterials with elastic reference in the background](image)

Finally, a shift towards higher frequencies can be observed for the case with a single Maxwell model with the relaxation time $\tau = 10^{-3}$ s.

![Figure 4: Total displacement in transmission analysis at 875 Hz (the region in between band gaps)](image)

Results: the effect of viscoelasticity

Transmission spectrum analysis, where amplitudes of output and input waves are compared, shows that in the elastic case, multiple attenuation regions (band gaps) are located at low frequencies and relatively close to each other (shaded areas in Fig. 3). In viscoelastic cases, attenuation occurs in between the elastic band gaps, which is also visible in displacement maps in Fig. 4.

Conclusion

The influence of frequency-dependent material properties on the location of attenuation regions has been demonstrated. For the purpose of bridging the wave attenuation ranges, the viscosity of the rubber coating needs to be sufficiently high in the frequency region of band gaps formation.

References: