Error probability in digital fiber optic communication systems
Koonen, A.M.J.

Published: 01/01/1979

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Error probability in digital fiber optic communication systems

by

A.M.J. Koonen
ERROR PROBABILITY IN DIGITAL FIBER
OPTIC COMMUNICATION SYSTEMS

by

A.M.J. Koonen

TH-Report 79-E-99
ISBN 90-6144-099-8

Eindhoven
September 1979
ABSTRACT

The average bit error probability for a digital optical fiber system is numerically calculated using two receiver models. We analyze the influence of a number of important system parameters and of mBnB line coding. The decision threshold and the average avalanche gain are optimized to yield a minimum average bit error probability. Timing errors in the receiver are not considered, and we assume the shape of the received optical pulses to be known (rectangular or Gaussian). The equalization in the receiver is of the raised cosine type. A Gaussian approximation of the statistics of the signal at the threshold detector input is introduced. Average bit error probabilities are calculated using the exhaustive method.

Koonen, A.M.J.
ERROR PROBABILITY IN DIGITAL FIBER OPTIC COMMUNICATION SYSTEMS.
Eindhoven University of Technology, Department of Electrical Engineering,
TH-Report 79-E-99

Present address of the author:

Ir. A.M.J. Koonen,
Philips' Telecommunicatie Industrie B.V.,
Afd. Voorontwikkeling Transmissie,
HUIZEN,
The Netherlands
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. System model</td>
<td>6</td>
</tr>
<tr>
<td>3. Statistical analysis of signals</td>
<td>9</td>
</tr>
<tr>
<td>3.1. Photo detector</td>
<td>9</td>
</tr>
<tr>
<td>3.2. Equalizer output signal</td>
<td>10</td>
</tr>
<tr>
<td>3.3. Time normalization</td>
<td>11</td>
</tr>
<tr>
<td>3.4. Transmitter alphabet</td>
<td>12</td>
</tr>
<tr>
<td>3.5. Worst case and best case data patterns</td>
<td>13</td>
</tr>
<tr>
<td>3.6. Excess noise factor</td>
<td>14</td>
</tr>
<tr>
<td>4. Linear receiver model</td>
<td>17</td>
</tr>
<tr>
<td>4.1. Thermal noise power at the equalizer output</td>
<td>18</td>
</tr>
<tr>
<td>4.2. Received optical pulse shapes</td>
<td>19</td>
</tr>
<tr>
<td>4.3. Equalized output pulse shapes</td>
<td>20</td>
</tr>
<tr>
<td>4.4. Shot noise variance functions</td>
<td>23</td>
</tr>
<tr>
<td>5. Calculating the error probability</td>
<td>24</td>
</tr>
<tr>
<td>5.1. Gaussian approximation of the output signal statistics</td>
<td>24</td>
</tr>
<tr>
<td>5.2. Average bit error probability</td>
<td>24</td>
</tr>
<tr>
<td>5.3. Exhaustive method</td>
<td>26</td>
</tr>
<tr>
<td>5.4. Worst case analysis</td>
<td>28</td>
</tr>
<tr>
<td>5.4.1. Weighting factors</td>
<td>29</td>
</tr>
<tr>
<td>6. Receiver optimization</td>
<td>31</td>
</tr>
<tr>
<td>6.1. Choosing the decision threshold</td>
<td>31</td>
</tr>
<tr>
<td>6.1.1. Minimizing the error probability for a fixed data pattern</td>
<td>31</td>
</tr>
<tr>
<td>6.1.2. Minimizing the average bit error probability</td>
<td>32</td>
</tr>
<tr>
<td>6.2. Choosing the average avalanche gain</td>
<td>33</td>
</tr>
<tr>
<td>6.2.1. Minimizing the error probability for a fixed data pattern</td>
<td>34</td>
</tr>
<tr>
<td>6.2.2. Minimizing the average bit error probability</td>
<td>35</td>
</tr>
<tr>
<td>6.3. Average received optical power</td>
<td>36</td>
</tr>
<tr>
<td>7. Line coding</td>
<td>38</td>
</tr>
<tr>
<td>7.1. 1B2B split phase code</td>
<td>38</td>
</tr>
<tr>
<td>7.2. 5B6B code</td>
<td>39</td>
</tr>
</tbody>
</table>
8. Numerical results of calculating the average bit error probability
8.1. Receiver data
8.2. Influence of the received optical pulse shape
8.3. Influence of dark current and extinction
8.4. Influence of the decision threshold
8.5. Influence of the average avalanche gain
8.6. Influence of the average received optical power, and of line coding

9. A modified receiver model
9.1. Threshold setting
9.2. Received optical pulses
9.3. Numerical results of calculating the average bit error probability
9.3.1. Receiver data
9.3.2. Influence of the received optical pulse shape
9.3.3. Influence of the rolloff factor of the raised cosine equalized output spectrum
9.3.4. Influence of the average received optical power, and of line coding

10. Conclusions and final remarks

References

Appendix 1. Plots of the shot noise variance functions
Appendix 2. Plots of the weighting factors versus the normalized r.m.s. optical pulse width, with the rolloff factor of the equalized output spectrum as a parameter
Appendix 3. Plots of the weighting factors versus the rolloff factor of the raised cosine equalized output spectrum, with the normalised r.m.s. optical pulse width as a parameter
1. Introduction

Several years ago the optical fiber was introduced as an important new communication medium. It offers a lot of technical and economical advantages as compared with conventional metallic conductors like coaxial cables. For instance it weights less. It is thinner, more flexible, free of electromagnetic interferences, it has a larger bandwidth, and is composed of cheaper basic materials. Being an attractive solution to meet the growing need of information transmission capacity, it is the subject of many investigations and experiments.

An appropriate criterion to judge the quality of a digital transmission system is the average bit error probability. As far as error probability calculations are concerned, optical fiber systems distinguish themselves from coaxial systems by the fact, that at the photo detection process in the receiver a so-called shot noise is produced. This shot noise is non-stationary and signal-dependent. The receiver adds the usual stationary Gaussian noise. In coaxial systems only stationary, signal-independent noise plays a part.

Several methods to calculate the error probability of a digital optical transmission system have already been published. They all try to approximate the very complicated statistics of the signal at the threshold detector input in the receiver with more or less accuracy. An approach with Gaussian quadrature integration formule is possible [8], and also an "exact" calculation [1], a statistical simulation [1], a method based on the Chernoff-bound [1], and a method based on a Gaussian approximation [1,3,6]. The last method offers more insight into the influence of system parameter variations, and facilitates the implementation of line coding in the calculations. It gives fairly accurate results, but tends to underestimate the optimum threshold setting and overestimate the optimum average avalanche gain [1]. Following this method, we numerically calculate the average bit error probability using two receiver models. We analyze the influence of a number of important system parameters and of mBnB line coding.

To carry out error probability calculations, we have to define a system model (chapter 2). Using this a statistical signal analysis is derived (chapter 3). We introduce a linear receiver model (chapter 4). The very complicated statistics of the signal at the threshold detector input, needed for error probability calculations, may under certain circumstances be approximated by
Gaussian statistics (chapter 5). The signal dependence of the shot noise can be translated into interference by the neighboring symbols with the symbol under decision. We can deal with this interference using the so-called exhaustive method. This method scans all possible patterns of the relevant neighboring symbols. Using this method we shall calculate the average bit error probability with the aid of a digital computer. We consider the optimum setting of the decision threshold and of the average avalanche gain at the receiver (chapter 6), and the aspects of the so-called mBnB line coding (chapter 7). Using the previously mentioned receiver model, calculations of the average bit error probability are carried out (chapter 8). Timing errors at the sampler are not considered, and we assume the shape of the received optical pulses to be known (rectangular or Gaussian). The equalization in the receiver is of the raised cosine type. We analyze the influence of a number of important system parameters, and of line coding. The decision threshold and the average avalanche gain are optimized to yield a minimum average bit error probability. Similar calculations are carried out using a modified receiver model (chapter 9).
2. System model

The transmission of digital information over an optical fiber system can be described with the model shown in figure 2.1.

Figure 2.1. The transmission of digital information over an optical fiber system

The source produces a sequence of data symbols \(\{a_m\} \).

In the encoder, the source signal is converted into a symbol sequence \(\{b_k\} \) suitable for transmission with a signalling rate of \(1/T \) symbols per second.
A laser diode or a light emitting diode (LED) is used as optical transmitter. We prefer a laser diode because of its larger output power, smaller spectral bandwidth, faster response, and smaller divergence of the light beam. The modulation characteristic of a laser diode is non-linear. We may however specify the shape of the output optical pulses $h_L(t)$ in such a way that the laser output approximately is formed by a linear superposition of these pulses. The optical power, launched into the fiber, is

$$p_L(t) = \sum_{k=-\infty}^{+\infty} b_k h_L(t-kT)$$

(2.1)

where $\int b_k h_L(t-kT) dt$ is the energy of the k-th optical pulse, and $h_L(t) \geq 0$ for every t.

Introducing a linear approximation of the fiber baseband behavior [2], we denote its impulse response by $h_F(t)$. We obtain for the light power at the output of the fiber

$$p_o(t) = \sum_{k=-\infty}^{+\infty} b_k h_p(t-kT)$$

(2.2)

where

$$h_p(t) = h_L(t) * h_F(t) \geq 0 \text{ for every } t$$

(* means convolution). Following Personick [3], we normalize the received optical pulse shape $h_p(t)$ so that

$$\int_{-\infty}^{+\infty} h_p(t) dt = 1$$

(2.3)

making b_k equal to the energy in the k-th received optical pulse:

$$b_k \geq 0 \text{ for every integer } k$$

(2.4)

The photodetector converts $p_o(t)$ into an electrical current $i_s(t)$. For this purpose we take a PIN-photodiode or an avalanche photodiode (APD). We prefer an APD because of its internal amplification mechanism.

The amplifier and the equalizer convert $i_s(t)$ into an output voltage $v_{out}(t)$, which will be further analyzed in chapter 3. The joint impulse response of amplifier and equalizer is denoted by $h_I(t)$. The signal $v_{out}(t)$ is periodically
sampled at $t_s + kT$. From the sampled values, the threshold detector derives estimates $\{\hat{b}_k\}$ for the symbols $\{b_k\}$ being sent, using bit-by-bit detection. A decoder converts the sequence $\{\hat{b}_k\}$ into estimates $\{\hat{a}_m\}$ of the sequence produced by the source.
3. Statistical analysis of signals

3.1. Photodetector

Using an avalanche photodiode (APD) as photodetector, we describe its output current by a filtered non-uniform Poisson process [3,4]

\[i_s(t) = \sum_{i=1}^{N(t)} e g_i h_s(t-t_i) \]

(3.1)

where:

- \(e \): charge of an electron
- \(g_i \): random avalanche gain at random time \(t_i \), i.e. the number of secondary electrons generated for a primary electron at \(t_i \)
- \(g h_s(t) \): APD impulse response (ideal APD: \(h_s(t) = \delta(t) \))
- \(\int_{-\infty}^{+\infty} h_s(t) \, dt = 1 \)

\(N(t) \): the number of primary electrons generated during \((-\infty, t)\) for the incident photons

\[\Pr[N(t) = N] = \frac{\Lambda^N}{N!} e^{-\Lambda} \]

where \(\Lambda = \int_{-\infty}^{t} \lambda(\tau) \, d\tau \)

\(N(t) \) is a non-homogeneous counting process with intensity \(\lambda(t) \) given by

\[\lambda(t) = \frac{n}{h \nu} \cdot p_0(t) + \lambda_0 \]

(3.2)

where

- \(h \nu \): energy in a photon
- \(n \): quantum efficiency of the detector
- \(\lambda_0 \): dark current of the detector

Substituting (2.2) we obtain

\[\lambda(t) = \frac{n}{h \nu} \sum_{k=-\infty}^{+\infty} b_k h_p(t-kT) + \lambda_0 \]

(3.3)

The same model holds for a PIN photodiode, but without avalanche effect (so \(g_i \equiv 1 \)).
3.2. Equalizer output signal

Let the duration of the photodiode response $h_s(t)$ be negligible as compared with the remaining time constants in the receiver circuitry. With the joint impulse response $h_I(t)$ of the amplifier and the equalizer, the equalizer output signal is

$$v_{out}(t) = x(t) + n_{th}(t)$$

where

$$x(t) = i_s(t) * h_I(t) = \sum_{i=1}^{N(t)} i(t) * h_I(t-t_i)$$

represents a non-uniform filtered Poisson process with intensity $\lambda(t)$ according to (3.3), and where $n_{th}(t)$ represents additive thermal noise from the amplifier and the equalizer. This $n_{th}(t)$ is stationary and signal-independent, having a Gaussian probability density function (p.d.f.) with expectation

$$E[n_{th}(t)] = 0$$

The signal $x(t)$ can be separated into its expectation $E[x(t)]$ and a non-stationary, signal-dependent, zero-mean shot noise $n_s(t)$

$$n_s(t) \triangleq x(t) - E[x(t)]$$

We are interested in the expectation and the variance of $v_{out}(t)$ at the decision time t_s. From $v_{out}(t_s)$ the threshold detector derives an estimate \hat{b}_o for the symbol b_o being sent. In the following signal dependency will be indicated by a condition on the transmitted data sequence $B \triangleq \{b_k\}$. Using (3.3) we calculate for the expectation [3,4]

$$E[v_{out}(t_s)|B] = E[x(t_s)|B] = \int_{-\infty}^{+\infty} \lambda(t).E[e_g.h_I(t_s-t)]dt$$

$$= \sum_{k=-\infty}^{+\infty} b_k.h_{out}(t_s-kT) + V_o$$

where

$$h_{out}(t) \triangleq e_G.\frac{n}{h_v} \cdot h_p(t) * h_I(t) : \text{equalized output pulse}$$
\[G \triangleq E[g] \quad : \text{average avalanche gain} \]
\[V_o \triangleq eG\lambda_o H_I(o) \quad : \text{dark current contribution} \]

\((H_I(f) = \mathcal{F}[h_I(t)], \mathcal{F} \text{ denoting Fourier transformation}). \)

Assuming the shot noise \(n_s(t) \) and the thermal noise \(n_{th}(t) \) to be uncorrelated, we calculate for the variance using (3.3) \[3,4\]

\[
\text{Var}[v_{\text{out}}(t)B] = E[n_s^2(t_s)B] + E[n_{th}^2(t)] \\
= \int_{-\infty}^{+\infty} \lambda(t)E[(eGn_h(t_s-t))^2]dt + E[n_{th}^2(t)] \\
= \frac{hv}{\eta} \cdot F_e \cdot \sum_{k=1}^{\infty} b_k z(t_s-kT) + Z_0 + E[n_{th}^2(t)]
\]

(3.8)

where

\[F_e \triangleq E[g^2]/G^2 \quad : \text{excess noise factor} \]

\[z(t) \triangleq \left(\frac{eGn}{hv}\right)^2 \cdot h_p(t) \cdot h_I(t) = h_p(t) \cdot h_I^2(t) \quad : \text{shot noise variance function} \]

\[h_I(t) = \mathcal{F}^{-1}[H_I(f)] \triangleq \mathcal{F}^{-1}[H_{\text{out}}(f)/H_p(f)] \]

\[Z_0 \triangleq \lambda_o F_e \cdot \left(\frac{hv}{\eta}\right)^2 \int_{-\infty}^{+\infty} |H_I(f)|^2 df \quad : \text{dark current contribution} \]

(\(\mathcal{F}^{-1} \) denotes inverse Fourier transformation; \(H_{\text{out}}(f) = \mathcal{F}[h_{\text{out}}(t)] \) and \(H_p(f) = \mathcal{F}[h_p(t)] \)). Furthermore \(F_e = 1 \) holds for a photo diode with a deterministic amplification.

3.3. Time normalization

In order to isolate the dependence on the time slot width \(T \) from the functions \(h_p(t) \) and \(h_{\text{out}}(t) \), we introduce time-normalized functions

\[h_p'(t) \triangleq T h_p(t.T) \quad H_p'(f) = \mathcal{F}[h_p'(t)] = H_p(f/T) \]

\[h_{\text{out}}'(t) \triangleq h_{\text{out}}(t.T) \quad H_{\text{out}}'(f) = \mathcal{F}[h_{\text{out}}'(t)] = \frac{1}{T} H_{\text{out}}(f/T) \]

(3.9)

Formula (2.3) retains its validity for \(h_p'(t) \):
Using (3.9) we can also obtain time-normalized equivalents for the functions $h_1(t)$ and $z(t)$:

$$h_1^\prime(t) \overset{\Delta}{=} h_1(t/T)$$

$$H_1'(f) = \mathcal{F}[h_1'(t)] = \frac{1}{T} H_1(f/T)$$

$$= \frac{H'_{\text{out}}(f)}{H'(f)}$$

$$z'(t) \overset{\Delta}{=} z(t/T)$$

$$z'(t) = h_1'(t) * h_1^2(t)$$

All these time-normalized functions and the corresponding spectra depend on the shapes of the spectra $H_p(f)$ and $H_{\text{out}}(f)$, but no longer on the time slot width T.

3.4. Transmitter alphabet

Because of the non-linear modulation characteristic of the optical transmitter (i.e. laser diode), we restrict ourselves in the following to a binary alphabet for the line symbols b_k:

$$b_k \in \{b_{\text{min}}, b_{\text{max}}\} \quad \text{where} \ 0 \leq b_{\text{min}} < b_{\text{max}}$$

We define an extinction EXT by

$$\text{EXT} \overset{\Delta}{=} \frac{b_{\text{min}}}{b_{\text{max}}}$$

Thus imperfect modulation results in $\text{EXT} > 0$.

We normalize the line symbols b_k on the maximum energy b_{max} in a received optical pulse

$$b_k' \overset{\Delta}{=} \frac{b_k}{b_{\text{max}}}$$

thereby introducing a normalized transmitter alphabet, equivalent with (3.13):

$$b_k' \in \{\text{EXT}, 1\} \quad \text{where} \ \text{EXT} \geq 0$$

If the alphabet symbols b_{min} and b_{max} are equiprobable, the average received
optical power P_o is given by

$$P_o = 10 \cdot \log \left[\frac{b_{max} (1+\text{EXT})}{2T.1 \text{ mW}} \right] \quad \text{(dBm)} \quad (3.17)$$

This formula applies to the case of a balanced line code, and to the case of straight binary transmission with equiprobable symbols.

Substituting (3.9) through (3.15) in (3.7) and (3.8), we obtain for the expectation and the variance of the equalizer output signal at the decision time t_s, respectively

$$E[v_{out}(t_s)|8] = b_{max} \sum_{k=-\infty}^{+\infty} b'_k \cdot h'_o (\frac{t_s}{T} - k) + V_o \quad (3.18)$$

$$\text{Var}[v_{out}(t_s)|B] = \frac{h'V}{\eta' F} \cdot e_{max} \sum_{k=-\infty}^{+\infty} b'_k \cdot z'(\frac{t_s}{T} - k) + Z_o + E[n_{th}^2(t)] \quad (3.19)$$

The dark current contributions are according to (3.7) through (3.11)

$$V_o = eG.\lambda_o \cdot \frac{hv}{\eta' eG'} \cdot H_{out}(0) = \lambda_o \cdot T. \frac{hf}{\eta' H_{out}'(0)} \quad (3.20)$$

$$Z_o = \lambda_o \cdot T. \left(\frac{hv}{\eta} \right)^2 . F \cdot I_2 \quad (3.21)$$

where we have defined a weighting factor I_2 in agreement with [3] by

$$I_2 \Delta \int_{-\infty}^{+\infty} |H_{out}'(f)/H_p'(f)|^2 \text{df} = \int_{-\infty}^{+\infty} |H_1'(f)|^2 \text{df} \quad (3.22)$$

This factor only takes into account the shape of the received optical pulse $h_p(t)$ and of the equalized output pulse $h'_o(t)$. It is independent of the time slot width T, because it is expressed in the time-normalized spectra of these pulses. Note that both dark current contributions are inversely proportional to the signalling rate $1/T$.

3.5. Worst case and best case data patterns

From (2.2) and (3.9) we have

$$h'_p(t) \geq 0 \quad \text{for every } t \quad (3.23)$$
so with (3.12)

\[z'(t) \geq 0 \quad \text{for every } t \] (3.24)

Hence the signal contribution to the output variance (3.19), given a symbol under decision \(b_o \), attains its maximum value if the neighboring symbols \(\{b_k, k \neq o\} \) all have their maximum value. We therefore define with (3.13) a worst case pattern \(B_{WC}^t \) of neighboring symbols by

\[B_{WC}^t \triangleq \{b_k, k \neq o \equiv b_{\text{max}}\} \] (3.25)

This pattern gives rise to the maximum noise power at the equalizer output at the decision time \(t_s \) given \(b_o \), for which we write using (3.15) and (3.19)

\[
N_{W}(b_o) \triangleq \text{Var}[v_{\text{out}}(t_s) | B_{WC}^t, b_o] \\
= \frac{h}{T} F [b_o, z'(\frac{t_s}{T}) + b_{\text{max}} \left(\sum_{k=-\infty}^{+\infty} z'(\frac{t_s}{T} - k) - z'(\frac{t_s}{T}) \right)] \\
+ Z_0 + E[n_{\text{th}}^2(t)]
\] (3.26)

In a similar way we define with (3.13) a best case pattern \(B_{BC}^t \) of neighboring symbols by

\[B_{BC}^t \triangleq \{b_k, k \neq o \equiv b_{\text{min}}\} \] (3.27)

which gives rise to the minimum noise power at the equalizer output

\[
N_{B}(b_o) \triangleq \text{Var}[v_{\text{out}}(t_s) | B_{BC}^t, b_o] \\
= \frac{h}{T} F [b_o, z'(\frac{t_s}{T}) + b_{\text{min}} \left(\sum_{k=-\infty}^{+\infty} z'(\frac{t_s}{T} - k) - z'(\frac{t_s}{T}) \right)] \\
+ Z_0 + E[n_{\text{th}}^2(t)]
\] (3.28)

3.6. \textbf{Excess noise factor}

We can express the excess noise factor \(F_e \) in the average avalanche gain \(G \)
and an APD ionisation constant k. Starting from an implicit expression for the moment generating function $M_g(s)$ of the avalanche gain g, we calculate F_e according to (see (3.8))

$$F_e = E\left[\frac{d^2 M_g(s)}{ds^2}\right] = \frac{dM_g(s)}{ds}\bigg|_{s=0} \left[\frac{dM_g(s)}{ds}\bigg|_{s=0}\right]$$

(3.29)

which leads to

$$F_e = kG + (1-k) \left(2 - \frac{1}{G}\right)$$

(3.30)

Figure 3.1. Excess noise factor F_e versus the average avalanche gain G with the APD ionisation constant k as a parameter.

The constant k is the ratio of the probability per unit length of a hole (moving in the detector high field region) producing a collision, to the same quantity for electrons.

Figure 3.1 shows a plot of F_e versus G with k as a parameter. For large G (3.30) can be approximated by

$$F_e = kG + 2(1-k) \quad \text{if } G \gg 1$$

(3.31)
Personick uses in [3] the approximation

\[F_e \approx G^x \] \hspace{1cm} (3.32)

suggesting \(x = 0.5 \) as a typical value of the excess noise exponent \(x \) for a silicon APD. If \(G \approx 60 \), (3.32) approximates (3.30) fairly well by taking \(k = 0.1 \) (within 2% if \(G = 60 \) (± 5%)).
4. Linear receiver model

Figure 4.1 shows a typical optical receiver in schematic form [3]. Here

- R_b: APD biasing resistance
- C_d: APD junction capacitance
- $i_b(t)$: current noise source, associated with R_b
- R_A: amplifier input resistance
- C_A: amplifier input capacitance
- $i_a(t)$: amplifier input current noise source
- $e_a(t)$: amplifier input voltage noise source

The noise sources are assumed to be white, Gaussian, and uncorrelated. The amplifier gain A is assumed to be sufficiently high so that noises introduced by the equalizer are negligible. The equalizer impulse response $h_{eq}(t)$ is chosen such, that a received optical pulse $h_p(t)$ causes an equalized output pulse $h_{out}(t)$ free from intersymbol interference at $t = kT$ for every integer k:

$$h_{out}(kT) = \delta_k$$ \hspace{1cm} (4.1)

where Kronecker symbol

$$\delta_k = 1 \text{ for } k = 0$$
$$= 0 \text{ for integer } k, k \neq 0.$$
4.1. Thermal noise power at the equalizer output

The thermal noise power at the equalizer output is given by [3]

\[
E[n_{th}^2(t)] = \left(\frac{\hbar v}{eN0}\right)^2 \cdot \left\{ \left[\frac{2k\theta}{R_b} + \frac{S_E}{R_T^2} + S_I \right] \cdot T \right\}
+ S_E \cdot (2\pi C_T \frac{I_3}{T})
\] \hspace{1cm} (4.2)

where

- \(2k\theta/R_b\) : two-sided spectral noise density of \(i_b(t)\) in \(A^2/Hz\)
- \(S_E\) : two-sided spectral noise density of \(e_a(t)\) in \(V^2/Hz\)
- \(S_I\) : two-sided spectral noise density of \(i_a(t)\) in \(A^2/Hz\)
- \(R_T = R_a // R_b \) (// denotes parallel connection)
- \(C_T = C_a + C_d\)

Like \(I_2\), the weighting factor \(I_3\) takes into account only the shape of the received optical pulse \(h_p(t)\) and of the equalized output pulse \(h_{out}(t)\), and is independent of the time slot width \(T\). We define \(I_3\) in agreement with [3] by

\[
I_3 \triangleq \int_{-\infty}^{+\infty} [H_{out}'(\ell)/H_p'(\ell)]^2 d\ell = \int_{-\infty}^{+\infty} [H_i'(\ell)]^2 d\ell
\] \hspace{1cm} (4.3)

To minimize \(E[n_{th}^2(t)]\) \(R_b\) and \(R_a\) must be as large as possible, and \(C_d\) and \(C_a\) as small as possible.

According to (4.2) \(E[n_{th}^2(t)]\) is inversely proportional to \(G^2\). We define a thermal noise parameter \(Z_{th}\), independent of \(G\), by

\[
Z_{th} \triangleq G^2 \cdot E[n_{th}^2(t)]
= \left(\frac{\hbar v}{eN0}\right)^2 \cdot \left\{ \left[\frac{2k\theta}{R_b} + \frac{S_E}{R_T^2} + S_I \right] \cdot T \right\}
+ S_E \cdot (2\pi C_T \frac{I_3}{T})
\] \hspace{1cm} (4.4)

Thus \(Z_{th}\) (and \(E[n_{th}^2(t)]\) also) consists of a term, proportional to \(I_2\) and inversely proportional to the signalling rate \(1/T\), and of a term, proportional to \(I_3\) and to \(1/T\). Hence at higher rates \(1/T\), \(Z_{th}\) is nearly proportional to \(1/T\):
\[Z_{th} = \left(\frac{\hbar}{e \eta} \right)^2 \cdot S_{E'} (2\pi C_n^2) \cdot \frac{I_3}{T} \] for large \(1/T \) \hspace{1cm} (4.5)

\[Z_{th} \] is related to \(Z \), defined in [3, part I, formula (30)], by

\[Z_{th} = \left(\frac{\hbar}{\eta} \right)^2 \cdot Z \] \hspace{1cm} (4.6)

and to \(n_{\text{therm}} \), defined in [6, p. 217] (where it is named \(n_{th} \)), being the thermal noise in the units of secondary electrons, by

\[Z_{th} = \left(\frac{\hbar}{\eta} \right)^2 \cdot n_{\text{therm}}^2 \] \hspace{1cm} (4.7)

4.2. Received optical pulse shapes

We consider two families of received optical pulse shapes (time-normalized according to (3.9)):

a. rectangular pulses ($\alpha_r \leq 1$)

\[h'_p(t) = \begin{cases} \frac{1}{\alpha_r} & \text{for } |t| < \alpha_r/2 \\ 0 & \text{otherwise} \end{cases} \] \hspace{1cm} (4.8)

\[H'_p(f) = \sin(\alpha_r \cdot \pi f)/(\alpha_r \cdot \pi f) \]

b. Gaussian pulses

\[h'_p(t) = \frac{1}{\alpha_g \cdot \sqrt{2\pi}} \cdot e^{-t^2/2\alpha_g^2} \]

\[H'_p(f) = e^{-2(\alpha_g \cdot \pi f)^2} \] \hspace{1cm} (4.9)

These pulses are shown by figure 4.2. Pulse narrowing leads to a proportional increase in pulse height, because of the pulse energy remaining constant (see (3.10)).

It is worth noticing that the assumption of rectangular received optical pulses makes sense only in the case of negligible fiber dispersion. A certain amount of fiber dispersion makes Gaussian pulses more plausible.

We define a normalized r.m.s. optical pulse width \(\frac{\sigma}{T} \) by [3]
4.2.a. Rectangular \((\alpha_r \leq 1) \)

4.2.b. Gaussian

Figure 4.2. Received optical pulse shapes (time-normalized)

\[
\left(\frac{\sigma}{T} \right)^2 \triangleq \frac{1}{T^2} \left[\int_{-\infty}^{\infty} t^2 h_p(t) \, dt - \left[\int_{-\infty}^{\infty} t h_p(t) \, dt \right]^2 \right]
\]

\[
= \int_{-\infty}^{\infty} t^2 h'_p(t) \, dt - \left[\int_{-\infty}^{\infty} t h'_p(t) \, dt \right]^2
\] \hspace{1cm} (4.10)

Hence

\[
\alpha_r = \sqrt{\frac{12}{T}} \cdot \frac{\sigma}{T} \quad \text{and} \quad \alpha_g = \frac{\sigma}{T}
\] \hspace{1cm} (4.11)

4.3. Equalized output pulse shapes

We consider two families of equalized output pulse shapes, both with a roll-off factor \(\beta \) \((0 \leq \beta \leq 1)\), and time-normalized according to (3.9):

a. raised cosine pulses

\[
h'_\text{out}(t) = \frac{\sin(\pi t) \cdot \cos(\beta \pi t)}{\pi t \cdot [1 - (2\beta t)^2]}
\]

\[
h'_\text{out}(f) = 1 \quad \text{for} \quad |f| < (1-\beta)/2
\]

\[
= \frac{1}{2} \left[1 - \sin\left(\frac{\pi f}{\beta} \right) \right] \quad \text{for} \quad (1-\beta)/2 \leq |f| < (1+\beta)/2
\]

\[
= 0 \quad \text{otherwise}
\] \hspace{1cm} (4.12)
b. "optimum" pulses

\[h'_\text{out}(t) = \frac{\sin(\pi t)}{\pi t} \left\{ (1-\beta) \cos(\beta \pi t) + \frac{\sin(\beta \pi t)}{\pi t} \right\} \]

\[H'_\text{out}(f) = 1 \quad \text{for} \quad |f| < (1-\beta)/2 \]

\[= 1 - |f| \quad \text{for} \quad (1-\beta)/2 \leq |f| < (1+\beta)/2 \]

\[= 0 \quad \text{otherwise} \quad (4.13) \]

These pulses with their spectra are shown by figure 4.3. Both pulse types do not cause intersymbol interference (i.s.i.) at the sampling times \(t = k \) (integer \(k \)) according to (4.1). In addition the "optimum" pulses introduce for small timing errors a minimum amount of i.s.i. according to a mean squared error criterion [7,8].

In section 9.1 we will also consider raised cosine equalized output pulses with a rolloff factor \(\beta > 1 \).
4.3.c. raised cosine time function $h'_{out}(t)$
(a: $\beta = .1$; b: $\beta = .5$; c: $\beta = 1$)

4.3.d. "optimum" time function $h'_{out}(t)$
(a: $\beta = .1$; b: $\beta = .5$; c: $\beta = 1$)

Figure 4.3. Equalized output pulse shapes with their spectra
4.4. Shot noise variance functions

We assumed the received optical pulse shape $h'(t)$ to be rectangular or Gaussian, and the equalized output pulse shape $h'_\text{out}(t)$ to be raised cosine or "optimum". Hence four combinations of $h'(t)$ with $h'_\text{out}(t)$ are possible, each giving a particular shape to the shot noise variance function $z'(t)$ according to (3.11). Appendix 1 shows a number of plots of $z'(t)/z'(o)$ versus t for each combination, calculated with the aid of Fast Fourier Transform algorithms. Parameters are the rolloff factor β of $h'_\text{out}(t)$ and the normalized r.m.s. optical pulse width σ/T of $h'(t)$ ($\sigma/T = \alpha_g$ for Gaussian pulses, and for rectangular pulses $\sigma/T = .144$ and $= .260$ correspond with $\alpha_r = .5$ and $= .9$ respectively, according to (4.11)).

These plots show a nearly identical behavior of $z'(t)/z'(o)$ for rectangular and Gaussian received optical pulses, provided that they have the same normalized r.m.s. pulse width σ/T. Furthermore $z'(t)$ is time-unlimited and decays faster for larger β and smaller σ/T; it decays slightly faster for "optimum" than for raised cosine equalized output pulses.

These plots show $z'(t) > 0$ for every t (see (3.24)) and $z'(k) > 0$ for every integer k. Thus even in the absence of timing errors (i.e. for $t_s = 0$) intersymbol interference arises in the shot noise contribution to the output variance (see (3.19) and (4.4)):

$$\text{Var}[v_{\text{out}}(t = 0) | B] = \frac{h_y}{\eta} F_e b_{\text{max}} \sum_{k=-\infty}^{+\infty} b'_s z'(-k) + z_o + Z_{\text{th}}/G^2$$ \hspace{1cm} (4.14)

Using a fairly large rolloff factor β and a not too large normalized r.m.s. optical pulse width σ/T (e.g. $\beta = 1$ and $\sigma/T = .144$), $z'(t)$ decays so fast, that this intersymbol interference is nearly negligible.
5. Calculating the error probability

5.1. Gaussian approximation of the output signal statistics

The equalizer output signal $v_{\text{out}}(t)$ is formed by the sum of a non-uniform filtered Poisson process and a stationary Gaussian process. Hence the statistics of $v_{\text{out}}(t_s)$, needed to carry out error probability calculations, are very complicated. To obtain mathematical simplifications we approximate these statistics by a Gaussian probability density function (p.d.f.), conditioned on the transmitted data sequence $B = \{b_k\}$. This Gaussian p.d.f. is completely defined by its conditional expectation $E[v_{\text{out}}(t_s)|B]$, and its conditional variance $\text{Var} [v_{\text{out}}(t_s)|B]$, calculated in (3.18) and (3.19) respectively. It is a good approximation of the real p.d.f. of $v_{\text{out}}(t_s)$ if the intensity $\lambda(t)$ given by (3.3) is large compared with the bandwidth of the equalizer [5], in other words if the average number of primary electrons, generated during a time slot T, is much larger than 1.

Thus we define the p.d.f. of $v_{\text{out}}(t_s)$, conditioned on the transmitted data sequence B, by

$$
P_{v_{\text{out}}}(t_s|B) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(a-\mu)^2}{2\sigma^2}}
$$

where

$$
\mu = E[v_{\text{out}}(t_s)|B]
$$

$$
\sigma^2 = \text{Var} [v_{\text{out}}(t_s)|B]
$$

5.2. Average bit error probability

If we denote the decision threshold by D, the decision rule of the threshold detector is given by (bit-by-bit detection):

$$
v_{\text{out}}(t_s) < D \implies \hat{b}_0 = b_{\min}
$$

$$
v_{\text{out}}(t_s) \geq D \implies \hat{b}_0 = b_{\max}
$$

(5.2)
Hence, with (5.1) the probability of an erroneous decision \(\hat{b}_o \) for a given pattern of neighboring symbols \(B' = \{ b_k, k \neq 0 \} \) becomes:

\[
P_e(B') = P[\hat{b}_o = b_{\min} | B'] \cdot P[\hat{b}_o = b_{\max} | B', b_o = b_{\min}]
+ P[\hat{b}_o = b_{\max} | B'] \cdot P[\hat{b}_o = b_{\min} | B', b_o = b_{\max}]
\]

\[
= P[\hat{b}_o = b_{\min} | B'] \cdot Q\left(\frac{D - \mu_A}{\sigma_A}\right)
+ P[\hat{b}_o = b_{\max} | B'] \cdot Q\left(\frac{\mu_B - D}{\sigma_B}\right)
\]

where

\[
Q(x) \triangleq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-a^2/2} \, da
\]

\[
\sigma_A^2 \triangleq \operatorname{Var} [v_{out}(t_s)|B', b_o = b_{\min}]
\]

\[
\sigma_B^2 \triangleq \operatorname{Var} [v_{out}(t_s)|B', b_o = b_{\max}]
\]

\[
\mu_A \triangleq \mathbb{E}[v_{out}(t_s)|B', b_o = b_{\min}]
\]

\[
\mu_B \triangleq \mathbb{E}[v_{out}(t_s)|B', b_o = b_{\max}]
\]

If the conditional probabilities \(P[\hat{b}_o = b_{\min} | B'] \) and \(P[\hat{b}_o = b_{\max} | B'] \) are equal, the error probability \(P_e(B') \) is minimized by taking \(D \) equal to the maximum likelihood threshold \(D_{ML}(B') \) [9]. This threshold is situated on the intersection of the conditional p.d.f.'s \(p_{v_{out}(t_s)}(a|B', b_o = b_{\min}) \) and \(p_{v_{out}(t_s)}(a|B', b_o = b_{\max}) \), and is different for each pattern of neighboring symbols.

(N.B. because the variances of these p.d.f.'s differ, there are in principle two intersections; for practical reasons, however, we only consider the intersection between both conditional expectations). Figure 5.1 shows all this and will be further discussed in section 6.1.
Figure 5.1. The conditional probability density functions of the equalizer output signal $v_{\text{out}}(t)$ at the sampling time t_s.

We calculate the average bit error probability P_e by averaging the error probabilities $P_e(B')$ over all possible patterns of neighboring symbols B':

$$P_e = \sum_{B'} P(B') \cdot P_e(B') \cdot e$$ \hspace{1cm} (5.4)

As for every pattern B' there is an optimum threshold minimizing $P_e(B')$, so there is an optimum threshold D_{opt} minimizing P_e.

5.3. Exhaustive method

A procedure to calculate the average bit error probability P_e according to (5.4) is the following [6]:

1. calculate the error probability $P_e(B')$ for a given pattern of neighboring symbols B' according to (5.3).
2. multiply $P_e(B')$ by the probability $P(B')$ of B'.
3. carry out 1 and 2 for all possible patterns B' and add the results $P(B') \cdot P_e(B')$.

In practice, this so-called exhaustive method requires that the expectation $E[v_{\text{out}}(t_s)|B]$ and the variance $\text{Var}[v_{\text{out}}(t_s)|B]$ only depend on a finite number of symbols b_k, say
This is necessary because the computational complexity exponentially increases with the number of interfering symbols. According to (3.18) and (3.19), (5.5) implies

\[h'_{\text{out}} \left(\frac{t}{T} - k \right) = 0 \quad \text{for } k < k_1 \text{ and } k > k_2. \]

If there are no (acceptable) \(k_1 \) and \(k_2 \) satisfying (5.6) exactly, we must use an appropriate truncation criterion. We determine \(k_1 \) and \(k_2 \) such that (5.6) holds with good accuracy. This will be discussed further in section 8.1.

To simplify the implementation on a digital computer, we modify (5.4) using (5.3) for data patterns \(B_1 = B_1(k_1, k_2) = \{b_{k_1}^{(1)}, ..., b_{-1}^{(1)}, b_0^{(1)}, b_1^{(1)}, ..., b_{k_2}^{(1)}\} \) as follows:

\[P_e = \sum_{I} P(B_1) \cdot P_e(B_1). \]

where

\[P_e(B_1) = Q \left(\frac{\mu_1 - D}{\sigma_1} \cdot \text{sign}(1) \right) \]

\[\mu_1 = E[v_{\text{out}}(t_s)|B_1] \]

\[\sigma_1^2 = \text{Var}[v_{\text{out}}(t_s)|B_1] \]

\[\text{sign}(1) = +1 \quad \text{if } b_0^{(1)} = b_{\text{max}} \]

\[= -1 \quad \text{if } b_0^{(1)} = b_{\text{min}} \]

and where the summation must be carried out over the indices \(I \) of all possible data patterns \(B_1 \).

In the case of binary mutually independent symbols \(b_k \) (straight binary transmission), the summation includes \(2^{k_2-k_1+1} \) patterns \(B_1 \); if the alphabet
symbols b_{\min} and b_{\max} are equiprobable, the B_i's also are equiprobable.
In the case of encoded data patterns a correlation between the data symbols
exists, which decreases the number of possible patterns B_i.

5.4. Worst case analysis

To calculate the average bit error probability P_e we need the statistics of
the data sequence B being transmitted. In practice this information is not
known, hence we must use another criterion.
For simplicity we assume no timing errors at the sampler, so $t_s = 0$. We
therefore have no intersymbol interference in $E[v_{\text{out}}(t_s)IB]$ according to
(3.18) and (4.1), but in $\text{Var}[v_{\text{out}}(t_s)IB]$ according to (3.19) we have (see also
section 4.4).
The maximum error probability is attained by the pattern of neighboring
symbols maximizing this variance, hence according to (3.25) by the worst case
pattern of neighboring symbols $B_{\text{WC}}^i = \{b_{k, k \neq 0} = b_{\text{max}}\}$. The worst case noise
power at the equalizer output at $t_s = 0$ given b_0 follows from (3.26) and (4.4):

$$NW(b_0) = \text{Var}[v_{\text{out}}(t_s = 0)IB_{\text{WC}}, b_0]$$

$$= \frac{h_1}{n} F_e \cdot \{b_0 I_1 + b_{\text{max}}(\Sigma_1 - I_1)\} + Z_0 + Z_{\text{th}} / c^2$$

(5.8)

where we have defined weighting factors I_1 and Σ_1 in agreement with [3] using
(3.12) by

$$I_1 \triangleq z'(o) = h_p'(t) \ast h_{l_1}'(t) \big|_{t=0}^{+\infty} = \int_{-\infty}^{+\infty} h_p'(\tau) \cdot h_{l_1}'(-\tau) \, d\tau$$

(5.9)

and

$$\Sigma_1 \triangleq \sum_{k=-\infty}^{+\infty} z'(-k) = \sum_{k=-\infty}^{+\infty} h_p'(t) \ast h_{l_1}'(t) \big|_{t=-k}^{+\infty}$$
According to (5.8) I_1 is proportional to the shot noise power of the symbol under decision b_o, and $\Sigma_1 - I_1$ is proportional (with the same proportionality constant if $b_o = b_{\text{max}}$) to the shot noise power of the worst case pattern of neighboring symbols $B_{WC}^n = \{b_k, k \neq 0 \equiv b_{\text{max}}\}$.

5.4.1. Weighting factors

Substituting (3.21) and (4.4) into (5.8) we find

$$NW(b_o) = \frac{h\nu}{\eta} \cdot F_e \cdot \{b_o I_1 + b_{\text{max}} (\Sigma_1 - I_1)\}$$

$$+ \left(\frac{h\nu}{\eta}\right)^2 \cdot F_e \cdot \lambda_o T I_2 + \left(\frac{hf}{e\eta G}\right)^2 \cdot \left(\frac{2k\theta}{R_b}\right)$$

$$+ \frac{S_e E}{R^2 T} + S_I \cdot T I_2 + S_e \cdot (2\pi C_p)^2 \cdot \frac{I_3}{T}.$$ (5.11)

Note that the terms containing I_2 are inversely proportional to the signalling rate $1/T$ and that the term containing I_3 is proportional to $1/T$. The terms containing I_1 and Σ_1, which account for the signal shot noise, are independent of $1/T$.

Appendix 2 shows plots of the weighting factors I_1, Σ_1, $\Sigma_1 - I_1$, I_2 and I_3 for the four possible combinations of received optical pulse shapes (rectangular
or Gaussian) and equalized output pulse shapes (raised cosine or "optimum"). These factors are plotted versus the normalized r.m.s. optical pulse width σ/T, with the rolloff factor β of the equalized output pulses as a parameter ($\beta = .1$, $.5$ and 1).

These plots show a nearly identical behavior of the weighting factors as functions of σ/T for rectangular and Gaussian received optical pulses. The mutual differences are small for small σ/T, because of both pulse shapes approaching a Dirac impulse $\delta(t)$ according to (3.10); a larger σ/T increases the differences. For small σ/T the weighting factors generally are smaller for "optimum" equalized output pulses than for raised cosine pulses; however, this relation is inverted with increasing σ/T. The mutual differences are small for small rolloff factor β (e.g. $\beta = .1$), because of both spectra approaching an ideal low-pass characteristic; a larger β increases the differences. All the weighting factors always are increasing functions of σ/T, because a larger σ/T necessitates greater equalization. The plots of I_1 and $\Sigma_1 - I_1$ show clearly that a larger β and a smaller σ/T considerably reduce the shot noise power of the neighboring symbols as compared with that of the symbol under decision. If the received optical pulses become very narrow ($\sigma/T \to 0$, hence $h'(t) \to \delta(t)$ according to (3.10)), the shot noise of the neighboring pulses even disappears [3], whereas the shot noise power of the symbol under decision remains nearly constant.

Practical values of σ/T and β usually yield $\Sigma_1 - I_1 \ll I_1$, thus making the shot noise power of the neighboring symbols much smaller than that of the symbol under decision. For instance, rectangular received optical pulses with duty cycle $\alpha_r = .5$ ($\sigma/T = .144$) and raised cosine equalized output pulses with $\beta = 1$ yield $\Sigma_1 - I_1 = 5.12.10^{-3}$ and $I_1 = 1.003$.

The weighting factors I_1 and $\Sigma_1 - I_1$ are related to the shot noise variance function $z'(t)$ by (see (5.9) and (5.10)) $I_1 = z'(0)$ and

$$\Sigma_1 = I_1 = \sum_{k=-\infty}^{+\infty} z'(-k) = \sum_{k=-\infty}^{+\infty} z'(k), \quad (5.12)$$

The behavior of $z'(t)$ as discussed in section 4.4, such as the faster decay for large β and smaller σ/T, agrees with the behavior of $\Sigma_1 - I_1$ according to (5.12).
6. Receiver optimization

This chapter is dealing with the receiver optimization, namely with setting the decision threshold and the average avalanche gain so that the average bit error probability is minimized. The relation between the average received optical power and the average bit error probability is also discussed. Throughout this chapter timing errors are not considered: $t_s = 0$. Hence using (3.18) and (4.1) we find for the expectation of the equalizer output signal

$$E[v_{out}(t_s = 0)|B] = b_o + v_o$$ \hfill (6.1)

while the variance is given by (4.14).

6.1. Choosing the decision threshold

The average bit error probability P_e is a function of the decision threshold D according to (5.3) and (5.4).

6.1.1. Minimizing the error probability for a fixed data pattern

As discussed in section 5.2, if $P[b_o = b_{min}|B'] = P[b_o = b_{max}|B']$ the error probability $P_e(B')$ for a pattern of neighboring symbols B' is minimized by taking D equal to the maximum likelihood threshold $D_{ML}(B')$, situated on the intersection of $p_v(t_s)(a|B', b = b_{min})$ and $p_v(t_s)(a|B', b = b_{max})$ (see figure 5.1).

The use of (5.1) and (6.1) yields

$$D_{ML}(B') = v_o + \frac{(\sigma_B^2 \cdot b_{min} - b_{max})}{\sigma_A^2} + \frac{(\sigma_B^2 \cdot b_{max} - b_{min})}{\sigma_A^2} \sqrt{(\frac{\sigma_B}{\sigma_A})^2 + 2 (\frac{\sigma_B}{\sigma_A})^2 \ln (\frac{\sigma_B}{\sigma_A})}$$ \hfill (6.2)

where

$$\sigma_A^2 = \text{Var} [v_{out}(t_s=0)|B', b_o = b_{min}]$$

$$\sigma_B^2 = \text{Var} [v_{out}(t_s=0)|B', b_o = b_{max}]$$

and where $\text{Var} [v_{out}(t_s=0)|B]$ is given by (4.14).
Normalizing this threshold on the maximum energy \(b_{\text{max}} \) in a received optical pulse using (3.14) yields

\[
D_{\text{ML}}(B') = \frac{V_o}{b_{\text{max}}} + \frac{(\frac{\sigma_B}{\sigma_A})^2 \cdot \text{EXT} - 1 + \left(\frac{\sigma_B}{\sigma_A}\right)^2 \text{ln}\left(\frac{\sigma_B}{\sigma_A}\right)}{2(\sigma_B^2 - \sigma_A^2) b_{\text{max}}^2} \cdot 1n\left(\frac{\sigma_B}{\sigma_A}\right)
\]

As discussed in section 5.4, \(P_e(B') \) is maximized (using \(D = D_{\text{ML}}(B') \)) by the worst case pattern of neighboring symbols \(B'_{\text{WC}} \). In [3], Personick uses a threshold \(D_{\text{P}}(B'_{\text{WC}}) \), implicitly defined for \(B'_{\text{WC}} \) by

\[
P_e(B'_{\text{WC}}, b_o = b_{\text{min}}) = P_e(B'_{\text{WC}}, b_o = b_{\text{max}}) = Q(\delta)
\]

where according to (5.3) and (6.1)

\[
\delta = \frac{b_{\text{max}} + V_o - D_{\text{P}}(B'_{\text{WC}})}{\sigma_B} = -\frac{D_{\text{P}}(B'_{\text{WC}}) - b_{\text{min}} - V_o}{\sigma_B}
\]

By eliminating \(\delta \) we find with (3.14)

\[
\frac{D_{\text{P}}(B'_{\text{WC}})}{b_{\text{max}}} = \frac{V_o}{b_{\text{max}}} + \frac{\sigma_A + \sigma_B \cdot \text{EXT}}{\sigma_A + \sigma_B}
\]

(according to (5.8) and (6.2) \(\sigma_A^2 \) and \(\sigma_B^2 \) are calculated with (5.11)). This threshold achieves a worst case error probability \(P_e(B'_{\text{WC}}) \), which is independent of the message statistics \(P[b_o = b_{\text{min}}|B'_{\text{WC}}] \) and \(P[b_o = b_{\text{max}}|B'_{\text{WC}}] \) according to (5.3):

\[
P_e(B'_{\text{WC}}|D = D_{\text{P}}(B'_{\text{WC}})) = Q(\delta)
\]

Hence one can prove that \(D_{\text{P}}(B'_{\text{WC}}) \) is the threshold of a MINIMAX-receiver [9].

6.1.2. Minimizing the average bit error probability

For a given pattern of neighboring symbols \(B' \) and if \(P[b_o = b_{\text{min}}|B'] = P[b_o = b_{\text{max}}|B'] \) the optimum decision threshold is \(D_{\text{ML}}(B') \), given by (6.2). A non-worst case pattern \(B' \) leads to noise powers \(\sigma_A^2 \) and \(\sigma_B^2 \) at the equalizer output, which are the same amount smaller than \(\sigma_A^2 \) and \(\sigma_B^2 \) respectively for a worst case pattern \(B'_{\text{WC}} \). Because \(\sigma_A < \sigma_B \), \(\sigma_B/\sigma_A \) is larger
than for \(B'_W \), hence with (6.2) it follows that
\[
D_{ML}(B') < D_{ML}(B'_W) .
\] (6.8)

In the same way we find with respect to the best case pattern of neighboring symbols \(B'_C \)
\[
D_{ML}(B') > D_{ML}(B'_C) .
\] (6.9)

Using equiprobable alphabet symbols \(b_{\min} \) and \(b_{\max} \), we derive by averaging over all the possible \(B' \) (see (5.4)) for the optimum threshold \(D_{opt} \) which minimizes the average bit error probability \(P_e \)
\[
D_{ML}(B'_C) < D_{opt} < D_{ML}(B'_W) .
\] (6.10)

The on \(b_{\max} \) normalized optimum threshold \(D_{opt}/b_{\max} \) satisfies
\[
\frac{D_{ML}(B'_C)}{b_{\max}} < \frac{D_{opt}}{b_{\max}} < \frac{D_{ML}(B'_W)}{b_{\max}} .
\] (6.11)

We wish to analyze the influence of parameter variations on \(D_{opt}/b_{\max} \). Increasing the thermal noise parameter \(Z_{th} \) or the dark current \(\lambda_0 \) yields an increase in the noise powers \(\sigma_A^2 \) and \(\sigma_B^2 \) at the equalizer output, both with the same amount according to (4.14); increasing the extinction \(EXT \) yields a larger increase in \(\sigma_A^2 \) than in \(\sigma_B^2 \) according to (3.16) and (4.14). Because of \(\sigma_A < \sigma_B \) increasing \(Z_{th} \), \(\lambda_0 \) or \(EXT \) therefore means a smaller \(\sigma_B/\sigma_A \), hence with (6.3) and (6.11) a larger \(D_{opt}/b_{\max} \). At sufficiently high signalling rates \(1/T \), \(Z_{th} \) is nearly proportional to \(1/T \) according to (4.5), causing \(D_{opt}/b_{\max} \) to increase if \(1/T \) increases. Increasing the maximum energy \(b_{\max} \) in a received optical pulse, or increasing the average avalanche gain \(G \), yields according to (4.14) an increase in \(\sigma_B/\sigma_A \) because of \(\sigma_A < \sigma_B \), hence with (6.3) and (6.11) a decrease in \(D_{opt}/b_{\max} \).

6.2. Choosing the average avalanche gain

The average bit error probability \(P_e \) is a function of the average avalanche
gain G according to (4.14), (5.3) and (5.4).

6.2.1. Minimizing the error probability for a fixed data pattern

The error probability $P_e(B_1)$ for a data pattern $B_1(k_1,k_2)$ (see (5.7)) is minimized by minimizing its noise power σ_1^2 at the equalizer output. Substituting (3.21) into (4.14) we have

$$\sigma_1^2 = \text{Var}[v_{\text{out}}(t_s = 0)|B_1] = F_e \cdot A_1 + Z_{\text{th}}/G^2$$

(6.12)

where

$$A_1 = \frac{\Delta n \cdot b_{\text{max}}}{n} \cdot \sum_{k=k_1}^{k_2} b_k^{(1)} \cdot z'(-k) + \left(\frac{h_i}{n}\right)^2 \cdot \lambda T \cdot I_2$$

(6.13)

Because of F_e being an increasing function of G and $1/G^2$ a decreasing function of G, every B_1 has its optimum average avalanche gain $G_{\text{opt}}(B_1)$, which minimizes σ_1^2 and therefore $P_e(B_1)$. By putting

$$\frac{\delta \sigma_1^2}{\delta G} \bigg|_{G = G_{\text{opt}}(B_1)} = 0$$

we derive using (3.30)

$$G_{\text{opt}}(B_1) = \left[\frac{Z_{\text{th}}}{A_1 \cdot k} + \sqrt{\left(\frac{1 - k}{3k}\right)^3 + \left(\frac{Z_{\text{th}}}{A_1 \cdot k}\right)^2}\right]^{1/3}$$

$$+ \left[\frac{Z_{\text{th}}}{A_1 \cdot k} - \sqrt{\left(\frac{1 - k}{3k}\right)^3 + \left(\frac{Z_{\text{th}}}{A_1 \cdot k}\right)^2}\right]^{1/3}$$

(6.14)

In practice we usually have $(Z_{\text{th}}/A_1) >> 1/k$, giving a good approximation of (6.14) by

$$G_{\text{opt}}(B_1) = \sqrt{\frac{2 \cdot Z_{\text{th}}}{A_1 \cdot k}} \quad \text{if} \ (Z_{\text{th}}/A_1) >> 1/k$$

(6.15)
6.2.2. Minimizing the average bit error probability

Every data pattern \(B_1(k_1,k_2) \) has its optimum avalanche gain \(G_{\text{opt}}(B_1) \), given by (6.14); each \(G_{\text{opt}}(B_1) \) satisfies

\[
G_{\text{opt}}(B_1 = \{b^{(1)}_k \equiv b_{\text{max}}\}) \leq G_{\text{opt}}(B_1) \leq G_{\text{opt}}(B_1 = \{b^{(1)}_k \equiv b_{\text{min}}\}). \tag{6.16}
\]

By averaging over all possible \(B_1 \) (see (5.7)), we derive for the optimum average avalanche gain \(G_{\text{opt}} \), which minimizes the average bit error probability \(P_e \)

\[
G_{\text{opt}}(B = \{b_k \equiv b_{\text{max}}\}) < G_{\text{opt}} < G_{\text{opt}}(B = \{b_k \equiv b_{\text{min}}\}) \tag{6.17}
\]

And in an analogous way

\[
G_{\text{opt}}(B'_{\text{WC}} = \{b_k,k\neq0 \equiv b_{\text{max}}\}) < G_{\text{opt}} < G_{\text{opt}}(B'_{\text{BC}} = \{b_k,k\neq0 \equiv b_{\text{min}}\}) \tag{6.18}
\]

We wish to analyze the influence of parameter variations on \(G_{\text{opt}} \). Increasing the thermal noise parameter \(Z_{\text{th}} \), decreasing the extinction \(\text{EXT} \) or decreasing the dark current \(\lambda_0 \) yields an increase in \(G_{\text{opt}} \) according to (6.13), (6.14) and (6.17). Combining (6.15) en (6.17) we have the approximation

\[
G_{\text{opt}} \propto \left[\frac{Z_{\text{th}}}{k \cdot b_{\text{max}}} \right]^{1/3} \tag{6.19}
\]

where \(\propto \) denotes proportionality. \(G_{\text{opt}} \propto b_{\text{max}}^{-1/3} \) is a better approximation as the dark current contribution to the shot noise power decreases, for instance as the signalling rate \(1/T \) increases (see (6.13)). At sufficiently large \(1/T \), \(Z_{\text{th}} \) is nearly proportional to \(1/T \) according to (4.5), yielding the approximation

\[
G_{\text{opt}} \propto \left[\frac{I_3}{k \cdot b_{\text{max}} \cdot T} \right]^{1/3} \text{ for large } 1/T \tag{6.20}
\]

and using (3.17) the approximation
\[G_{\text{opt}} \approx \left[\frac{I_3 \cdot (1 + \text{EXT})}{k \cdot 10^6 P_o / 10^6} \right]^{1/3} \quad \text{for large } 1/T. \quad (6.21) \]

\(G_{\text{opt}} \) also depends in some degree on the decision threshold \(D \). A decrease in \(D \) emphasizes the minimizing over \(G \) of \(\sigma_A^2 = \text{Var}[v(t = 0) | B', b = b_{\min}] \)

more than that of \(\sigma_B^2 = \text{Var}[v(t = 0) | B', b = b_{\max}] \). Thus with (6.16) \(G_{\text{opt}} \) increases if \(D \) decreases.

6.3. Average received optical power

The average bit error probability \(P_e \) strongly decreases if the average received optical power \(P_o \) increases, as we shall see in Chapters 8 and 9. The \(P_o \) needed to achieve a given \(P_e \) is minimized by using the optimum decision threshold \(D_{\text{opt}} \) in combination with the optimum average avalanche gain \(G_{\text{opt}} \).

It is very difficult to express analytically how \(P_o \) affects \(P_e \) when using \(D_{\text{opt}} \) and \(G_{\text{opt}} \). By introducing a number of simplifications however, it is possible to analyze the influence of \(P_o \) on the worst case error probability \(P_e(B_{\text{WC}}) \). Personick [3, part II, formula (2)] calculates the average received optical power, required for a \(P_e(B_{\text{WC}}) = Q(\delta) \) using straight binary transmission with equiprobable symbols:

\[P_{o,\text{req}} = \frac{1}{2T} \cdot (\delta \cdot \gamma_2)^{(2+x)/(1+x)} \cdot (Z \cdot \gamma_1)^x/(2+2x) \quad (6.22) \]

for an optimum average avalanche gain

\[G_{\text{opt}}(B_{\text{WC}}) = (\delta \cdot \gamma_2)^{-1/(1+x)} \cdot (Z \cdot \gamma_1)^{1/(2+2x)} \quad (6.23) \]

where

\[\gamma_1 \overset{\Delta}{=} \frac{-(2\Sigma_1-I_1) + \sqrt{(2\Sigma_1-I_1)^2 + \frac{16(1+x)}{x^2} \cdot \Sigma_1 \cdot (\Sigma_1-I_1)}}{2 \Sigma_1 \cdot (\Sigma_1-I_1)} \quad (6.24) \]

\[\gamma_2 \overset{\Delta}{=} \sqrt{\Sigma_1 - I_1 + 1/\gamma_1 + \Sigma_1 + 1/\gamma_1}. \quad (6.25) \]
In deriving these formulas the following simplifications have been made:
dark current $\lambda_o = 0$, extinction EXT = 0, excess noise factor $F_e = G^X$
(see (3.32)) and decision threshold $D_p(B'_wC)$ (see (6.6)). According to (4.5)
and (4.6) we have

$$Z = \left(\frac{n}{h\nu} \right)^2, \quad Z_{th} = \left(\frac{2\pi}{e} \cdot C_T \right)^2, \quad S_E \cdot \frac{I_3}{T} \quad \text{for large } 1/T. \quad (6.26)$$

Substitution into (6.22) yields (\sim denotes proportionality)

$$P_o,req \sim (1/T)^{(3x+2)/(2x+2)} \quad \text{for large } 1/T \quad (6.27)$$

hence the increase in P_o,req with the signalling rate $1/T$ is given by

$$10 \cdot \frac{3x + 2}{2x + 2} \cdot 10 \log 2 \quad \text{dB/octave of signalling rate} \quad (6.28)$$

In the same way we obtain from (6.23)

$$G_{opt}(B'_wC) \mid _{P_e(B'_wC) = \text{constant}} \sim (1/T)^{1/(2+2x)} \quad \text{for large } 1/T. \quad (6.29)$$
7. **Line coding**

By means of line coding we introduce correlation between the line symbols, thus getting a certain amount of redundancy. This can be used for error detection (and possibly correction), suppression of DC-wander, extra timing information, etcetera [11].

Because of the non-linear modulation characteristic of the optical transmitter (i.e., laser diode), we confine ourselves to binary code alphabets. We consider the so-called mBnB-block codes: words of m binary digits are encoded into words of n binary digits (m < n). The advantages of coding mentioned above are achievable at the cost of bandwidth expansion (in other words: increase in the signalling rate) with a factor n/m. A large conversion ratio n/m leads to a small code efficiency, and to a large optical power penalty to achieve the same bit error rate as without coding. Thus a low redundancy (small n/m) mBnB code is attractive; its large blocksize m however increases the coder and decoder complexity.

The correlation between the line symbols, achieved with line coding, generally suppresses the most unfavorable (but also the most favorable) combinations of symbols neighboring the symbol under decision. This effect however may be neglected if the interference of the neighboring symbols is negligible.

The efficiency of an mBnB code is m/n; thus the information rate R of the coder output stream (with signalling rate 1/T), using equiprobable mutually independent input symbols, is given by

\[R = \frac{m}{n} \cdot \frac{1}{T} \text{ bits/sec} \]

(7.1)

As examples of mBnB codes we will consider the 1B2B split phase code and the 5B6B code.

7.1. **1B2B split phase code**

Table 7.1 shows the very simple coding rule of the 1B2B split phase code.

<table>
<thead>
<tr>
<th>input (1B)</th>
<th>output (2B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0</td>
</tr>
</tbody>
</table>

Table 7.1. The 1B2B split phase code
Let the disparity of a binary code word be: the number of ones reduced by the number of zeros in it; and the running digital sum (RDS) of a binary data stream at a given time: the number of ones reduced by the number of zeros till that time, divided by 2. A minimum RDS variation implies a minimum DC-wander.

Advantages of the 1B2B split phase code as compared with straight binary transmission are:
- much timing information (maximum number of successive zeros or ones in the coder output stream is 2)
- balanced code (disparity of each code word equals 0, thus minimizing RDS-variations: \(|RDS|_{\text{max}} = .5 \))
- possibility of error detection (00 and 11 are not used as code words) and disadvantages are:
- small efficiency (= \(\frac{m}{n} = 50\% \) only)
- doubling the signalling rate \(1/T \), required for the same information rate \(R \) (see (7.1)).

Because of the very simple coding rule, the realization of coder and decoder is quite simple.

7.2. 5B6B code

Table 7.2 shows the more complicated coding rule of the 5B6B code. For the 6-bits code words only words with disparity -2, 0 and +2 are selected, in order to minimize RDS variations. The encoder has two states:
- mode 1: the disparity of the next code word is 0 or +2
- mode 2: the disparity of the next code word is 0 or -2
The 0-disparity code words are identical in both modes; the +2 disparity code words in mode 1 are converted into the -2 disparity code words in mode 2 by bit inversion. Figure 7.1. shows the state diagram of the 5B6B code.

![Figure 7.1. The state diagram of the 5B6B code](image-url)
Table 7.2. The 5B6B code

<table>
<thead>
<tr>
<th>input (5B)</th>
<th>output (6B)</th>
<th>input (5B)</th>
<th>output (6B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mode 1</td>
<td>mode 2</td>
<td>mode 1</td>
</tr>
<tr>
<td>00000</td>
<td>010111</td>
<td>101000</td>
<td>10000</td>
</tr>
<tr>
<td>00001</td>
<td>100111</td>
<td>011000</td>
<td>10001</td>
</tr>
<tr>
<td>00010</td>
<td>011011</td>
<td>100100</td>
<td>10010</td>
</tr>
<tr>
<td>00011</td>
<td>001111</td>
<td>110000</td>
<td>10011</td>
</tr>
<tr>
<td>00100</td>
<td>101011</td>
<td>010100</td>
<td>10100</td>
</tr>
<tr>
<td>00101</td>
<td>001011</td>
<td>001011</td>
<td>10101</td>
</tr>
<tr>
<td>00110</td>
<td>001101</td>
<td>001101</td>
<td>10110</td>
</tr>
<tr>
<td>00111</td>
<td>001111</td>
<td>001110</td>
<td>10111</td>
</tr>
<tr>
<td>01000</td>
<td>110011</td>
<td>001100</td>
<td>11000</td>
</tr>
<tr>
<td>01001</td>
<td>010011</td>
<td>010011</td>
<td>11001</td>
</tr>
<tr>
<td>01010</td>
<td>010101</td>
<td>010101</td>
<td>11010</td>
</tr>
<tr>
<td>01011</td>
<td>010110</td>
<td>010110</td>
<td>11011</td>
</tr>
<tr>
<td>01100</td>
<td>011001</td>
<td>011001</td>
<td>11100</td>
</tr>
<tr>
<td>01101</td>
<td>011010</td>
<td>011010</td>
<td>11101</td>
</tr>
<tr>
<td>01110</td>
<td>011100</td>
<td>011100</td>
<td>11110</td>
</tr>
<tr>
<td>01111</td>
<td>101101</td>
<td>010010</td>
<td>11111</td>
</tr>
</tbody>
</table>

The transmission of a code word coincides with a state transition. At each transition the disparity of the code word being transmitted is indicated.

Advantages of the 5B6B code as compared with straight binary transmission are:
- fairly much timing information (maximum number of successive zeros or ones is 6)
- balanced code (the first not-Q-disparity word succeeding a +2 disparity word is a -2 disparity word, and vice versa; hence a limited RDS variation: $|\text{RDS}_{\text{max}}| = 2$)
- possibility of error detection (18 6-bits words are not used as code words; and the disparities of succeeding code words have to obey the rule mentioned before)

and disadvantages are:
- smaller efficiency (= $m/n = 83\%$)
- increasing the signalling rate $1/T$, required for the same information rate R, by a factor $n/m = 1.2$ (see (7.1)).

These disadvantages are considerably smaller than those of the 1B2B split phase code; the coder and decoder however are much more complicated.
8. Numerical results of calculating the average bit error probability

In this chapter the average bit error probability P_e is numerically calculated as a function of a number of system parameters following the exhaustive method (5.7). We use the data for a typical optical receiver, enumerated by Personick in [3, part II, chapter III]. We leave timing errors out of consideration by putting $t_s = 0$. The influence of the received optical pulse shape is analyzed and also the influence of the dark current, of the extinction, of the decision threshold, of the average avalanche gain, and of the average received optical power. These calculations are carried out using straight binary transmission with equiprobable symbols. Finally we analyze the influence of line coding.

8.1. Receiver data

We use the data for a typical optical receiver, enumerated by Personick in [3, part II, chapter III]:
- information rate $R = 25$ Mbit/sec
- received optical pulse shape: rectangular, duty cycle $\alpha_r = .5$
- equalized output pulse shape: raised cosine, rolloff factor $\beta = .5$
- APD: excess noise exponent $x = .5$
 - primary dark current $I_{o} = 100$ pA
 - quantum efficiency $\eta = .75$
- operating wavelength $\lambda_1 = 850$ nm
- APD biasing resistance: $R_b = 1$ MΩ
- amplifier input resistance: $R_A = 1$ MΩ
- APD junction capacitance C_d in parallel with amplifier input capacitance C_A:
 $C_T = C_d + C_A = 10$ pF
- temperature $\theta = 300$ K
- two-sided spectral noise densities:
 - of the amplifier input voltage noise source $e_a(t)$:
 $S_E = 2k\theta/(5.10^{-3} \Omega^{-1}) \ (V^2/Hz)$
 - of the amplifier input current noise source $i_a(t)$:
 $S_I = 2k\theta/(1M\Omega) \ (A^2/Hz)$

Hence
\[
\frac{h\nu}{n} = \frac{hc_0}{n a_1} = 3.117 \times 10^{-19} \text{ J} \quad (c_0: \text{light velocity in vacuum})
\]

\[\lambda_0 = 6.25 \times 10^8 \text{ primary electrons/sec}\]

\[R_T = R_B / R_A = 0.5 \Omega \quad (8.2)\]

and

\[I_1 = 1.003 \quad \Sigma_1 - I_1 = 5.12 \times 10^{-3}\]

\[I_2 = 0.805 \quad I_3 = 0.072 \quad (8.3)\]

Because of \(\Sigma_1 - I_1 \ll I_1\), the shot noise power of the neighboring signals is generally considerably smaller than that of the symbol under decision (see section 5.4).

By the assumption of straight binary transmission with equiprobable symbols, the signalling rate \(1/T\) equals the information rate \(R:\)

\[1/T = 25 \text{ MBaud} \quad (8.4)\]

The excess noise exponent \(x = 0.5\) corresponds fairly well with an APD ionisation constant

\[k = 0.1 \quad (8.5)\]

for average avalanche gains about 60 (see section 3.6).

From (4.4) we have for the thermal noise parameter

\[Z_{th} = 4.6733 \times 10^{-32} \text{ V}^2 \quad (8.6)\]

according to (4.7) corresponding with a thermal noise of

\[n_{therm} = 694 \text{ secondary electrons} \quad (8.7)\]

For the average number of primary electrons, generated by the dark current \(\lambda_0\) in the time slot \(T\)

\[n_d = \lambda_0 T \quad (8.8)\]
we have

\[n_d = 25 \text{ primary electrons} \] \hspace{1cm} (8.9)

The dark current contribution to the expectation of the output signal \(v_{\text{out}}(t) \) is according to (3.20)

\[v_0 = 7.7925 \times 10^{-18} \text{ V} \] \hspace{1cm} (8.10)

As discussed in section 5.3, the exhaustive method requires truncated data patterns \(B(k_1, k_2) = \{b_{k_1}, \ldots, b_{-1}, b_0, b_1, \ldots, b_{k_2}\} \), \(k_1 \) and \(k_2 \) being determined by (5.6). With \(t_s = 0 \) and (4.1), (5.6) is reduced to

\[z'(-k) = 0 \text{ for } k < k_1 \text{ and } k > k_2 \] \hspace{1cm} (8.11)

Because of \(z'(t) \) being time-unlimited, we need an appropriate truncation criterion. For instance, according to (5.12) \(k_1 \) and \(k_2 \) can be determined by requiring

\[\sum_{k=k_1}^{k_2} \frac{z'(-k) \Sigma_{k=1}^{-1} I_1}{I} = 1 - \varepsilon \quad \text{where } 0 \leq \varepsilon \ll 1 \] \hspace{1cm} (8.12)

If (8.12) is satisfied, all the neighboring symbols contributing noticeably to the worst case shot noise power are taken into the calculations.

Here \(z'(t) \) is an even function of \(t \), since the received optical pulse shape \(h'_p(t) \) and the equalized output pulse shape \(h'_{\text{out}}(t) \) are even (see (3.12)). Hence we put \(k_1 = -k_2; k_1 = -3 \) and \(k_2 = 3 \) yield

\[\sum_{k=k_1}^{k_2} z'(-k) \Sigma_{k=1}^{-1} I_1 = 0.9997 \] \hspace{1cm} (8.13)

making this \(k_1 \) and \(k_2 \) acceptable.

8.2. Influence of the received optical pulse shape

In the first instance, we assume rectangular received optical pulses. As discussed in section 4.2, Gaussian pulses are more plausible when fiber
dispersion is no longer negligible. The shot noise variance function \(z'(t) \) and the weighting factors \(I_1, I_1', I_2, \) and \(I_3 \) are for rectangular and Gaussian received optical pulses nearly identical, provided that both pulses have the same normalized r.m.s. width \(\sigma/T \) (see section 4.4 and subsection 5.4.1). Particularly for small \(\sigma/T \) (e.g. \(\sigma/T < 0.15 \)) the mutual differences are negligible. Hence these pulse types are nearly equivalent in error probability calculations, if their normalized widths \(\alpha_r \) and \(\alpha_g \) are related to each other by \(\alpha_g = \sigma/T = \alpha_r/\sqrt{12} \) (see (4.11)). The results of error probability calculations for rectangular received optical pulses with \(\alpha_r = 0.5 \), described in this chapter, are therefore nearly equal to those for Gaussian pulses with \(\alpha_g = 0.144 \). This will be verified in section 8.6.

8.3. Influence of dark current and extinction

In this section the influence of the dark current \(\lambda_0 \) and the extinction \(\text{EXT} \) on the decision threshold \(D \) and the average bit error probability \(P_e \) is analyzed.

As a starting point we take \(\lambda_0 = 0, \text{EXT} = 0 \) and \(D = D_p(B_{WC}) \) (see (6.6)). Using (6.22) through (6.25) we calculate the average received optical power, required for \(P_e(B_{WC}) = Q(\delta) \approx 10^{-9} \), at the optimum average avalanche gain \(G_{opt}(B_{WC}) \):

\[
P_{o,\text{req}} = -57.80 \text{ dBm} \tag{8.14}
\]

\[
G_{opt}(B_{WC}) = 56.89 \tag{8.15}
\]

hence with (3.17)

\[
b_{\text{max}} = 1.3289 \times 10^{-16} \text{ J} \tag{8.16}
\]

Throughout this section we will put \(b_{\text{max}} = 1.3289 \times 10^{-16} \text{ J} \) (\(P_o = -57.80 \text{ dBm} \)) and \(G = 56.89 \).

For the average number of primary electrons, generated by a received optical pulse with the maximum energy \(b_{\text{max}} \)

\[
n_p \Delta = \frac{n_0}{\hbar \nu} \cdot b_{\text{max}} \tag{8.17}
\]

we have
\(n_p = 426 \) primary electrons \hspace{1cm} \text{(8.18)}

From (6.1), (8.10) and (8.16) it follows, that the dark current contribution \(V_o \) to \(E[v_{out}(t_s=0)|B] \) is much smaller than the maximum signal contribution. Moreover, \(V_o \) is inversely proportional to the signalling rate \(I/T \).

According to (3.21) the dark current contribution to \(\text{Var}[v_{out}(t_s=0)|B] \) is

\[Z_o = 1.4616 \cdot 10^{-35} v^2 \]

and the thermal noise contribution according to (4.4) and (8.6) is

\[E[n^2_{th}(t)] = Z_{th}/G^2 = 1.4440 \cdot 10^{-35} v^2 \]

(and the maximum signal contribution according to (5.8) is \(F_e \cdot b \cdot \Sigma_i \cdot h v/\eta = 3.1207 \cdot 10^{-34} v^2 \)). Here the contribution of the dark current and of the thermal noise are nearly equal; for larger \(I/T \) or smaller \(G \) however the latter dominates.

Table 8.1. The influence of the dark current \(\lambda_o \) and the extinction \(\text{EXT} \) on various normalized decision thresholds and on the average bit error probability \(P_e \).

(straight binary transmission with equiprobable symbols; \(t_s = 0; b_{max} = 1.3289 \cdot 10^{-16} \) J; \(G = 56.89 \); further receiver data: section 8.1)

\(\lambda_o \) (sec\(^{-1} \))	0	6.25 \cdot 10^8	6.25 \cdot 10^8
EXT	0	0	.01
\(D_p (B^I_{WC})/b_{max} \)	.1814	.2893	.3055
\(P_e \)	6.17 \cdot 10^{-10}	1.27 \cdot 10^{-8}	2.52 \cdot 10^{-8}
\(D_{ML} (B^I_{WC})/b_{max} \)	.1875	.2962	.3126
\(P_e \)	1.18 \cdot 10^{-8}	2.34 \cdot 10^{-8}	
\(D_{ML} (B^I_{BC})/b_{max} \)	.1801	.2918	.3087
Table 8.1 shows the influence of λ_o and EXT on the various normalized decision thresholds; in some cases the average bit error probability P_e is also calculated. We always have $D_p(B_{we}) < D_{ML}(B_{we})$ (see subsection 6.1.1). The difference between $D_{ML}(B_{we})$ and $D_{ML}(B_{BC})$ is very small, because of the shot noise of the neighboring symbols being very small as compared with that of the symbol under decision ($\Sigma F \ll I_1$, see (8.3)). Using (6.10) we find that the optimum threshold D_{opt} increases if λ_o or EXT increases. This agrees with subsection 6.1.2. P_e increases with increasing λ_o or EXT due to the increasing noise power at the equalizer output.

8.4. Influence of the decision threshold

In the remaining sections of this chapter we consider the average bit error probability P_e as a function of the maximum energy b_{max} in a received optical pulse, the average avalanche gain G, and the decision threshold D:

$$P_e = P_e(b_{max}, G, D)$$

(8.21)

We put $\lambda_o = 6.25 \times 10^8$ primary electrons/sec (see (8.2)), and EXT = .01. The relation between b_{max} and the average received optical power P_o is given by (3.17).

Figure 8.1 shows a plot of P_e versus the normalized decision threshold D/b_{max}, calculated for $b_{max} = 1.3289 \times 10^{-16}$ J ($P_o \approx -57.75$ dBm) and $G = 56.89$. Also plotted are the maximum and the minimum error probability, $P_{e_{max}} = P_e(B_{we})$ and $P_{e_{min}} = P_e(B'_{BC})$ respectively. These bounds on P_e are tight, because the shot noise of the neighboring symbols is very small as compared with that of the symbol under decision ($\Sigma F \ll I_1$, see (8.3)). There is a sharp minimum in P_e at the normalized optimum threshold D_{opt}/b_{max}, in $P_{e_{max}}$ at $D_{ML}(B_{we})/b_{max}$ and in $P_{e_{min}}$ at $D_{ML}(B'_{BC})/b_{max}$. In agreement with (6.10) we have $D_{ML}(B_{BC}) < D_{opt} < D_{ML}(B_{we})$. Note that the setting of D_{opt} must be very accurate.
The average bit error probability P_e versus the normalized
decision threshold D/b_{\max} (straight binary transmission with
equiprobable symbols; $t_s = 0$; $1/T = 25$ MBaud; $b_{\max} = 1.3289 \times 10^{-16}$ J
($P_o \approx -57.75$ dBm); $G = 56.89$; EXT = .01; received optical pulses:
rectangular, duty cycle $\alpha_r = .5$ (Gaussian, $\alpha_g \approx .144$); equalized
output pulses: raised cosine, rolloff factor $\beta = 1$; further
receiver data: section 8.1)

8.5. Influence of the average avalanche gain

Figure 8.2 shows a plot of P_e versus G, calculated using D_{opt}/b_{\max} and
putting $b_{\max} = 1.3289 \times 10^{-16}$ J ($P_o = -57.75$ dBm). Also plotted are D_{opt}/b_{\max},
$P_{e_{\max}} = P_e(B_{WC}^{'})$ and $P_{emin} = P_e(B_{BC}^{'})$. D_{opt}/b_{\max} is calculated by minimizing
$P_e = P_e(b_{\max}, G, D)$ over D, with b_{\max} and G fixed.
In agreement with subsection 6.1.2., D_{opt}/b_{\max} decreases if G increases.
P_e is again tightly bounded by $P_{e_{\max}}$ and P_{emin}, as discussed in section 8.4.
The average bit error probability P_e versus the average avalanche gain G, using the normalized optimum decision threshold D_{opt}/b_{max}. (straight binary transmission with equiprobable symbols; $t_s = 0$; $1/T = 25$ MBaud; $b_{max} = 1.3289.10^{-16}$ J ($P_o = -57.75$ dBm); EXT = .01; received optical pulses: rectangular, duty cycle $\alpha_r = .5$ (Gaussian, $\alpha_g = .144$); equalized output pulses: raised cosine, rolloff factor $\beta = 1$; further receiver data: section 8.1)

There is a minimum in P_e at the optimum average avalanche gain G_{opt}, in P_{emax} at $G_{opt}^{(B')}_{WC}$, and in P_{emin} at $G_{opt}^{(B')}_{BC}$. In agreement with (6.18) we have $G_{opt}^{(B')}_{WC} < G_{opt} < G_{opt}^{(B')}_{BC}$. Since the minimum in P_e at G_{opt} is not very sharp small deviations of G from G_{opt} cause no serious degradation in the error performance.

8.6. Influence of the average received optical power, and of line coding

In this section the influence of the average received optical power P_o on the average bit error probability P_e is analyzed and also the influence of mBnB line coding.

Figure 8.3.a shows plots of P_e versus P_o, calculated using the optimum average avalanche gain G_{opt} and the normalized optimum threshold D_{opt}/b_{max}.
Figure 8.3.a. The average bit error probability P_e

Figure 8.3.b. The optimum average avalanche gain G_{opt}
Figure 8.3.c. The normalized optimum decision threshold D_{opt}/b_{max}

Figure 8.3. The average bit error probability P_e versus the average received optical power P_o, using the optimum average avalanche gain G_{opt} and the normalized optimum decision threshold D_{opt}/b_{max}; calculated for straight binary transmission with equiprobable symbols, 5B6B coding and 1B2B split phase coding.

$(t_s = 0; R = 25$ Mbit/sec; $EXT = .01$; received optical pulses: rectangular, duty cycle $\alpha_r = .5$ (Gaussian, $\alpha_g = .144$); equalized output pulses: raised cosine, rolloff factor $\beta = 1$; further receiver data: section 8.1)

Plots of G_{opt} and of D_{opt}/b_{max} versus P_o are shown by figure 8.3.b and 8.3.c respectively. These plots are calculated for straight binary transmission with equiprobable symbols, for 5B6B coding, and for 1B2B split phase coding.

G_{opt} and D_{opt}/b_{max} are calculated by minimizing $P_e = P_e(b_{max}, G, D)$ over G and D, with b_{max} fixed. The relation between P_o and b_{max} is given by (3.17). P_o can also be related to n_p, i.e. the average number of primary electrons generated by a received optical pulse having the maximum energy b_{max}.
according to (3.17) and (8.17) we obtain

\[n_p = \frac{n}{\hbar \nu} \cdot \frac{2 \times 10^{-3}}{(1 + \text{EXT})} \cdot \frac{P_0}{10} \cdot 10^{9/10} \]

(8.22)

where \(P_0 \) is expressed in dBm.

For an information rate \(R = 25 \text{ Mbit/sec} \) (see section 8.1), straight binary transmission with equiprobable symbols requires a signalling rate \(1/T = 25 \text{ MBaud} \); 5B6B coding requires according to (7.1)

\[\frac{1}{T} = \frac{n}{m} \cdot R = 30 \text{ MBaud} \]

(8.23)

and 1B2B split phase coding

\[\frac{1}{T} = 50 \text{ MBaud} \]

(8.24)

Hence for straight binary transmission with equiprobable symbols \(P_0 = -60 \text{ dBm} \) corresponds with \(n_p = 254 \) primary electrons, and for 1B2B split phase coding \(P_0 = -56.5 \text{ dBm} \) corresponds with \(n_p = 284 \) primary electrons.

The plots in figure 8.3, obtained for rectangular received optical pulses with duty cycle \(\alpha_r = .5 \), are according to section 8.2 nearly identical with those obtained for Gaussian pulses with \(\alpha_g = \alpha_r/\sqrt{12} \approx .144 \). This can be verified from table 8.2 in the case of straight binary transmission with equiprobable symbols. The differences are too small to notice in figure 8.3.

By assuming no timing errors (\(t_s = 0 \)), the neighboring symbols do not affect \(E[v_{out}(t_s = 0)|B] \) (see (6.1)). Moreover, as compared with the symbol under decision, the neighboring symbols hardly contribute to the shot noise power at the equalizer output (\(\Sigma_1 - I_1 \ll I_1 \), see (8.3)), and therefore hardly to \(\text{Var}[v_{out}(t_s = 0)|B] \). Hence, the interference of the neighboring symbols is nearly negligible. This is illustrated in figure 8.3.a, where in the case of straight binary transmission with equiprobable symbols in addition to \(P_e \) (solid curve) also \(P_{e \max} = P_e(B_{WC}) \) and \(P_{e \min} = P_e(B_{BC}) \) (both broken curves) are plotted. These three curves nearly coincide with each other.

If \(P_0 \) increases, \(P_e \) decreases strongly, as shown by figure 8.3.a. In the case of straight binary transmission with equiprobable symbols \(P_e = 10^{-9} \) requires \(P_0 \approx -57.35 \text{ dBm} \) (corresponding with 1.84 nW) at \(C_{\text{opt}} \approx 39.7 \) and \(D_{\text{opt}}/b_{\text{max}} \approx .342 \).

As compared with straight binary transmission with equiprobable symbols, mBnB
Table 8.2. The average bit error probability \(P_e \) as a function of the average received optical power \(P_o \), using the optimum average avalanche gain \(G_{\text{opt}} \) and the normalized optimum decision threshold \(D_{\text{opt}}/b_{\text{max}} \); calculated for rectangular and Gaussian received optical pulses with the same r.m.s. width \(\sigma/T \)
\((\sigma/T = \alpha_g = \alpha_r/\sqrt{2} \approx .144; \) straight binary transmission with equiprobable symbols; \(t_s = 0; \) \(I/T = 25 \) MBaud; \(\text{EXT} = .01; \) equalized output pulses: raised cosine, rolloff factor \(\beta = 1; \) further receiver data: section 8.1)

<table>
<thead>
<tr>
<th>(P_o) (dBm)</th>
<th>(P_e^*)</th>
<th>(G_{\text{opt}}^*)</th>
<th>(D_{\text{opt}}/b_{\text{max}}^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-59</td>
<td>1.73 (\times) 10(^{-6})</td>
<td>43.76</td>
<td>.3855</td>
</tr>
<tr>
<td></td>
<td>1.79 (\times) 10(^{-6})</td>
<td>43.57</td>
<td>.3861</td>
</tr>
<tr>
<td>-57.5</td>
<td>2.11 (\times) 10(^{-9})</td>
<td>40.14</td>
<td>.3454</td>
</tr>
<tr>
<td></td>
<td>2.24 (\times) 10(^{-9})</td>
<td>39.94</td>
<td>.3462</td>
</tr>
<tr>
<td>-56</td>
<td>6.72 (\times) 10(^{-14})</td>
<td>36.66</td>
<td>.3147</td>
</tr>
<tr>
<td></td>
<td>7.50 (\times) 10(^{-14})</td>
<td>36.43</td>
<td>.3159</td>
</tr>
</tbody>
</table>

* The first numbers apply to rectangular, the second to Gaussian received optical pulses.

coding requires for the same information rate \(R \) an increase in the signalling rate \(I/T \) by a factor \(n/m \) (see (7.1)). We have seen that the interference of the neighboring symbols is nearly negligible here. Hence the suppression of the most unfavourable (but also of the most favourable) combinations of these symbols, as achieved by mBnB coding (see chapter 7), hardly plays a part. The increase in \(I/T \) is therefore (and because a balanced code is assumed) the most important aspect of mBnB coding as far as error probability calculations are concerned.

As compared with straight binary transmission with equiprobable symbols, the power penalty for using the 5B6B code is according to figure 8.3.a .85 to .9 dB to achieve the same \(P_e \), and for using the 1B2B split phase code 3.4 to 3.5 dB. Because of \(P_e = P_{e/(BWC)} \) and the increase in \(I/T \) being the most important influence of mBnB coding on \(P_e \), the penalty for using mBnB coding can be approximated here according to (6.28) by
The receiver in question has an APD excess noise exponent $x = .5$ (see section 8.1), leading to a penalty of .924 dB for using the 5B6B code and of 3.51 dB for using the 1B2B split phase code. Thus (8.25) is a good approximation here. Figure 8.3.b shows, that at a given P_o the use of 5B6B coding instead of straight binary transmission with equiprobable symbols requires an increase in G_{opt} by approximately a factor 1.12, and the use of 1B2B split phase coding an increase by approximately a factor 1.57 (both at $P_o = -55$ dBm). If we take into account mBnB coding only by its increase in I/T again, this increase in G_{opt} at a given P_o is according to (6.21) by approximately a factor

$$\left(\frac{n}{m}\right)^{2/3} \approx 1.13 \text{ for } 5B6B \text{ coding and } 1.59 \text{ for } 1B2B \text{ split phase coding. Thus (8.26) is a good approximation here.}$$

From the figures 8.3.a and 8.3.b it follows that, as compared with straight binary transmission with equiprobable symbols, 5B6B coding requires for $P_e = 10^{-9}$ an increase in G_{opt} by approximately a factor 1.07, and 1B2B split phase coding by approximately a factor 2.6. Because of $P_e = P_{e,WC}$ and the increase in I/T being the most important influence of mBnB coding on P_e, this increase in G_{opt} at a fixed P_e is according to (6.29) by approximately a factor

$$\left(\frac{n}{m}\right)^{1/(2+2x)}$$

The receiver in question has an APD excess noise exponent $x = .5$ (see section 8.1), leading to a factor $(1.2)^{1/3} \approx 1.063$ for 5B6B coding and a factor $(2)^{1/3} = 1.260$ for 1B2B split phase coding. Thus (8.27) is a good approximation here. Plotting G_{opt} logarithmically here as a function of P_o at a fixed I/T (and fixed I_3, k and EXT), we get according to (6.21) approximately a straight line. The approximation errors decrease as I/T increases, as discussed in subsection 6.2.2. Figure 8.3.b confirms this. The slopes of the curves satisfy (6.21) pretty well: starting from $G_{opt} = 53.87$ at $P_o = -55$ dBm for 1B2B split phase coding, we calculate with the aid of (6.21) the approximation $G_{opt} = 49.89$ at $P_o = -54$ dBm, whereas minimization of P_e at $P_o = -54$ dBm yields $G_{opt} = 50.41$. The approximation value is slightly smaller than the
value found by minimization because of the decrease in D_{opt}/b_{\max} at increasing P_0 (see Figure 8.3.c), which increases G_{opt} slightly (see subsection 6.2.2). Figure 8.3.c shows a decrease in D_{opt}/b_{\max} if P_0 increases at fixed $1/T$ (in other words: if b_{\max} increases; see (3.17)). This agrees with subsection 6.1.2. Figure 8.3.c shows also an increase in D_{opt}/b_{\max} at fixed P_0 if we use mBnB coding instead of straight binary transmission with equiprobable symbols; this increase becomes larger as the conversion ratio n/m grows. Due to mBnB coding $1/T$ increases by a factor n/m, implying at fixed P_0 a decrease in b_{\max} (see (3.17)). Both effects increase D_{opt}/b_{\max} according to subsection 6.1.2. Hence Figure 8.3.c agrees with subsection 6.1.2.
9. A modified receiver model

In the preceding chapters we have assumed DC coupling in the amplifier and the equalizer. The decision threshold of the threshold detector may therefore be a DC voltage, which has to be very stable. This makes high demands on the technical realization.

Let us now consider another receiver model with AC coupling in the amplifier and the equalizer. The AC coupled amplifier and equalizer can be represented by a DC coupled amplifier and equalizer followed by a coupling capacitor, as shown in figure 9.1. The threshold detector can be realized by a comparator with one input grounded.

![Diagram of a modified receiver model](image)

Figure 9.1. A modified receiver model

9.1. Threshold setting

By the way in which the threshold detector is realized, we may assume an equivalent decision threshold D_{eq} operating on the signal $v_{\text{out}}(t)$ at the equalizer output:

$$D_{\text{eq}} = \text{DC level of } v_{\text{out}}(t) \quad (9.1)$$
From the linearity of the receiver we have

\[\text{DC level of } v_{\text{out}}(t) = (\text{DC level of } p_0(t)) \cdot \frac{H_{\text{out}}(0)}{H_p(0)} + V_o \] \hspace{1cm} (9.2)

From (2.2) it follows that

\[\text{DC level of } p_0(t) = \frac{1}{T} \int_{-T/2}^{T/2} E[p_0(t)] \, dt \]

\[= \frac{1}{T} \int_{-T/2}^{T/2} \sum_{k=-\infty}^{\infty} E[h_k] \cdot h_p(t-kT) \, dt \] \hspace{1cm} (9.3)

Using a balanced line code, or straight binary transmission with equiprobable symbols, we have with (3.14)

\[E[h_k] = \frac{b_{\text{max}} + b_{\text{min}}}{2} = \frac{b_{\text{max}}}{2} \cdot (1+\text{EXT}) \] \hspace{1cm} (9.4)

Hence

\[\text{DC level of } p_0(t) = \frac{b_{\text{max}} (1+\text{EXT})}{2T} \int_{-T/2}^{T/2} \sum_{k=-\infty}^{\infty} h_p(t-kT) \, dt \]

\[= \frac{b_{\text{max}} (1+\text{EXT})}{2T} \int_{-\infty}^{\infty} h_p(t) \, dt \]

\[= \frac{b_{\text{max}} (1+\text{EXT})}{2T} \cdot H_p(0) \] \hspace{1cm} (9.5)

which yields with (3.9), (9.1) and (9.2)

\[D_{\text{eq}} = \frac{b_{\text{max}} (1+\text{EXT})}{2} \cdot H_{\text{out}}'(0) + V_o \] \hspace{1cm} (9.6)

and with (3.20)

\[D_{\text{eq}} = \left[\frac{b_{\text{max}} (1+\text{EXT})}{2} + \lambda_0 T \cdot \frac{h v}{\eta}, H_{\text{out}}'(0) \right] \] \hspace{1cm} (9.7)

Thus using this receiver model, we can vary \(D_{\text{eq}} \) by varying \(H_{\text{out}}'(0) \).

For instance, let us assume a raised cosine equalized spectrum \(H_{\text{out}}'(f) \) with a rolloff factor \(\beta > 1 \) (see also (4.12)).
\[H'_\text{out}(f) = \sin\left(\frac{\pi f}{2\beta}\right) \cos\left(\frac{\pi f}{\beta}\right) \quad \text{for } |f| < (\beta-1)/2 \]

\[= \frac{1}{2} \left[1 - \sin\left(\frac{\pi}{\beta} \left(|f| - \frac{1}{2}\right)\right)\right] \quad \text{for } (\beta-1)/2 \leq |f| < (\beta+1)/2 \]

\[= 0 \quad \text{otherwise} \]

\[h'_\text{out}(t) = \frac{\sin(\pi t) \cos(\beta \pi t)}{\pi t [1 - (2\beta t)^2]} \quad \text{(9.8)} \]

Figure 9.2.a shows this spectrum (see also figure 4.3.a), and figure 9.2.b the time functions (see also figure 4.3.c). These time functions decay very fast; the larger \(\beta \) is, the faster the decay. The worst case eye patterns, shown by figure 9.3, are therefore wide open. Rolloff factors \(\beta > 1.5 \) introduce small irregularities in the eye pattern, because of \(h'_\text{out}(t) \) having zero crossings for \(|t| < 1 \).

From (4.12) and (9.8) we have

\[H'_\text{out}(0) = 1 \quad \text{for } \beta \leq 1 \]

\[= \sin\left(\frac{\pi}{2\beta}\right) \quad \text{for } \beta > 1 \quad \text{(9.9)} \]

Hence, by varying \(\beta > 1 \) we can vary the normalized equivalent decision threshold:

\[\frac{D}{b_{\text{max}}} = \frac{1 + \text{EXT}}{2} + \frac{\alpha}{b_{\text{max}}} + \frac{\beta}{\eta} \cdot \frac{h_{\text{out}}}{\eta} \sin\left(\frac{\pi}{2\beta}\right) \quad \text{for } \beta > 1 \quad \text{(9.10)} \]

Figure 9.4 illustrates this for a dark current \(\lambda \beta = 0 \) and an extinction \(\text{EXT} = 0 \); for instance, \(\beta = 2.4 \) yields \(\frac{D}{b_{\text{max}}} \approx .3 \). As using the previous receiver model we calculated a normalized optimum decision threshold \(\frac{D_{\text{opt}}}{b_{\text{max}}} \), so using this receiver model we may calculate an optimum rolloff factor \(\beta_{\text{opt}} \).

Appendix 3 shows plots of the weighting factors \(I_1, \Sigma_1, \Sigma_1 - I_1, I_2 \) and \(I_3 \) versus \(\beta \), with the normalized r.m.s. optical pulse width \(\sigma/T \) as a parameter. We have assumed raised cosine equalized output pulses \(h'_\text{out}(t) \), and rectangular or Gaussian received optical pulses \(h'(t) \).

According to (4.11) we have \(\alpha_{\beta} = \sigma/T \); \(\sigma/T = .029, \beta = .087 \) and \(\beta = .144 \) correspond with \(\alpha_{\beta} = .1, .3 \) and \(.5 \) respectively.

Appendix 2 shows plots of the same weighting factors versus \(\sigma/T \), with \(\beta \) as a
9.2.a. Raised cosine spectrum $H'_{out}(f)$

9.2.b. Raised cosine time function $h'_{out}(t)$

(\(\beta = 1.5; \ e: \beta = 2; \ f: \beta = 2.5 \))

Figure 9.2. Raised cosine equalized output spectrum with corresponding time functions for rolloff factor $\beta > 1$
Figure 9.3. Worst case eye patterns for raised cosine pulses with rolloff factor β (a: $\beta = .1$; b: $\beta = .5$; c: $\beta = 1$; d: $\beta = 1.5$; e: $\beta = 2$; f: $\beta = 2.5$)

Figure 9.4. The normalized equivalent decision threshold D_{eq}/b_{max} versus the rolloff factor β of the raised cosine equalized output pulses ($\lambda_o = 0$; EXT = 0)
parameter. These were discussed in subsection 5.4.1; the same discussion holds for the plots in appendix 3. Generally, we have $E_I - I_r << I_r$: the shot noise power of the neighboring symbols is nearly negligible as compared with that of the symbol under decision. Moreover, $E_I - I_r$ exhibits as a function of β local minima for $\beta = 1.5$ and $\beta = 2.5$, which become smaller and sharper as σ/T decreases. So if we use a rolloff factor $\beta = 2.5$, the shot noise power of the neighboring symbols is even smaller.

9.2. Received optical pulses

In the preceding chapters we have assumed, that narrowing the received optical pulses leads to a proportional increase in pulse height, thus leaving the pulse energy unchanged (see figure 4.2). The peak power of a practical optical transmitter (laser diode or LED) however is limited. Hence there is an upper bound on the pulse height, and therefore a lower bound on the pulse width. Let us now assume for the received optical pulses having the maximum energy b_{max} (the so-called ON pulses) a fixed height P_{max} such, that the peak power P_{max} limit of the optical transmitter is not exceeded. Hence the pulse energy is proportional to the pulse width. Figure 9.5 shows rectangular and Gaussian ON pulses. We have for the pulse power $p(t)$

$$p(t) = P_{\text{max}} \cdot \frac{h_p(t)}{h_p(0)} \quad (9.11)$$

![Diagram of rectangular and Gaussian pulses](image)

9.5.a. rectangular ($\alpha^* < 1$) 9.5.b. Gaussian

Figure 9.5. The received optical pulses (ON pulses)
yielding with (2.3)

\[b_{\text{max}} = \int_{-\infty}^{+\infty} p(t)\,dt = \frac{P_{\text{max}}}{h_p(o)} \]

(9.12)

From (3.9) and (4.8) we have for rectangular pulses

\[b_{\text{max}} = \frac{T.P_{\text{max}}}{h'_p(o)} = \alpha_r T P_{\text{max}} \]

(9.13)

and in the same way from (4.9) for Gaussian pulses

\[b_{\text{max}} = \alpha_g \sqrt{2\pi} T P_{\text{max}} \]

(9.14)

If we use straight binary transmission with equiprobable symbols, or a balanced line code, the average received optical power \(P_o \) according to (3.17) for rectangular pulses is

\[P_o = 10 \cdot 10^{\frac{\alpha_r P_{\text{max}}(1+\text{EXT})}{2 \text{ mW}}} \] (dBm)

(9.15)

and for Gaussian pulses

\[P_o = 10 \cdot 10^{\frac{\alpha_g \sqrt{2\pi} P_{\text{max}}(1+\text{EXT})}{2 \text{ mW}}} \] (dBm)

(9.16)

9.3. Numerical results of calculating the average bit error probability

In this section the average bit error probability \(P_e \) is calculated as a function of a number of system parameters following the exhaustive method (5.7). We use the data for a typical optical receiver, enumerated by Personick in [3, part II, chapter III]. We leave timing errors out of consideration by putting \(t_s = 0 \). The influence of the received optical pulse shape is analyzed, and also the influence of the rolloff factor of the raised cosine equalized output spectrum, of the average received optical power, and of line coding.

9.3.1. Receiver data

We use the data for a typical optical receiver again, enumerated by Personick in [3, part II, chapter III] (see §8.1) and (8.2)]. The following additions and
modifications are made:
- information rate $R = 70$ Mbit/sec
- received optical pulses:
 - rectangular, duty cycle α_r
 - maximum height $P_{\text{max}} = 100$ nW
- equalized output pulses: raised cosine, rolloff factor β
- extinction $\text{EXT} = .01$
- APD ionisation constant $k = .1$ (see (8.5)). (9.17)

The data pattern truncation parameters k_1 and k_2 are determined in the same way as in section 8.1. With the $\alpha_r (< .5)$ and the β used in this chapter, $k_1 = -2$ and $k_2 = 2$ are acceptable.

9.3.2. Influence of the received optical pulse shape

In the first instance, we assume rectangular received optical pulses. As discussed in section 4.2, Gaussian pulses are more plausible when fiber dispersion is no longer negligible.

Using the same arguments as in section 8.2, we state here also that rectangular and Gaussian received optical pulses are nearly equivalent in error probability calculations, if their normalized widths α_r and α_g are related to each other by $\alpha_g = \sigma/T = \alpha_r/\sqrt{12}$. Furthermore, let the maximum heights $P_{\text{max},r}$ and $P_{\text{max},g}$ of a rectangular and a Gaussian pulse respectively be related to each other by

$$P_{\text{max},g} = \frac{\sigma}{\pi} \cdot P_{\text{max},r}$$ (9.18)

Then from (9.15) and (9.16) we have the same average received optical power P_o for both pulse types, if we have the same r.m.s. pulse width σ/T. Hence, the results of error probability calculations using rectangular received optical pulses with duty cycle α_r and maximum height $P_{\text{max},r} = 100$ nW, described in the following sections, are nearly equal to those using Gaussian pulses with $\alpha_g = \alpha_r/\sqrt{12}$ and $P_{\text{max},g} \approx 138.20$ nW. This will be verified in subsection 9.3.4.

9.3.3. Influence of the rolloff factor of the raised cosine equalized output spectrum

Figure 9.6 shows a plot of the average bit error probability P_e versus the rolloff factor β of the raised cosine equalized output spectrum. It is calculated
Figure 9.6. The average bit error probability P_e versus the rolloff factor β of the raised cosine equalized output spectrum, using the optimum average avalanche gain G_{opt} (normalized equivalent decision threshold $D_{\text{eq}}/b_{\text{max}}$).

(1B2B split phase coding; $t_s = 0$; $1/T = 140 \text{ MBaud}; \text{EXT} = .01$; received optical pulses: rectangular, duty cycle $\alpha_r = .3$; maximum height $P_{\text{max},r} = 100 \text{ nW}$ (Gaussian, $\alpha_g = \alpha_r/\sqrt{12} \approx .087$, $P_{\text{max},g} = P_{\text{max},r} \sqrt{6/\pi} = 138.20 \text{ nW})$ ($P_o \approx -48.20 \text{ dBm}$); further receiver data: subsection 9.3.1)

using the optimum average avalanche gain G_{opt}, and rectangular received optical pulses with $\alpha_r = .3$ (yielding $P_o \approx -48.20 \text{ dBm}$ according to (9.15) and (9.17)). We have assumed 1B2B split phase coding; thus the signalling rate is given with (7.1) and (9.17) by

$$\frac{1}{T} = \frac{n}{m} \cdot R = 140 \text{ MBaud}$$

(9.19)

Figure 9.6 shows also plots of G_{opt}, and of the normalized equivalent decision threshold $D_{\text{eq}}/b_{\text{max}}$ (see (9.10)).
There is a minimum in P_e at the optimum rolloff factor β_{opt}. Since this minimum is not very sharp, small deviations of β from β_{opt} cause no serious degradation in the error performance. G_{opt} increases if β increases. According to (6.21) this is due to the increase in the weighting factor I_3 for larger β (see appendix 3).

9.3.4. Influence of the average received optical power, and of line coding

In this subsection the influence of the average received optical power P_0 on the average bit error probability P_e is analyzed, and also the influence of mBnB line coding.

Figure 9.7.a shows plots of P_e versus P_0, calculated using the optimum average avalanche gain G_{opt} and the optimum rolloff factor β_{opt} of the
raised cosine equalized output spectrum. Plots of G_{opt} and β_{opt} are shown by figure 9.7.b and 9.7.c respectively. These plots are calculated for straight binary transmission with equiprobable symbols, for 5B6B coding, and for 1B2B split phase coding. G_{opt} and β_{opt} are found by minimizing $P_e = P_e(P_o, G, \beta)$ over G and β, with P_o fixed. In the first instance, the received optical pulses are assumed to be rectangular with a duty cycle α_r and a maximum height $P_{\text{max},r} = 100$ nW. The relation between P_o and α_r is given by (9.15).

For an information rate $R = 70$ Mbit/sec (see subsection 9.3.1), straight binary transmission with equiprobable symbols requires a signalling rate

$$\frac{1}{T} = R = 70 \text{ MBaud}$$

(9.20)

and according to (7.1) 5B6B coding requires

9.7.b. The optimum average avalanche gain G_{opt}
9.7.c. The optimum rolloff factor β_{opt}

Figure 9.7. The average bit error probability P_e versus the average received optical power P_0, using the optimum average avalanche gain G_{opt} and the optimum rolloff factor β_{opt} of the raised cosine equalized output spectrum; calculated for straight binary transmission with equiprobable symbols, 5B6B coding and 1B2B split phase coding. ($t_s = 0; R = 70$ Mbit/sec; EXT = .01; received optical pulses: rectangular, duty cycle α_r, maximum height $P_{max,r} = 100$ nW (Gaussian, $\alpha_s = \alpha_r/\sqrt{12}$, $P_{max,g} = P_{max,r}/\sqrt{6/\pi} = 138.20$ nW); further receiver data: subsection 9.3.1)

$$\frac{1}{T} = \frac{n}{m} R = 84 \text{ MBaud} \quad (9.21)$$

and 1B2B split phase coding $1/T = 140$ MBaud (see (9.19)). The plots in figure 9.7, obtained for rectangular received optical pulses with duty cycle α_r and maximum height $P_{max,r} = 100$ nW, are according to subsection...
9.3.2 nearly identical with those for Gaussian pulses with \(\alpha_r = \alpha_r / \sqrt{12} \) and \(P_{\max, g} = P_{\max, r} \cdot \sqrt{6/\pi} \approx 138.20 \text{ nW} \). This can be verified from table 9.1 in the case of straight binary transmission with equiprobable symbols. The differences are too small to notice in figure 9.7.

Table 9.1. The average bit error probability \(P_e \) as a function of the average received optical power \(P_o \), using the optimum average avalanche gain \(G_{\text{opt}} \) and the optimum rolloff factor \(\beta_{\text{opt}} \) of the raised cosine equalized output spectrum; calculated for rectangular and Gaussian received optical pulses with the same r.m.s. width \(\sigma/T \) and with maximum height \(P_{\max, r} = 100 \text{ nW} \) and \(P_{\max, g} = P_{\max, r} \cdot \sqrt{6/\pi} \approx 138.20 \text{ nW} \) respectively (\(\sigma/T = \alpha_r = \alpha_r / \sqrt{12} \); straight binary transmission with equiprobable symbols; \(t_s = 0 \); \(1/T = 70 \text{ MBaud} \); \(\text{EXT} = .01 \); further receiver data: subsection 9.3.1)

<table>
<thead>
<tr>
<th>(P_o) (dBm)</th>
<th>(P_e^{*})</th>
<th>(G_{\text{opt}}^{*})</th>
<th>(\beta_{\text{opt}}^{*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55.98</td>
<td>4.512 \cdot 10^{-4}</td>
<td>72.95</td>
<td>2.333</td>
</tr>
<tr>
<td></td>
<td>4.512 \cdot 10^{-4}</td>
<td>72.95</td>
<td>2.333</td>
</tr>
<tr>
<td>-52.97</td>
<td>1.289 \cdot 10^{-7}</td>
<td>58.57</td>
<td>2.507</td>
</tr>
<tr>
<td></td>
<td>1.290 \cdot 10^{-7}</td>
<td>58.56</td>
<td>2.507</td>
</tr>
<tr>
<td>-49.96</td>
<td>1.125 \cdot 10^{-15}</td>
<td>47.04</td>
<td>2.587</td>
</tr>
<tr>
<td></td>
<td>1.135 \cdot 10^{-15}</td>
<td>46.99</td>
<td>2.587</td>
</tr>
</tbody>
</table>

* The first numbers apply to rectangular, the second to Gaussian received optical pulses

With the same arguments as used in section 8.6, here also the interference of the neighboring symbols is nearly negligible. Thus the increase in \(1/T \) is the most important aspect of mBmB coding as far as error probability calculations are concerned.

As compared with straight binary transmission with equiprobable symbols, the power penalty for using the 5B6B code is according to figure 9.7.a approximately 1 (1) dB, and for using the 1B2B split phase code approximately 3.8 (4) dB to achieve a \(P_e = 10^{-9} \) \((10^{-12}) \). According to (8.25) these penalties are .924 dB and 3.51 dB respectively. For the previous receiver model (8.25) was quite
accurate (see section (8.6), but here it underestimates the power penalties. This can be explained as follows. As compared with the previous receiver model, increasing P_o yields here a larger increase in the noise power at the equalizer output: the weighting factors I_1, $I_1 - I_1$, I_2 and I_3 do not remain constant, but increase with P_o because of the increasing optical pulse width (and the variations in β_{opt}; see figure 9.7.c). Thus P_e decreases less fast if P_o increases, particularly for larger P_o. Hence the power penalties for using MBnB coding increase as P_e decreases.

Figure 9.7.b shows an increase in G_{opt} at fixed P_o if the conversion ratio n/m of the MBnB code increases. As compared with straight binary transmission with equiprobable symbols, G_{opt} increases at $P_o = -50$ dBm using 5B6B coding by approximately a factor 1.12, and using 1B2B split phase coding by approximately a factor 1.56. According to (8.26) these factors are $(1.2)^{2/3} \approx 1.13$ and $(2)^{2/3} = 1.59$ respectively. Thus (8.26) is a good approximation here.

For the previous receiver model however it was slightly more accurate (see section 8.6), because there the weighting factor I_3 for instance, on which G_{opt} also depends (see (6.21)), did not vary.

The figures 9.7.a and 9.7.b show an increase in G_{opt} at fixed P_e if n/m increases. As compared with straight binary transmission with equiprobable symbols, G_{opt} increases at $P_e = 10^{-9}$ using 5B6B coding by approximately a factor 1.05, and using 1B2B split phase coding by approximately a factor 1.17. According to (8.27) these factors are $(1.2)^{1/3} = 1.063$ and $(2)^{1/3} = 1.260$ respectively. Approximation (8.27) was more accurate for the previous receiver model, because there the weighting factors did not vary.

Plotting G_{opt} logarithmically as a function of P_o at a fixed I/T (and fixed I_3, k and EXT), we get according to (6.21) approximately a straight line. This applies to sufficiently large I/T, and is confirmed by figure 9.7.b.

Here also approximation errors are caused by the variations in the weighting factors (e.g. in I_3) accompanying the increase in P_o. Particularly at a large pulse width (α_r or α_g) and at a strongly varying optimum rolloff factor β_{opt} these errors are noticeable, as shown by figure 9.7.b for 1B2B split phase coding.

Figure 9.7.c shows a plot of β_{opt} versus P_o. Using the previous receiver model, the normalized optimum decision threshold D_{opt}/b_{max} increased at fixed P_o if we used MBnB coding instead of straight binary transmission with equiprobable symbols; the larger n/m, the larger this increase was (see figure 8.3.c). According to (9.10) this corresponds with a decreasing β_{opt}.
if n/m increases at fixed P_o, as shown by figure 9.7.c. Using the previous receiver model, D_{opt}/b_{max} decreased if P_o increased at fixed $1/T$ (see figure 8.3.c). This corresponds with the initial increase in β_{opt} if P_o increases at fixed $1/T$, shown by figure 9.7.c. Increasing P_o (and thus α_t or α_g: see (9.15) and (9.16)) together with increasing β however yields an increase in the weighting factor I_3 according to appendix 3, and therefore in the thermal noise parameter Z_{th} according to (4.5). This increase in noise power with increasing β ultimately dominates the positive effect of decreasing the decision threshold with increasing β. Hence the plot of β_{opt} versus P_o exhibits a maximum at a certain P_o, beyond which β_{opt} decreases with increasing P_o.
10. Conclusions and final remarks

We numerically calculated the average bit error probability using two receiver models. The influence of a number of important system parameters and of mBnB line coding was analyzed. The decision threshold and the average avalanche gain were optimized to yield a minimum average bit error probability. Timing errors in the receiver were not considered, and the shape of the received optical pulses was assumed to be known (rectangular or Gaussian). The equalization in the receiver was of the raised cosine type. A Gaussian approximation of the statistics of the signal at the threshold detector input was introduced. Average bit error probabilities were calculated using the exhaustive method.

The Gaussian approximation of the statistics of the signal at the threshold detector input is allowed at the average received optical powers and signalling rates considered here, because of the average number of primary electrons generated in a time slot being very large. This approximation gives fairly accurate results, but tends to underestimate the optimum threshold setting and to overestimate the optimum average avalanche gain. This occurs because the Gaussian approximation depends only on the expectation and the variance of the avalanche gain distribution, and is insensitive to its skewness towards large values of the avalanche gain [1].

The assumption of rectangular received optical pulses makes sense only in the case of negligible fiber dispersion. A certain amount of fiber dispersion makes Gaussian pulses more plausible. Both pulse types appear to be nearly equivalent in error probability calculations, if they have the same normalized r.m.s. width.

Practical values of the received optical pulse width (for instance, a duty cycle not exceeding 50% for rectangular pulses) and of the rolloff factor of the pulses at the equalizer output (for instance, a rolloff factor 1 or larger for raised cosine pulses) yield a shot noise power of the neighboring symbols, which is nearly negligible as compared with that of the symbol under decision. In the absence of timing errors in the receiver, the interference of the neighboring symbols is therefore very small. Hence the exhaustive method, which can deal only with a finite (preferably small) number of neighboring symbols, is well suited to calculate average bit error probabilities. Moreover, this method facilitates the implementation of line coding in the calculations.
As compared with straight binary transmission with equiprobable symbols, mBnB line coding requires for the same information rate an increase in the signalling rate by a factor n/m. Since the interference of the neighboring symbols is very small here (and a balanced code is assumed), this increase is the most important aspect of mBnB coding as far as error probability calculations are concerned. The power penalty for using mBnB coding increases as n/m increases. The optimum average avalanche gain and the optimum decision threshold (normalized on the maximum energy in a received optical pulse) increase if n/m increases at a fixed average received optical power.

The approximations derived to point out the relations between various system parameters and the average bit error probability, the optimum average avalanche gain, the optimum decision threshold and the average received optical power, agree (fairly) well with the results of the numerical calculations.

The average bit error probability decreases strongly if the average received optical power increases. This error probability is very sensitive to deviations of the decision threshold from the optimum value, but less sensitive to deviations of the average avalanche gain from the optimum value. For the modified receiver model the threshold setting is achieved by varying the rolloff factor of the raised cosine equalized output spectrum. The average bit error probability is not very sensitive to deviations of the rolloff factor from the optimum value. The error performance of this receiver model appears to be nearly as good as that of the previous receiver model.

In treating a subject as extensive as error probability calculations in digital fiber optic communication systems, we have of course only discussed a limited number of system aspects. For instance, further investigation is possible into the influence of the optical fiber characteristics, and into the influence of timing errors in the receiver. These timing errors however will generally increase the number of interfering neighboring symbols, thus making the exhaustive method less attractive.

Acknowledgement

The author wishes to thank lecturer ir. J. van der Plaats and dr.ir. W.C. van Etten for many helpful and stimulating discussions. He is also grateful to Mrs. T. van de Ven-Pellegrino and Mrs. L. de Jong-Vriens for typing this paper.

Eindhoven, May 11, 1979

A.M.J. Koonen.
References

BSTJ = Bell System Technical Journal
Appendix I

Plots of the shot noise variance functions

Normalized shot noise variance function $z'(t)/z'(0)$

According to (3.12) we have

$$z'(t) = h'_1(t) \ast h_1^2(t)$$

where according to (3.11)

$$h'_1(t) = \mathcal{F}^{-1}[H'_{\text{out}}(f)/H'_p(f)]$$

and

$$h'_p(t) = \mathcal{F}^{-1}[H'_{\text{out}}(f)]$$

$$h'_p(t) = \mathcal{F}^{-1}[H'_p(f)]$$

Time-normalized received optical pulse shape $h'_p(t)$ (section 4.2): rectangular or Gaussian, normalized r.m.s. pulse width σ/T.

Time-normalized equalized output pulse shape $h'_{\text{out}}(t)$ (section 4.3): raised cosine or "optimum", rolloff factor β.

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=\textwidth,
 xlabel={t},
 ylabel={$z'(t)/z'(0)$},
 xmin=-4, xmax=4,
 ymin=0, ymax=1,
 legend style={at={(0.5,0.95)},anchor=north west},
]
\addplot+[domain=-4:4,samples=100] {1};
\addplot+[domain=-4:4,samples=100] {0.75};
\addplot+[domain=-4:4,samples=100] {0.5};
\addplot+[domain=-4:4,samples=100] {0.25};
\addplot+[domain=-4:4,samples=100] {0};
\legend{$H'_{\text{out}}(t)$: RAISED COS, $H'_p(t)$: RECTANGULAR}$
\end{axis}
\end{tikzpicture}
\end{center}
$H_{\text{OUT}(T)}$: RAISED COS
$H_{p}(T)$: GAUSSIAN
\[\sigma/T = 1.44, \beta = 1 \]
\[\sigma/T = 1.44, \beta = 0.1 \]
\[\sigma/T = 2.60, \beta = 0.5 \]

$H_{\text{OUT}(T)}$: OPTIMUM
$H_{p}(T)$: RECTANGULAR
\[\sigma/T = 1.44, \beta = 1 \]
\[\sigma/T = 1.44, \beta = 0.1 \]
\[\sigma/T = 2.60, \beta = 0.5 \]
$H_{\text{OUT}}(t)$: OPTIMUM

$H_p(t)$: GAUSSIAN

- $\sigma/T = 1.44, \beta = 1$
- $\sigma/T = 1.44, \beta = 1$
- $\sigma/T = 0.260, \beta = 0.5$
Appendix 2

Plots of the weighting factors versus the normalized r.m.s. optical pulse width, with the rolloff factor of the equalized output spectrum as a parameter.

Weighting factors: I_1, Σ_1, Σ_1-I_1, I_2 and I_3.

Received optical pulse shape (section 4.2): rectangular or Gaussian, normalized r.m.s. optical pulse width $\sigma/T (\leq .5)$.

Equalized output pulse shape (section 4.3): raised cosine or "optimum", rolloff factor $\beta (= .1, = .5$ and $= 1$).
\[\text{SIGMA/T} \]

Beta = 1.0

- **RECTANGULAR**
- **GAUSSIAN**

Raised cos

Optimum
Appendix 3

Plots of the weighting factors versus the rolloff factor of the raised cosine equalized output spectrum, with the normalized r.m.s. optical pulse width as a parameter.

Weighting factors: I_1, E_1, E_1-I_1, I_2 and I_3.

Received optical pulse shape (section 4.2): rectangular or Gaussian, normalized r.m.s. optical pulse width $\sigma/T (= .029, .087$ and $=.144)$.

Equalized output pulse shape (section 4.3): raised cosine, rolloff factor $\beta (\leq 3)$.
Reports:

1) Dijk, J., M. Jeuken and E.J. Maanders
AN ANTENNA FOR A SATELLITE COMMUNICATION GROUND STATION (PROVISIONAL ELECTRICAL DESIGN).

2) Veeffkind, A., J.H. Blom and L.H.Th. Rietjens

3) Boom, A.J.W. van den and J.H.A.M. Melis
A COMPARISON OF SOME PROCESS PARAMETER ESTIMATING SCHEMES.

4) Eykhoff, P., P.J.M. Ophey, J. Severs and J.O.M. Oome
AN ELECTROLYTIC TANK FOR INSTRUCTIONAL PURPOSES REPRESENTING THE COMPLEX-FREQUENCY PLANE.

5) Vermij, L. and J.E. Daalder
ENERGY BALANCE OF FUSING SILVER WIRES SURROUNDED BY AIR.

MHD POWER CONVERSION EMPLOYING LIQUID METALS.

7) Heuvel, W.M.C. van den and W.F.J. Kersten
VOLTAGE MEASUREMENT IN CURRENT ZERO INVESTIGATIONS.

8) Vermij, L.
SELECTED BIBLIOGRAPHY OF FUSES.

9) Westenberg, J.Z.
SOME IDENTIFICATION SCHEMES FOR NON-LINEAR NOISY PROCESSES.

10) Koop, H.E.M., J. Dijk and E.J. Maanders
ON CONICAL HORN ANTENNAS.

11) Veeffkind, A.
NON-EQUILIBRIUM PHENOMENA IN A DISC-SHAPED MAGNETOHYDRODYNAMIC GENERATOR.

12) Jansen, J.K.M., M.E.J. Jeuken and C.W. L.rechtse
THE SCALAR FEED.

13) Teuling, D.J.A.
ELECTRONIC IMAGE MOTION COMPENSATION IN A PORTABLE TELEVISION CAMERA.
Reports:

14) Lorencin, M.
AUTOMATIC METEOR REFLECTIONS RECORDING EQUIPMENT.

15) Smets, A.S.
THE INSTRUMENTAL VARIABLE METHOD AND RELATED IDENTIFICATION SCHEMES.

16) White, Jr., R.C.
A SURVEY OF RANDOM METHODS FOR PARAMETER OPTIMIZATION.

17) Talmon, J.L.
APPROXIMATED GAUSS-MARKOV ESTIMATORS AND RELATED SCHEMES.

18) Kalášek, V.
MEASUREMENT OF TIME CONSTANTS ON CASCADE D.C. ARC IN NITROGEN.

19) Hosselet, L.M.L.F.
OZONBILDUNG MITTELS ELEKTRISCHER ENTLADUNGEN.

20) Arts, M.G.J.
ON THE INSTANTANEOUS MEASUREMENT OF BLOODFLOW BY ULTRASONIC MEANS.

21) Roer, Th.G. van de
NON-ISO THERMAL ANALYSIS OF CARRIER WAVES IN A SEMICONDUCTOR.

22) Jeuken, P.J., C. Huber and C.E. Mulders
SENSING INERTIAL ROTATION WITH TUNING FORKS.

23) Dijk, J., J.M. Berends and E.J. Maanders
APERTURE BLOCKAGE IN DUAL REFLECTOR ANTENNA SYSTEMS - A REVIEW.

24) Kregting, J. and R.C. White, Jr.
ADAPTIVE RANDOM SEARCH.

THE MULTIPLE DIPOLE MODEL OF THE VENTRICULAR DEPOLARISATION.

26) Bremmer, H.
A MATHEMATICAL THEORY CONNECTING SCATTERING AND DIFFRACTION PHENOMENA, INCLUDING BRAGG-TYPE INTERFERENCES.

27) Bokhooven, W.M.G. van
METHODS AND ASPECTS OF ACTIVE RC-FILTERS SYNTHESIS.

28) Boeschoten, F.
TWO FLUIDS MODEL REEXAMINED FOR A COLLISIONLESS PLASMA IN THE STATIONARY STATE.
EINDHOVEN UNIVERSITY OF TECHNOLOGY
THE NETHERLANDS
DEPARTMENT OF ELECTRICAL ENGINEERING

Reports:

30) Kessel, C.G.M. van and J.W.M.A. Houben
LOSS MECHANISMS IN AN MHD GENERATOR.

31) Veeffkind, A.
CONDUCTION GRIDS TO STABILIZE MHD GENERATOR PLASMAS AGAINST IONIZATION INSTABILITIES.

32) Daalder, J.E., and C.W.M. Vos
DISTRIBUTION FUNCTIONS OF THE SPOT DIAMETER FOR SINGLE- AND MULTI-CATHODE DISCHARGES IN VACUUM.

33) Daalder, J.E.
JOULE HEATING AND DIAMETER OF THE CATHODE SPOT IN A VACUUM ARC.

34) Huber, C.
BEHAVIOUR OF THE SPINNING GYRO ROTOR.

35) Bastian, C. et al.

36) Blom, J.A.
ANALYSIS OF PHYSIOLOGICAL SYSTEMS BY PARAMETER ESTIMATION TECHNIQUES.

37) Cancelled

38) Andriessen, F.J., W. Boerman and I.F.E.M. Holtz
CALCULATION OF RADIATION LOSSES IN CYLINDER SYMMETRIC HIGH PRESSURE DISCHARGES BY MEANS OF A DIGITAL COMPUTER.

THE POLARIZATION LOSSES OF OFFSET ANTENNAS.

40) Goes, W.P.
SEPARATION OF SIGNALS DUE TO ARTERIAL AND VENOUS BLOOD FLOW IN THE DOPPLER SYSTEM THAT USES CONTINUOUS ULTRASOUND.

41) Damen, A.A.H.
A COMPARATIVE ANALYSIS OF SEVERAL MODELS OF THE VENTRICULAR DEPOLARIZATION; INTRODUCTION OF A STRING-MODEL.
Reports:

42) Dijk, G.H.M. van
THEORY OF GYRO WITH ROTATING GIMBAL AND FLEXURAL PIVOTS.

43) Breimer, A.J.
ON THE IDENTIFICATION OF CONTINUOUS LINEAR PROCESSES.

44) Lier, M.C. van and R.H.J.M. Otten
CAD OF MASKS AND WIRING.

45) Bastian, C. et al.

46) Roer, Th.G. van de
ANALYTICAL SMALL-SIGNAL THEORY OF BARITT DIODES.

47) Leeliveld, W.H.
THE DESIGN OF A MOCK CIRCULATION SYSTEM.

48) Damen, A.A.H.
SOME NOTES ON THE INVERSE PROBLEM IN ELECTRO CARDIOGRAPHY.

49) Meeberg, L. van de
A VITERBI DECODER.

50) Poel, A.P.M. van der
A COMPUTER SEARCH FOR GOOD CONVOLUTIONAL CODES.

51) Sampic, G.
THE BIT ERROR PROBABILITY AS A FUNCTION PATH REGISTER LENGTH IN THE VITERBI DECODER.

52) Schalkwijk, J.P.M.
CODING FOR A COMPUTER NETWORK.

53) Stapper, M.
MEASUREMENT OF THE INTENSITY OF PROGRESSIVE ULTRASONIC WAVES BY MEANS OF RAMAN-NATH DIFFRACTION.

54) Schalkwijk, J.P.M. and A.J. Vinck
SYNDROME DECODING OF CONVOLUTIONAL CODES.

55) Yakimov, A.
FLUCTUATIONS IN IMPATT-DIODE OSCILLATORS WITH LOW Q-FACTORS.
Reports:

56) Plaats, J. van der
ANALYSIS OF THREE CONDUCTOR COAXIAL SYSTEMS. Computer-aided determination of the frequency characteristics and the impulse and step response of a two-port consisting of a system of three coaxial conductors terminating in lumped impedances.

57) Kalken, P.J.H. and C. Kooy
RAY-OPTICAL ANALYSIS OF A TWO DIMENSIONAL APERTURE RADIATION PROBLEM.

58) Schalkwijk, J.P.M., A.J. Vinck and L.J.A.E. Rust
ANALYSIS AND SIMULATION OF A SYNDROME DECODER FOR A CONSTRAINT LENGTH k = 5, RATE R = \(\frac{1}{3} \) BINARY CONVOLUTIONAL CODE.

59) Boeschoten, F. et al.
EXPERIMENTS WITH A LARGE Sized HOLLOW CATHODE DISCHARGE FED WITH ARGON, II. Annual Report 1974. EURATOM-T.H.E. Group 'Rotating Plasma'.

60) Maanders, E.J.
SOME ASPECTS OF GROUND STATION ANTENNAS FOR SATELLITE COMMUNICATION.

61) Mawira, A. and J. Dijk
DEPOLARIZATION BY RAIN: Some Related Thermal Emission Considerations.

62) Safak, M.
CALCULATION OF RADIATION PATTERNS OF REFLECTOR ANTENNAS BY HIGH-FREQUENCY ASYMPOTIC TECHNIQUES.

63) Schalkwijk, J.P.M. and A.J. Vinck
SOFT DECISION SYNDROME DECODING.

64) Damen, A.A.H.
EPICARDIAL POTENTIALS DERIVED FROM SKIN POTENTIAL MEASUREMENTS.

65) Bakhuizen, A.J.C. and R. de Boer
ON THE CALCULATION OF PERMEANCES AND FORCES BETWEEN DOUBLY SLOTTED STRUCTURES.

66) Geutjes, A.J.
A NUMERICAL MODEL TO EVALUATE THE BEHAVIOUR OF A REGENERATIVE HEAT EXCHANGER AT HIGH TEMPERATURE.

67) Boeschoten, F. et al.
EXPERIMENTS WITH A LARGE Sized HOLLOW CATHODE DISCHARGE, III; concluding work Jan. 1975 to June 1976 of the EURATOM-THE Group 'Rotating Plasma'.

68) Cancelled.
Reports:

69) Merck, W.F.H. and A.F.C. Sens
THOMSON SCATTERING MEASUREMENTS ON A HOLLOW CATHODE DISCHARGE.

70) Jongbloed, A.A.
STATISTICAL REGRESSION AND DispERSION RATIOS IN NONLINEAR SYSTEM IDENTIFICATION.

71) Barrett, J.F.
BIBLIOGRAPHY ON VOLTERRA SERIES HERMITE FUNCTIONAL EXPANSIONS AND RELATED SUBJECTS.

72) Boeschoten, F. and R. Komen
ON THE POSSIBILITY TO SEPARATE ISOTOPES BY MEANS OF A ROTATING PLASMA COLUMN: Isotope separation with a hollow cathode discharge.

73) Schalkwijk, J.P.M., A.J. Vinck and K.A. Post
SYNDROME DECODING OF BINARY RATE-k/n CONVOLUTIONAL CODES.

AN ANTENNA MOUNT FOR TRACKING GEOSTATIONARY SATELLITES.

75) Vinck, A.J., J.G. van Wijk and A.J.P. de Paepe
A NOTE ON THE FREE DISTANCE FOR CONVOLUTIONAL CODES.
TH-Report 77-E-75. 1977. ISBN 90-6144-075-0

76) Daalder, J.E.
RADIAL HEAT FLOW IN TWO COAXIAL CYLINDRICAL DISKS.

77) Barrett, J.F.
ON SYSTEMS DEFINED BY IMPLICIT ANALYTIC NONLINEAR FUNCTIONAL EQUATIONS.

78) Jansen, J. and J.F. Barrett
ON THE THEORY OF MAXIMUM LIKELIHOOD ESTIMATION OF STRUCTURAL RELATIONS. Part 1: One dimensional case.

EXPERIMENTAL INVESTIGATION ON THE DISCHARGE STRUCTURE IN A NOBLE GAS MHD GENERATOR.

80) Bergmans, T.
EQUALIZATION OF A COAXIAL CABLE FOR DIGITAL TRANSMISSION: Computer-optimized location of poles and zeros of a constant-resistance network to equalize a coaxial cable 1.2/4.4 for high-speed digital transmission (140 Mb/s).
Reports:

81) Kam, J.J. van der and A.A.H. Damen
OBSERVABILITY OF ELECTRICAL HEART ACTIVITY STUDIES WITH THE SINGULAR VALUE DECOMPOSITION

82) Jansen, J. and J.F. Barrett
ON THE THEORY OF MAXIMUM LIKELIHOOD ESTIMATION OF STRUCTURAL RELATIONS. Part 2: Multi-dimensional case.

83) Etten, W. van and E. de Jong
OPTIMUM TAPPED DELAY LINES FOR THE EQUALIZATION OF MULTIPLE CHANNEL SYSTEMS.

83) Vinck, A.J.
MAXIMUM LIKELIHOOD SYNDROME DECODING OF LINEAR BLOCK CODES.

85) Spruit, W.P.
A DIGITAL LOW FREQUENCY SPECTRUM ANALYZER, USING A PROGRAMMABLE POCKET CALCULATOR.

86) Beneken, J.E.W. et al
TREND PREDICTION AS A BASIS FOR OPTIMAL THERAPY.

87) Geus, C.A.M. and J. Dijk
CALCULATION OF APERTURE AND FAR-FIELD DISTRIBUTION FROM MEASUREMENTS IN THE FRESNEL ZONE OF LARGE REFLECTOR ANTENNAS.

88) Hajdasinski, A.K.

89) Niederlinski, A.
THE GLOBAL ERROR APPROACH TO THE CONVERGENCE OF CLOSED-LOOP IDENTIFICATION, SELF-TUNING REGULATORS AND SELF-TUNING PREDICTORS.

90) Vinck, A.J. and A.J.P. de Paepe
REDUCING THE NUMBER OF COMPUTATIONS IN STACK DECODING OF CONVOLUTIONAL CODES BY EXPLOITING SYMMETRIES OF THE ENCODER.

91) Geutjes, A.J. and D.J. Kleyn
A PARAMETRIC STUDY OF 1000 MWe COMBINED CLOSED CYCLE MHD/STEAM ELECTRICAL POWER GENERATING PLANTS.

92) Massee, P.
THE DISPERSION RELATION OF ELECTROTHERMAL WAVES IN A NONEQUILIBRIUM MHD PLASMA.
EINDHOVEN UNIVERSITY OF TECHNOLOGY
THE NETHERLANDS
DEPARTMENT OF ELECTRICAL ENGINEERING

Reports:

93) Duin, C.A. van

94) Kuijper, A.H. de and L.K.J. Vandamme

95) Hajdasinski, A.K. and A.A.H. Damen

96) Stefanov, B.

97) Worm, S.C.J.

98) Kroezen, P.H.C.

99) Koonen, A.M.J.