Transverse strength of a hybrid carbon/polyethylene composite
Brokken, D.

Published: 01/01/1993

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 13. Dec. 2018
Transverse strength of a hybrid carbon/polyethylene composite.
Stageverslag D. Brokken
Vakgroep Fundamentele Werktuigkunde
Faculteit Werktuigbouwkunde
Technische Universiteit Eindhoven
WFW 93.123
Contents.

Introduction
Materials
Fabrication
Testing
Results
Conclusions
References

page 1.

page 3.

page 3.

page 4.

page 6.

page 6.

page 8.

Preface.

This project has been performed at the Eindhoven University of Technology, department of Mechanical Engineering. The project was done in a framework of obtaining a degree in Mechanical Engineering.

I would like to thank my coach, Ton Peijs for his support and guidance during this work. Furthermore I would like to thank everyone who helped me getting started at the lab.
Transverse strength of a hybrid carbon/polyethylene composite

D.Brokken

Introduction.
Use of carbon reinforced composites has grown considerably in automotive and aircraft manufacturing due to its high strength and modulus and good fatigue resistance. It is however a very brittle composite. Peys et al. showed that hybridisation with high performance polyethylene composite reduces the brittleness, improving the damage tolerance. Chamis et al. and Bathia already showed that hybridisation offers a means of reducing impact-vulnerability, still keeping other mechanical properties high. Uni-directional composites are extremely anisotropic, having low strength and modulus in directions other than the fiber-direction. Practical use of these materials demands the use of stacked-plies. Failure initiation in these plies in transverse direction will start at much lower loads than in fiber-direction weakening the matrix and lowering the effective strength. Consequently, knowledge of the transverse properties of these composites is of interest. Kalnin investigated unidirectional glass-graphite composites, finding a linear decline of most transverse properties upon progressive hybridisation. Kretsis mentioned 5 different types of hybrid composites, two of which will be distinguished here: Intraply (where tows of different fibers are mixed) and interply or laminated (where alternate layers are stacked in one composite). The first type can be considered as a series model of the two parent composites. Consequently, strength will be dominated by its weakest link. This could be described by a weakest link model (WLM) with the HE-(High elongation) end LE(Low elongation) composites acting in series. The second type of hybrid behaves more like two composites in parallel, leading to a Constant Strain Model (CSM), following Manders and Bader and Chou and Kelly.
Catastrophic failure in the LE-phase is expected at:

\[\sigma_{\text{hybrid}} = \sigma_{\text{HE max}} \cdot V_{\text{HE}} \]

If there is enough HE-phase present strength will be dominated by the HE-fibers after failure of the LE-phase:

\[\sigma_{\text{hybrid}} = \sigma_{\text{LE max}} \cdot V_{\text{LE}} + \epsilon_{\text{LE max}} \cdot E_{\text{HE}} \cdot V_{\text{HE}} \]

Thus the CSM leads to an ultimate composite strength formed by two lines in a strength vs. hybrid composition graph. The rule of mixtures could also be used to predict the strength of interply hybrids. Figure 2 gives the predictions for inter- and intraply composites according to the WLM, ROM and CSM, using the following values: \(\sigma_{\text{LE max}} = 10 \text{ MPa}, \epsilon_{\text{LE max}} = 0.3 \%, E_{\text{HE}} = 6 \text{ GPa}, \sigma_{\text{HE max}} = 70 \text{ MPa} \). In this study only the strength of intraply hybrids will be investigated.

![Graph showing transverse strength vs. hybrid composition](image)

Fig. 2 Transverse strength vs. hybrid composition
Materials.
Uni-directional test-specimens were fabricated using an epoxy resin from Ciba-Geigy (Araldite LY-556 / HY 917 /DY070) reinforced with carbon-fibers from AKZO (Tenax HTA 5131) and HPPE-fibers from DSM (Dyneema).

Table 1, The available fibers and their properties.

<table>
<thead>
<tr>
<th>Sort of fiber</th>
<th>Density (g/cm³)</th>
<th>Mass/Length</th>
<th>A_fiber (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>1.78</td>
<td>200 Tex</td>
<td>0.1124</td>
</tr>
<tr>
<td>Carbon</td>
<td>1.78</td>
<td>800 Tex</td>
<td>0.4494</td>
</tr>
<tr>
<td>HP-PE</td>
<td>0.97</td>
<td>3×1760 dTex</td>
<td>0.5443</td>
</tr>
<tr>
<td>HP-PE</td>
<td>0.97</td>
<td>1760 dTex</td>
<td>0.1814</td>
</tr>
<tr>
<td>HP-PE</td>
<td>0.97</td>
<td>3×440 dTex</td>
<td>0.1361</td>
</tr>
<tr>
<td>HP-PE</td>
<td>0.97</td>
<td>440 dTex</td>
<td>0.0453</td>
</tr>
</tbody>
</table>

Fabrication.
The fibers were wound on a frame after passing through a bath of pre-heated epoxy and several guiders. A cycle counter registered the number of fibers wound on the frame so the number of fibers in the composite was exactly known. The fibers were wound parallel over a width of 161 mm, being the width of the mould, until the correct number of fibers was reached to obtain a fiber-volume fraction of 50%. Afterwards the frame was placed in a vacuumoven for 15 minutes at 70°C and 400 mm Hg to reduce voids. The frame was then placed in the mould in which it was cured at 80°C for 2 hours under pressure. Pressure was increased slowly the first 15 minutes up to 10 kN, which was then maintained for 1.75 hours. The thickness of the composite was adjusted by placing copper plates between the halfs of the mould. Further curing was done for 20 hours in an oven at 80°C. From the resulting plates (161×200×1.5 mm) specimens were cut using a diamond saw. After
cutting the specimens were grinded and polished to minimize the flaws on the edge. The specimen-range had to cover the region from 100% carbon fibers up to 100% HPe-fibers. The number of points in this range was chosen 6, which resulted in one specimen every 20%. Since there was only a limited number of fiber types available, some matching was necessary to get the correct 'pairs'. The available fibers and their characteristics are given in table 1. Combining these fibers leads to a set of combinations, where the number of fibers needed is calculated from the cross-section of the mould : \(161 \times 1.5 = 241.5 \text{ mm}^2\). Using 50% of fibervolume this results in fibre cross-section of 120.75 mm². The different compositions are presented in table 2.

<table>
<thead>
<tr>
<th>%Carbon</th>
<th>Carbonfiber</th>
<th>HP-He fiber</th>
<th>(A_{\text{fibers}}(\text{mm}^2))</th>
<th>Number of fibers needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>800 Tex</td>
<td>none</td>
<td>0.4494</td>
<td>269</td>
</tr>
<tr>
<td>76.75</td>
<td>800 Tex</td>
<td>3x440 dTex</td>
<td>0.5855</td>
<td>206</td>
</tr>
<tr>
<td>62.3</td>
<td>2x200 Tex</td>
<td>3x440 dTex</td>
<td>0.3608</td>
<td>334</td>
</tr>
<tr>
<td>38.3</td>
<td>200 Tex</td>
<td>1760 dTex</td>
<td>0.2938</td>
<td>411</td>
</tr>
<tr>
<td>17.1</td>
<td>200 Tex</td>
<td>3x1760 dTex</td>
<td>0.6567</td>
<td>183</td>
</tr>
<tr>
<td>0</td>
<td>none</td>
<td>3x1760 dTex</td>
<td>0.5443</td>
<td>221</td>
</tr>
</tbody>
</table>

Testing.

Two types of testing were performed: 3-point bending and tensile experiments. The bending experiments were performed according to ASTM standard 790M, the tensile tests according to ASTM D 3039. This resulted in bending specimens of 51x12.5 mm and tensile specimens of 160x25 mm. Both tests were performed on a Frank type 81565 tensile machine. Bending tests were performed with a support span of 25 mm which resulted in an L/d of 16.
Tensile experiments were done with a gage length of 80 mm, leaving 40 mm on each side for contact with the grips. Instead of using the more conventional tabs, grinding paper was used between grip and specimen. The test speed was 0.01 min\(^{-1}\) for tensile as well as bending tests. This resulted in a crosshead speed of 0.8 mm/min for tensile and 0.716 mm/min for bending experiments. After testing, the depth and width of the specimen were measured at the point of fracture thus giving a reliable stress-output. During testing all data was monitored by a computer, giving easy access to force/displacement diagrams.

![Transverse strength vs. hybrid composition](image)

Fig. 3 Tranverse strength vs. hybrid composition.
Results.
The measured average strengths are displayed in table 3.

Table 3: measured average strengths.

<table>
<thead>
<tr>
<th>% Carbonfibers</th>
<th>Flexural strength(MPa)</th>
<th>Tensile strength(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>128</td>
<td>68</td>
</tr>
<tr>
<td>76.75</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>62.3</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>38.3</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>17.1</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>11</td>
</tr>
</tbody>
</table>

Examining these results we see that the strength drops rapidly even if a small amount of HPPE-fibers is added to the carbon composite (Fig. 3). Adding more HPPE does not significantly influence the strength further. We can also see that the flexural strength behaves similar to the tensile strength however at a higher overall strength. Overall quality of the plates seems to be good, the measured strengths of the plain composites being normal to high. Errors in the calculated strength due to measurement and rounding errors have an upper bound of 7% for flexural testing and 5% for tensile testing.

Conclusions
The transverse strength of a hybrid carbon/HPPE composite is strongly dominated by the poor transverse properties of the HPPE-composite. Tensile strength is determined by the weakest link, which is in this case formed by the HPPE-composite. The flexural strength is higher because of the stress-concentration in a smaller area i.e. size effects, resulting in less 'weakest links' being tested. It should be noted that the flexural strengths were measured with an L/d of only 16, not totally
excluding shear effects. In fig. 4 a comparison of the measured tensile strengths to a WLM (Weakest Link Model) is made, showing that transverse loading of this interply hybrid composite is in fact a worst case scenario. Practical use of this carbon/HPPE in epoxy hybrid demands the use of stacked-plies or multi-directional laminates because of the poor transverse properties of the uni-directional composite. Further investigation on this subject is needed to discover the real potential of these interply hybrids.

![Graph](image)

Fig.4, Weakest Link Model and results for tensile tests.
References

