A Nonexistence Proof for 4-Error-Correcting Codes

by

H. Reuvers

Department of Mathematics
University of Technology
PO Box 513, Eindhoven,
The Netherlands.
A nonexistence proof for 4-error-correcting codes

by

H. Reuvers

1. Definitions

Let S be a set of q symbols and $V := S^n$. For $x \in V$, $y \in V$ define the Hamming distance $d(x,y)$ to be the number of coordinates in which x and y differ. Let

$$S_e(x) := \{ z \in V | d(z,x) \leq e \}.$$

A perfect e-error-correcting code is a subset $C \subseteq V$ such that the $S_e(x)$ ($x \in C$) form a partition of V.

2. Conditions

Necessary conditions for the existence of perfect codes are:

a) the sphere packing condition:

$$\left(1 + n(q - 1) + \binom{n}{2}(q - 1)^2 + \ldots + \binom{n}{e}(q - 1)^e \right) | q^n$$

b) the polynomial condition (see [1],[2]):

$$P_e(x) = \sum_{i=0}^{e} \frac{(-1)^i (n-x)(x-1)^{e-i}}{(e-i)!} (q - 1)^{e-i}$$

has e different integral zeros among 1,2,3,...,n.

3. Previous results

It was proved by A. Tietävainen (see [5], [6]) that if a perfect e-code on q symbols exists and $e \geq 3$, then q is divisible by at least three distinct primes.

In this paper we reduce $P_4(X)$ to a cubic polynomial which can be treated in a way like Van Lint did in [3] and I did in [4] to prove that there is no unknown perfect 3-code.
4. The case $e = 4$

In the following we shall prove that there does not exist a perfect four-
error-correcting code, except maybe if (n,q) belongs to a certain set of
pairs, with cardinality 100 or so, some of whose elements (n,q) maybe
satisfy the sphere packing condition. In Lemma 3 we suppose that this is
not true.

Lemma 1. Let $P(Z) := z^4 + pz^2 + rz + s$ be a polynomial in $\mathbb{C}[Z]$ with four
integral zeros. Then $Q(Z)$ has three integral zeros, where

$$Q(Z) := Z^3 - pZ^2 - 4sZ + 4ps - r^2.$$

Proof. Let $P(Z)$ have integral zeros z_1, z_2, z_3, z_4. Then we can write p, r
and s as the symmetric expressions:

\begin{align*}
 p &= z_1z_2 + z_1z_3 + z_1z_4 + z_2z_3 + z_2z_4 + z_3z_4, \\
 r &= z_1z_2z_3 + z_1z_2z_4 + z_1z_3z_4 + z_2z_3z_4, \\
 s &= z_1z_2z_3z_4.
\end{align*}

Now define

$$Q(Z) := (Z - y_1)(Z - y_2)(Z - y_3),$$

where

\begin{align*}
 y_1 &= z_1z_2 + z_3z_4, \\
 y_2 &= z_1z_3 + z_2z_4, \\
 y_3 &= z_2z_3 + z_1z_4.
\end{align*}

Then it is straightforward to show that

\begin{align*}
 y_1 + y_2 + y_3 &= p, \\
 y_1y_2 + y_1y_3 + y_2y_3 &= -4s, \\
 y_1y_2y_3 &= r^2 - 4ps.
\end{align*}

Moreover, y_1, y_2 and y_3 are integers.

\[\square\]
Theorem. A perfect four-error-correcting code does not exist.

Proof. Assume that there exists such a code, with parameters n, c, q.

Then by $\theta := qx - n(q-1)$ and $z := 2\theta + 3q - 8$ the Lloyd polynomial $P_4(x)$ is transformed into $T_4(z) := z^4 + pz^2 + rz + s$, where p, r and s shall not be mentioned.

Following Lemma 1, we find that $Q_3(z)$ must have three integral zeros, where

$$Q_3(z) := z^3 - pz^2 - 4sz + 4ps - r^2.$$

Since the coefficient of $(n - 4)^3$ in $Q_3(z)$ is independent of z we substitute

$$2y := z + 24(q - 1)(n - 4)$$

and find that $F(Y)$ must have three integral zeros, where

$$F(Y) := a_2(Y)(n - 4)^2 + a_1(Y)(n - 4) + a_0(Y),$$

and

$$a_2(Y) := 3Y + 11q^2 + 16q - 16$$

$$a_1(Y) = - 24(q - 1)(Y + 5q^2)(Y + q^2 + 4q - 4)$$

$$a_0(Y) = (Y - 3q^2)(Y + 3q^2)(Y + 5q^2).$$

Now if $Y_0 = - \frac{1}{3}(11q^2 + 16q - 16)$, we have: $a_2(Y_0) = 0$ and

$$a_2(Y_0 - \frac{1}{3}) = - 32(q - 1)^2,$$

and

$$72q^4(q - 1) < a_1(Y) < 88q^4(q - 1)$$

for $Y = Y_0$ and $Y = Y_0 - \frac{1}{3}$, and

$$0 < q_0(Y) < 8q^6$$

for $Y = Y_0$ and $Y = Y_0 - \frac{1}{3}$.

Then we find:

$$F(Y_0) > 72q^4(q - 1)(n - 4) > 0$$

$$F(Y_0 - \frac{1}{3}) < - 32(q - 1)^2(n - 4)^2 + 88(q - 1)q^4(n - 4) + 8q^6,$$
So

\[F(Y_0 - \frac{1}{3}) < 0 \text{ if } n - 4 \geq \frac{14}{5} \frac{q^4}{q - 1}. \]

Therefore, if \(n - 4 \geq \frac{14}{5} \frac{q^4}{q - 1} \), there must be an integral zero of \(F(Y) \) in the open interval \((Y_0 - \frac{1}{3}, Y_0)\).

Since this interval does not contain an integer we find that \(n - 4 < \frac{14}{5} \frac{q^4}{q - 1} \).

Now we shall see in the following Lemmas 2 and 3 that this is impossible too.

Hence we proved the theorem. \(\square \)

Lemma 2. Suppose that there exists a perfect four-error-correcting code with word length \(n - 4 < \frac{14}{5} \frac{q^4}{q - 1} \), and let \(q = 2^{k+3}q' \), and \(\gcd(q', 6) = 1 \).

Then we have the following diagram of possibilities:

<table>
<thead>
<tr>
<th>6/k</th>
<th>6 = 0</th>
<th>6 < 4</th>
<th>6 < 46</th>
<th>6 < 718</th>
<th>6 < 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>(k \geq 3)</td>
<td></td>
</tr>
</tbody>
</table>

Proof. Let \(x_1, x_2, x_3, x_4 \) be the zeros of the Lloyd polynomial \(P_4(x) \).

Then the following expressions must be integers:

(i) \(x_1 + x_2 + x_3 + x_4 = \frac{4(n - 4)(q - 1)}{q} + 10 \)

(ii) \(x_1^2 + x_2^2 + x_3^2 + x_4^2 = 4(n - 4)^2 + 20(n - 4) + 30 - \frac{4(n - 4)}{q^2} \left((2q - 1)(n - 3) + 4 \right) \)

(iii) \(x_1^3 + x_2^3 + x_3^3 + x_4^3 = 4(n - 4)^3 + 30(n - 4)^2 + 90(n - 4) + 100 - \frac{n - 4}{q^3} \left((n - 4)^2 (12q^2 - 12q + 4) + (n - 4) (24q^2 + 42q - 36) + (12q^2 + 54q + 24) \right) \)

(iv) \(P_4(1) = (n - 1)(n - 2)(n - 3)(n - 4) \left(\frac{q - 1}{q^4} \right)^4 \)

Then if \(3 \mid q \) we see from (i) that \(3 \mid n - 4 \).

So

\(\{ (n - 4)^2 (12q^2 - 12q + 4) + (n - 4) (24q^2 + 42q - 36) + (12q^2 + 54q + 24) \} \)
has exactly one factor 3.
Then, since $27 \mid q^3$, we see from (iii) that $9 \mid n - 4$.

Furthermore, if $8 \mid q$, we see from (i) that $2 \mid n - 4$.
So $\{(2q - 1)(n - 3) + 4\}$ is odd.
Then, since $64 \mid q^2$, we see from (ii) that $4 \mid n - 4$.

Hence, since from (i) and (iv)
$q \mid 4(n - 4)$ and
$q^4 \mid (n - 1)(n - 2)(n - 3)(n - 4)$,
we can make the following diagram of possibilities, with A chosen in such a way that $q^4 \mid A(n - 4)$:

Now is each of the cases listed in this diagram we have the condition

$$
\frac{q^4}{A} \leq n - 4 < \frac{14}{5} \frac{q^4}{q - 1}, \text{ so } q < \frac{14}{5} A + 1.
$$

So we have the diagram of possibilities listed in the lemmas statement.

Lemma 3. The several values of q listed in the statement of Lemma 2 are impossible too.

Proof. This can be checked by computer.
First of all, the q with only one or two prime divisors are excluded (since these are impossible following the results of Tietavainen).
Second, with each q is associated the (often unique) n such that

$$
q^4 \mid A(n - 4) \text{ and } n - 4 < \frac{14q^4}{5(q - 1)}.
$$

Finally for the remaining pairs (n, q) it has to be verified that n and q do not satisfy the sphere packing condition.
Acknowledgements

Thanks to prof. Van Lint for some valuable suggestions, and for checking the calculations.

References

[6] A. Tietävainen; Nonexistence of nontrivial perfect codes in case
 \(q = p_1^{r_1} p_2^{r_2}, \quad e \geq 3. \)
 Submitted to Discrete Mathematics.