A nonexistence proof for 4-error-correcting codes

Reuvers, H.F.H.

Published: 01/01/1976

Citation for published version (APA):
Memorandum 1976-05

March 1976

A Nonexistence Proof for 4-Error-Correcting Codes

by

H. Reuvers

Department of Mathematics
University of Technology
PO Box 513, Eindhoven,
The Netherlands.
A nonexistence proof for 4-error-correcting codes

by

H. Reuvers

1. Definitions

Let \(S \) be a set of \(q \) symbols and \(V := S^n \). For \(x \in V \), \(y \in V \) define the Hamming distance \(d(x, y) \) to be the number of coordinates in which \(x \) and \(y \) differ.

Let
\[
S_e(x) := \{ z \in V \mid d(z, x) \leq e \}.
\]

A perfect \(e \)-error-correcting code is a subset \(C \subset V \) such that the \(S_e(x) \) \((x \in C)\) form a partition of \(V \).

2. Conditions

Necessary conditions for the existence of perfect codes are:

a) the sphere packing condition:
\[
1 + n(q - 1) + \binom{n}{2}(q - 1)^2 + \ldots + \binom{n}{e}(q - 1)^e | q^n
\]

b) the polynomial condition (see [1], [2]):

\[
P_e(x) = \sum_{i=0}^{e} (-1)^i \binom{n-x}{e-1} \binom{x-1}{i}(q - 1)^{e-i}
\]

has \(e \) different integral zeros among \(1, 2, 3, \ldots, n \).

3. Previous results

It was proved by A. Tietävainen (see [5], [6]) that if a perfect \(e \)-code on \(q \) symbols exists and \(e \geq 3 \), then \(q \) is divisible by at least three distinct primes.

In this paper we reduce \(P_4(X) \) to a cubic polynomial which can be treated in a way like Van Lint did in [3] and I did in [4] to prove that there is no unknown perfect 3-code.
4. The case \(e = 4 \)

In the following we shall prove that there does not exist a perfect four-error-correcting code, except maybe if \((n,q)\) belongs to a certain set of pairs, with cardinality 100 or so, some of whose elements \((n,q)\) maybe satisfy the sphere packing condition. In Lemma 3 we suppose that this is not true.

Lemma 1. Let \(P(Z) := z^4 + pz^2 + rz + s \) be a polynomial in \(\mathbb{C}[Z] \) with four integral zeros. Then \(Q(Z) \) has three integral zeros, where

\[
Q(Z) := z^3 - pz^2 - 4sz + 4ps - r^2.
\]

Proof. Let \(P(Z) \) have integral zeros \(z_1, z_2, z_3, z_4 \). Then we can write \(p, r \) and \(s \) as the symmetric expressions:

\[
+ p = z_1 z_2 + z_1 z_3 + z_1 z_4 + z_2 z_3 + z_2 z_4 + z_3 z_4
\]

\[
- r = z_1 z_2 z_3 + z_1 z_2 z_4 + z_1 z_3 z_4 + z_2 z_3 z_4
\]

\[
+ s = z_1 z_2 z_3 z_4
\]

Now define

\[
Q(Z) := (Z - y_1)(Z - y_2)(Z - y_3),
\]

where

\[
y_1 = z_1 z_2 + z_3 z_4
\]

\[
y_2 = z_1 z_3 + z_2 z_4
\]

\[
y_3 = z_2 z_3 + z_1 z_4
\]

Then it is straightforward to show that

\[
y_1 + y_2 + y_3 = p
\]

\[
y_1 y_2 + y_1 y_3 + y_2 y_3 = -4s
\]

\[
y_1 y_2 y_3 = r^2 - 4ps
\]

Moreover, \(y_1, y_2 \) and \(y_3 \) are integers. \(\square \)
Theorem. A perfect four-error-correcting code does not exist.

Proof. Assume that there exists such a code, with parameters n, c, q.
Then by $\vartheta := qx - n(q-1)$ and $z := 2\vartheta + 3q - 8$ the Lloyd polynomial $P_4(x)$
is transformed into $T_4(z) := z^4 + pz^2 + rz + s$, where p, r and s shall
not be mentioned.

Following Lemma 1, we find that $Q_3(z)$ must have three integral zeros, where

$$Q_3(z) := z^3 - pz^2 - 4sz + 4ps - r^2.$$

Since the coefficient of $(n - 4)^3$ in $Q_3(z)$ is independent of z we substitute

$$2y := z + 24(q - 1)(n - 4)$$

and find that $F(Y)$ must have three integral zeros, where

$$F(Y) := a_2(Y)(n - 4)^2 + a_1(Y)(n - 4) + a_0(Y),$$

and

$$a_2(Y) := 3Y + 11q^2 + 16q - 16$$
$$a_1(Y) = -24(q - 1)(Y + 5q^2)(Y + q^2 + 4q - 4)$$
$$a_0(Y) = (Y - 3q^2)(Y + 3q^2)(Y + 5q^2).$$

Now if $Y_0 = -\frac{1}{3}(11q^2 + 16q - 16)$, we have: $a_2(Y_0) = 0$ and

$$a_2(Y_0 - \frac{1}{3}) = -32(q - 1)^2,$$

and

$$72q^4(q - 1) < a_1(Y) < 88q^4(q - 1)$$

for $Y = Y_0$ and $Y = Y_0 - \frac{1}{3}$, and

$$0 < q_0(Y) < 8q^6$$
for $Y = Y_0$ and $Y = Y_0 - \frac{1}{3}$.

Then we find:

$$F(Y_0) > 72q^4(q - 1)(n - 4) > 0$$

$$F(Y_0 - \frac{1}{3}) < -32(q - 1)^2(n - 4)^2 + 88(q - 1)q^4(n - 4) + 8q^6,$$
So
\[F(Y_0 - \frac{1}{3}) < 0 \text{ if } n - 4 \geq \frac{14}{5} \frac{4}{q-1}. \]

Therefore, if \(n - 4 \geq \frac{14}{5} \frac{4}{q-1} \), there must be an integral zero of \(F(Y) \) in the open interval \((Y_0 - \frac{1}{3}, Y_0)\).

Since this interval does not contain an integer we find that \(n - 4 < \frac{14}{5} \frac{4}{q-1} \).

Now we shall see in the following Lemmas 2 and 3 that this is impossible too. Hence we proved the theorem.

Lemma 2. Suppose that there exists a perfect four-error-correcting code with word length \(n - 4 < \frac{14}{5} \frac{4}{q-1} \), and let \(q = 2^k 3^l q' \), and \(\gcd(q', 6) = 1 \).

Then we have the following diagram of possibilities:

\[
\begin{array}{c|cccc}
\ell & k = 0 & k = 1 & k = 2 & k \geq 3 \\
\hline
\ell = 0 & q < 4 & q < 46 & q < 718 & \text{not possible} \\
\ell \geq 1 & q < 10 & q < 136 & q < 2152 & q < 18
\end{array}
\]

Proof. Let \(x_1, x_2, x_3, x_4 \) be the zeros of the Lloyd polynomial \(P_4(x) \).

Then the following expressions must be integers:

(i) \[x_1 + x_2 + x_3 + x_4 = \frac{4(n - 4)(q - 1)}{q} + 10 \]

(ii) \[x_1^2 + x_2^2 + x_3^2 + x_4^2 = 4(n - 4)^2 + 20(n - 4) + 30 - \frac{4(n - 4)}{q^2} ((2q - 1)(n - 3) + 4) \]

(iii) \[x_1^3 + x_2^3 + x_3^3 + x_4^3 = 4(n - 4)^3 + 30(n - 4)^2 + 90(n - 4) + 100 - \frac{n - 4}{q^3} ((n - 4)^2 (12q^2 - 12q + 4) + (n - 4) (24q^2 + 42q - 36) + (12q^2 + 54q + 24)) \]

(iv) \[P_4(1) = (n - 1)(n - 2)(n - 3)(n - 4) \frac{(q - 1)^4}{q^4} \]

Then if \(3 \mid q \) we see from (i) that \(3 \mid n - 4 \).

So
\[(n - 4)^2 (12q^2 - 12q + 4) + (n - 4) (24q^2 + 42q - 36) + (12q^2 + 54q + 24) \]
has exactly one factor 3.
Then, since $27 \mid q^3$, we see from (iii) that $9 \mid n - 4$.

Furthermore, if $8 \mid q$, we see from (i) that $2 \mid n - 4$.
So $\{(2q - 1)(n - 3) + 4\}$ is odd.
Then, since $64 \mid q^2$, we see from (ii) that $4 \mid n - 4$.

Hence, since from (i) and (iv)
$q \mid 4(n - 4)$ and
$q^4 \mid (n - 1)(n - 2)(n - 3)(n - 4)$,
we can make the following diagram of possibilities, with A chosen in such a way that $q^4 \mid A(n - 4)$:

<table>
<thead>
<tr>
<th>k</th>
<th>$n - 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>256</td>
</tr>
<tr>
<td>≥ 3</td>
<td>648</td>
</tr>
<tr>
<td>≥ 4</td>
<td>768</td>
</tr>
<tr>
<td>≥ 5</td>
<td>A = 6</td>
</tr>
</tbody>
</table>

Now is each of the cases listed in this diagram we have the condition

\[
\frac{q^4}{A} \leq n - 4 < \frac{14q^4}{5(q - 1)}, \text{ so } q < \frac{14}{5} A + 1.
\]

So we have the diagram of possibilities listed in the lemmas statement.

Lemma 3. The several values of q listed in the statement of Lemma 2 are impossible too.

Proof. This can be checked by computer.
First of all, the q with only one or two prime divisors are excluded (since these are impossible following the results of Tiitavainen).
Second, with each q is associated the (often unique) n such that

\[
q^4 \mid A(n - 4) \text{ and } n - 4 < \frac{14q^4}{5(q - 1)}.
\]

Finally for the remaining pairs (n, q) it has to be verified that n and q do not satisfy the sphere packing condition.
Acknowledgements

Thanks to prof. Van Lint for some valuable suggestions, and for checking the calculations.

References

[6] A. Tietävainen; Nonexistence of nontrivial perfect codes in case $q = p_1^{r_1}p_2^{r_2}$, $e \geq 3$.

Submitted to Discrete Mathematics.