Coverings by rook domains

Blokhuis, A.

Published: 01/01/1982

Citation for published version (APA):
Memorandum 1982-04

March 1982

COVERINGS BY ROOK DOMAINS

by

A. Blokhuis

Eindhoven University of Technology
Dept. of Mathematics and Comp. Science
P.O. Box 513, 5600 MB Eindhoven
The Netherlands.
COVERINGS BY ROOK DOMAINS

by

A. Blokhuis

0. Abstract

The following inequalities and values for coverings by rook domains are proved:

(i) \(\sigma(1 + t \frac{q-1}{q-1}, q) \leq (q - t + 1)q^{k-r} \);
here \(q \) is a prime and \(k = 1 + t \frac{q-1}{q-1} \).

(ii) \(\sigma(n, k) \leq \sigma(n, k)t^{n-1} \) for any \(n, k \) and \(t \).

(iii) \(\sigma(q+1, qt) = q^{q-1}t^q \) for any prime power \(q \) and any \(t \).

1. Introduction

Let \(V = (V^n_k, d) \) denote the metric space of all \(n \)-tuples \((a_1, a_2, \ldots, a_n)\) with \(a_i \in \{1, 2, \ldots, k\} \) provided with the Hamming distance:
\(d(a, b) = |\{i \mid a_i \neq b_i\}|. \) A subset \(W \) of \(V \) is called a covering (by rook-domains) if each point of \(V \) is at distance \(\leq 1 \) from some point in \(W \).

We are interested in bounds on the number of points in a minimal covering of \(V \), to be denoted by \(\sigma(n, k) \). Points of \(W \) will be called rooks, the sphere of radius 1 around a rook a rook-domain. Since each rook-domain contains \(1 + n(k-1) \) points we get \(\sigma(n,k) \geq \frac{k^n}{1 + n(k-1)} \). Equality can be
obtained if \(k \) is a prime power and \(1 + n(k-1)/k \). E. Rodemich [1] proved that this bound can be improved to \(\sigma(n,k) \geq \frac{k^{n-1} - n - 1}{n-1} \) in the case \(k \geq n \).

2. A generalization of the bounds of van Lint and Kamps

A trivial observation is that \(\sigma(n+1,k) \leq k \sigma(n,k) \). This observation, combined with \(\sigma(4,3) = 3^2 \) yields \(\sigma(13,3) \leq 3^4 \), but actually \(\sigma(13,3) = 3^0 \). It is natural therefore to study the behaviour of \(\sigma(n,k) \) in between. In [2] J.H. van Lint and H.J.L. Kamps proved \(\sigma(9,3) \leq 2 \cdot 3^6 \). We will now demonstrate a technique which generalizes their construction.

Let \(A = (a_1, a_2, \ldots, a_k) \) be a matrix with \(k \) columns and \(r \) linearly independent rows, with \(a_i \in \mathbb{F}_q \) where \(q \) is a prime. Let \(S \) be a set of points in \(\mathbb{F}_q^r \) such that \(\{s + \alpha a_i | s \in S, \alpha \in \mathbb{F}_q, 1 \leq i \leq k\} = \mathbb{F}_q^r \).

Lemma. \(W := \{\mathbf{w} \in \mathbb{F}_q^k | A\mathbf{w} \in S\} \) is a covering of \(V_q^k = \mathbb{F}_q^k \) and \(|W| = |S| \cdot q^{-k+r} \).

Proof. Take \(\mathbf{x} \in \mathbb{F}_q^k \), then \(A\mathbf{x} \in \mathbb{F}_q^r \), so we may write \(A\mathbf{x} = s + \alpha a_i \). Let \(e_i = (0,0,\ldots,1,0\ldots,0) \) denote the \(i \)th unit vector in \(\mathbb{F}_q^k \), then \(A(\mathbf{x} - \alpha e_i) = s \in S \) hence \(\mathbf{x} - \alpha e_i \in W \), and \(d(\mathbf{x}, W) \leq 1 \).

Application

\[
A = \begin{pmatrix}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 1 & 1 & \cdot & \cdot \\
1 & 1 & t & 1 & \ldots t \\
\end{pmatrix}
\]

\[
S = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
0 & 0 & 0 \\
0 & 1 & \cdot & q-t \\
\end{pmatrix}
\]
the columns of A are all projective $(r-1)$-vectors over \mathbb{F}_q, repeated t times, with last coordinates $1, 2, \ldots, t$ together with the vector $(0, 0, \ldots, 0, 1)^T$, so $k = 1 + t \frac{q^{r-1} - 1}{q-1}$.

It is easily checked, using the pigeonhole principle, that the pair A, S satisfies the conditions, hence

$$\sigma(k, q) \leq (q - t + 1)q^{k-r}.$$

4. A sequence of cases meeting the Rodemich bound

Theorem. $\sigma(n, kt) \leq \sigma(n, k)t^{n-1}$.

Proof. Let W be a covering of V^n_k. Regard V^n_{kt} as obtained from V^n_k by replacing each point by V^n_{kt} and give V^n_{kt} coordinates as follows:

For $a = (a_1, a_2, \ldots, a_n) \in V^n_{kt}$ and $b = (b_1, b_2, \ldots, b_n) \in V^n_t$ the point in position b of the set V^n_t replacing a gets coordinates

$$(a_1 - 1)t + b_1, \ (a_2 - 1)t + b_2, \ldots, (a_n - 1)t + b_n).$$

Now for each rook in W fill the corresponding set V^n_t with t^{n-1} rooks placed at the points (x_1, x_2, \ldots, x_n) satisfying $x_1 + x_2 + \ldots + x_n \equiv 0 \pmod{t}$. It is easy to verify that the set of rooks thus defined covers V^n_{kt}.

Corollary. If q is a prime power then $\sigma(q+1, qt) = q^{q-1}t^q$.

Proof. Since $\sigma(q+1, q) = q^{q-1}$ by the Hamming bound we get $\sigma(q+1, qt) \leq q^{q-1}t^q$. Rodemich's equality however, gives $\sigma(q+1, qt) \geq q^{q-1}t^q$.

References

tas János Bolyai 4, Comb. Theory and it's Applications,
Balatonfüred 1969 (Hungary).