Coverings by rook domains

Blokhuis, A.

Published: 01/01/1982

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. Dec. 2018
COVERINGS BY ROOK DOMAINS

by

A. Blokhuis
COVERINGS BY ROOK DOMAINS

by

A. Blokhuis

0. Abstract

The following inequalities and values for coverings by rook domains are proved:

(i) \[\sigma(1 + t \frac{q^{r-1} - 1}{q - 1}, q) \leq (q - t + 1)q^{k-r}; \]

here \(q \) is a prime and \(k = 1 + t \frac{q^{r-1} - 1}{q - 1} \).

(ii) \[\sigma(n,kt) \leq \sigma(n,k)t^{n-1} \]

for any \(n, k \) and \(t \).

(iii) \[\sigma(q+1,qt) = q^{q-1} t^q \]

for any prime power \(q \) and any \(t \).

1. Introduction

Let \(V = (V^n_k,d) \) denote the metric space of all \(n \)-tuples \((a_1,a_2,\ldots,a_n)\) with \(a_i \in \{1,2,\ldots,k\} \) provided with the Hamming distance:

\[d(a,b) = |\{i \mid a_i \neq b_i\}|. \]

A subset \(W \) of \(V \) is called a covering (by rook-domains) if each point of \(V \) is at distance \(\leq 1 \) from some point in \(W \).

We are interested in bounds on the number of points in a minimal covering of \(V \), to be denoted by \(\sigma(n,k) \). Points of \(W \) will be called rooks, the sphere of radius 1 around a rook a rook-domain. Since each rook-domain contains \(1 + n(k-1) \) points we get \(\sigma(n,k) \geq \frac{k^n}{1 + n(k-1)} \). Equality can be
obtained if k is a prime power and $1 + n(k-1)|k$. E. Rodemich [1] proved that this bound can be improved to $\sigma(n,k) \geq \frac{k^{n-1}}{n-1}$ in the case $k \geq n$.

2. A generalization of the bounds of van Lint and Kamps

A trivial observation is that $\sigma(n+1,k) \leq k\sigma(n,k)$. This observation, combined with $\sigma(4,3) = 3^2$ yields $\sigma(13,3) \leq 3^{11}$, but actually $\sigma(13,3) = 3^{10}$. It is natural therefore to study the behaviour of $\sigma(n,k)$ in between. In [2] J.H. van Lint and H.J.L. Kamps proved $\sigma(9,3) \leq 2 \cdot 3^6$. We will now demonstrate a technique which generalizes their construction.

Let $A = (a_1, a_2, \ldots, a_k)$ be a matrix with k columns and r linearly independent rows, with $a_i \in \mathbb{F}_q^r$ where q is a prime. Let S be a set of points in \mathbb{F}_q^r such that $\{s + \alpha a_i | s \in S, \alpha \in \mathbb{F}_q, 1 \leq i \leq k\} = \mathbb{F}_q^r$.

Lemma. $W := \{w \in \mathbb{F}_q^k | Aw \in S\}$ is a covering of $V_q^k = \mathbb{F}_q^k$ and $|W| = |S| \cdot q^{k-r}$.

Proof. Take $x \in \mathbb{F}_q^k$, then $Ax \in \mathbb{F}_q^r$, so we may write $Ax = s + \alpha a_i$. Let $e_i = (0,0,\ldots,1,0\ldots0)$ denote the i^{th} unit vector in \mathbb{F}_q^k, then $A(x - \alpha e_i) = s \in S$ hence $x - \alpha e_i \in W$, and $d(x,W) \leq 1$.

Application

$$
A = \begin{pmatrix}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 1 & 1 & \cdot & \cdot \\
1 & 1 & \cdot & \cdot & t
\end{pmatrix}
$$

$$
S = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
0 & 0 & 0 \\
0 & 1 & q-t
\end{pmatrix}
$$
the columns of A are all projective $(r-1)$-vectors over \mathbb{F}_q, repeated t times, with last coordinates $1,2,\ldots,t$ together with the vector $(0,0,\ldots,0,1)^T$, so $k = 1 + t \frac{q^{r-1} - 1}{q - 1}$.

It is easily checked, using the pigeonhole principle, that the pair A,S satisfies the conditions, hence

$$\sigma(k,q) \leq (q - t + 1)q^{k-r}.$$

4. A sequence of cases meeting the Rodemich bound

Theorem. $\sigma(n,kt) \leq \sigma(n,k)t^{n-1}$.

Proof. Let W be a covering of V^t_n. Regard V^t_n as obtained from V^n_k by replacing each point by V^t_n and give V^t_n coordinates as follows:

For $a = (a_1,a_2,\ldots,a_n) \in V^n_k$ and $b = (b_1,b_2,\ldots,b_n) \in V^t_n$ the point in position b of the set V^t_n replacing a gets coordinates

$$(a_1 - 1)t + b_1, (a_2 - 1)t + b_2,\ldots,(a_n - 1)t + b_n).$$

Now for each rook in W fill the corresponding set V^t_n with t^{n-1} rooks placed at the points (x_1,x_2,\ldots,x_n) satisfying $x_1 + x_2 + \ldots + x_n \equiv 0 \pmod{t}$. It is easy to verify that the set of rooks thus defined covers V^n_k.

Corollary. If q is a prime power then $\sigma(q+1,qt) = q^{q-1}t^q$.

Proof. Since $\sigma(q+1,q) = q^{q-1}$ by the Hamming bound we get $\sigma(q+1,qt) \leq q^{q-1}t^q$. Rodemich's equality however, gives $\sigma(q+1,qt) \geq q^{q-1}t^q$.
References
