Low-loss bends in planar optical ridge waveguides

Citation for published version (APA):
illustrate variations of the line capacitance in terms of the conductor voltage, normalised to the thermal potential V_T, where the parameters are respectively, the active layer doping rate N_A and conductor half-length W.

Conclusions: The two-dimensional approach developed in this study has allowed us to take into account exact boundary conditions on the ground planes of a microcoplanar MES transmission line by using a conformal mapping technique. An accurate calculation of the depletion layer is carried out which leads to the establishment of a rigorous localised model, including edge effects. As far as slow-wave propagation is concerned, this model is preferable to the conventional layered model used for full-wave analyses since it reflects much better the physical behaviour of the microstructure. The structure seems particularly interesting to be used in variable phase-shifters, attenuators and coupled lines.

A. BENGHALIA
M. AHMADPANAH
H. BAUDRAND
Laboratoire de Microondes
2 Rue Camichel, 11072 Toulouse Cedex, France

References
5 Brito, F., Baudrand, H., and Ahmadpanah, M., 'Capacitance calculation in coplanar lines on semiconductor substrates', Proc. MIOP '87, Wiesbaden, Germany

LOW-LOSS BENDS IN PLANAR OPTICAL RIDGE WAVEGUIDES

Indexing terms: Optical waveguides, Optical waveguide components, Integrated optics, Losses

Bending losses lower than 0.7 dB for 90° bend sections with radii of curvature as small as 75 μm were measured on silicon-based Al₂O₃ ridge waveguides with SiO₂ cladding layers at a wavelength of 632.8 nm. These values, which are close to the calculated values, are the lowest thus far reported.

Introduction: In optoelectronic integrated circuits waveguide bends play an important role in connecting components. The size of these bends eventually determines the maximum density with which components can be integrated on a single chip. Waveguide bends may also enable long components, such as external cavities and phase modulators, to be folded and miniaturised.

The only previous results on submillimetre bends in ridge waveguides seem to be those of Austin, where 1 dB/90° loss has been reported for GaAs/AlGaAs bends with $R = 300$ μm. Realisation of directional changes with totally reflecting corner mirrors has not yet yielded losses below 1.5 dB per mirror.

We investigated bending losses in very short bends with radii of curvature from 50 to 200 μm in 3 μm wide ridge waveguides, etched in SiO₂ clad Al₂O₃ films on silicon substrates. Measurements and calculations were performed at a wavelength of 632.8 nm.

Bending loss mechanisms: The total loss of a waveguide bend of finite length is due to radiation loss, field mismatch at the transition between the straight and curved waveguide and increased scattering by roughness of the outer edge. We will discuss these mechanisms.

(i) Every curved structure exhibits losses in the form of radiative loss, because of the finite speed of light in the cladding material. The radiation losses can be reduced either by increasing the radius of curvature or by introducing a large refractive-index contrast. In our case, we created a large contrast by etching a high ridge, the price of which is paid by increased propagation losses of the straight sections due to scattering by edge roughness. The calculation of the radiation losses involved the effective-index method. The resulting two-dimensional bend is transformed into an equivalent straight structure by means of a conformal transformation, which is then solved by means of the staircase approximation.

(ii) In a curved waveguide the intensity distribution shows a shift of its maximum towards the outer edge. For small radii of curvature, the mode is guided by the outer edge alone (like a whispering gallery mode). The shape of this mode profile is therefore not determined by the width of the waveguide bend but mainly by the refractive-index contrast and the radius of curvature, whereas the shape of the straight-waveguide mode profile strongly depends on the width of the waveguide. At the transition between the straight and curved waveguide conversion losses will occur because of the mismatch between the two field distributions. These conversion losses can be minimised by introducing a lateral offset between the straight and curved waveguide to align the field maxima, and by optimising the width of the straight waveguide to match the widths of both field distributions, as exemplified in Fig. 1. The conversion losses have been estimated by applying overlap integrals. The improvement in coupling efficiency can be substantial as can be seen in Fig. 1. For a 3 μm-wide straight waveguide the coupling loss improves 2.4 dB, if a 0.85 μm offset is introduced. An additional 0.35 dB is gained by changing to a 2 μm-wide straight waveguide. The applied waveguides are multimode and the resulting coherent effects were all taken into account in the calculations. We optimised all offsets and the straight-waveguide width for the lowest order mode.

ELECTRONICS LETTERS 4th August 1988 Vol. 24 No. 16
ELECTRONICGS LETTERS

Experiments and results: We designed and fabricated two wafers with five identical sets, each set containing five different S-bends and several straight reference waveguides. Each S-bend starts with a 200μm 90° bend and is followed by a second 90° bend with R = 50, 75, 100, 150 and 200μm respectively. Waveguides were formed by atom-beam milling a 100nm step in a 250nm-thick sputtered Al2O3 layer (n ≈ 1.69) through a photoresist mask and by covering the circuit with a sputtered SiO2 layer (n ≈ 1.457). The 100nm step creates a lateral effective-index contrast of Δn/n ≈ 3.4%. Light from a He-Ne laser (λ = 632.8 nm) was coupled into the waveguides by means of the two-prism configuration enabling the selective excitation of all lateral modes. A silicon photodiode detected the power of all modes coming out of the waveguides. We measured the total additional power loss occurring in the S-bend sections by comparing the power coupled out of them and out of the straight reference waveguides. The agreement between theory and experiment is quite good as can be seen in Fig. 3, in which the total additional power loss is plotted as a function of the radius of curvature of the second bend. The HE02 mode (notation of Unger) in the 75μm S-bend has a loss of 0.7dB, which is the lowest value reported thus far. The loss of 0.2dB for the 200μm S-bend is within the measurement accuracy. This low loss enabled us to make the more complex waveguide structure shown in Fig. 4, which contains four loops with R = 200μm and shows negligible bending losses.

![Fig. 2 SEM photograph of ridge waveguide bend with R = 50μm defined in photoresist.](image)

![Fig. 3 Measured and predicted losses for five different S-bends. Markers denote measured values, for which typical error is 0.2dB](image)

![Fig. 4 Four loops with R = 200μm](image)

Conclusions: We have fabricated ridge waveguide S-bends with radii of curvature as small as 75μm and measured a total loss of 0.7dB, which is very close to the calculated value. These low losses were obtained by introducing a large lateral effective-index contrast and a lateral offset at the transition and by optimising the width of the straight waveguide. The low losses made it possible to cascade a considerable number of bends with negligible bending losses, thus demonstrating the feasibility of folding and miniaturising long components such as external cavities and phase modulators.

E. C. M. PENNINGS
G. H. MANHOUDT*
M. K. SMIT

Laboratory of Telecommunication & Remote Sensing Technology
Faculty of Electrical Engineering
Delft University of Technology
PO Box 5031, 2600 GA Delft, The Netherlands

* Present address: AT&T and Philips Telecommunication, PO Box 551, 2600 GA Delft, The Netherlands

References