Een A0 plotter ontleed voor het oog van de regeltechniek

Citation for published version (APA):

Document status and date:
Gepubliceerd: 01/01/2002

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Een A0 plotter ontleed voor het oog van de regeltechniek

R.M.L. Ellenbroek
DCT verslag: 2002-55

Eindhoven, September 2002

R.M.L. Ellenbroek, student id: 446352

Begeleiders:
 dr. ir. H.A. van Essen
 dr. ir. M.J.G. van de Molengraft

In samenwerking met:
 Ir. André van Doorn, Océ-Nederland B.V.
Inhoudsopgave

1. Doelstelling ... 4
 1.1. Eigenschappen van de plotter .. 4
 1.2. Regelaar ... 4
 1.3. Opbouw van het verslag ... 4

2. Inventarisatie en mechanische eigenschappen ... 5
 2.1. De draagconstructie .. 5
 2.2. Het translatiebed met printkop .. 5
 2.2.1. De tandriemen ... 6
 2.2.2. De aandrijfmotor .. 6
 2.2.3. Defecte schakelaar .. 8

3. Technische aanpassingen ... 9
 3.1. Inventarisatie .. 9
 3.1.1. De motor ... 9
 3.1.2. Positiemeting ... 9
 3.1.3. Versnellingsmeting .. 9
 3.1.4. Referentiepostie .. 9
 3.2. Uitvoering .. 9
 3.2.1. Vervanging van de stappenmotor ... 9
 3.2.2. De positiemeting ... 10
 3.2.3. De referentiepositie ... 11

4. Dynamische eigenschappen .. 12
 4.1. Werkwijze .. 12
 4.2. Modelvorming .. 12
 4.2.1. De motor .. 13
 4.2.2. De riemoverbrenging ... 13
 4.2.3. De printkop .. 14
 4.2.4. De draagconstructie ... 14
 4.3. Vereenvoudigd model ... 15
 4.4. Modelbeschouwing ... 16
 4.5. De dynamica vanuit een regeltechnisch oogpunt 17
 4.6. Wrijving ... 17
 4.6.1. Experimenten .. 17
 4.6.2. Meetresultaten .. 18
 4.6.3. Wrijvingsmodel ... 21
 4.7. Frequentieresponsie .. 23
 4.7.1. Experiment .. 23

5. Ontwerpen van een regelaar .. 25
 5.1. Eenvoudige PD-regelaar ... 25
 5.1.1. Referentiesignalen ... 25
 5.1.2. Optimaal instellen van de regelaar .. 25
 5.1.3. Gebruiken van de referentiepositie uit de plotter 26
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Conclusies en aanbevelingen</td>
<td>28</td>
</tr>
<tr>
<td>Appendix 1. Symboelenlijst</td>
<td>29</td>
</tr>
<tr>
<td>Appendix 2. De stappenmotor</td>
<td>31</td>
</tr>
<tr>
<td>Appendix 3. Aansluiting van encoder-signalen op dSpace</td>
<td>32</td>
</tr>
<tr>
<td>Appendix 4. Encoder signalen</td>
<td>34</td>
</tr>
<tr>
<td>Appendix 5. Genereren van een driehoek-golf</td>
<td>35</td>
</tr>
<tr>
<td>Appendix 6. Positie-resolutie</td>
<td>36</td>
</tr>
<tr>
<td>Appendix 7. Referenties</td>
<td>38</td>
</tr>
</tbody>
</table>
Inleiding

Grote bedrijven vinden het vaak belangrijk om goed contact te onderhouden met universiteiten, zodat zij niet alleen kennis en ontwikkelingen uit kunnen wisselen, maar ook potentieële nieuwe medewerkers kunnen bereiken. Ook Océ Nederland BV wil dit contact behouden en heeft de TUE een inktjet plotter geschonken. Deze A0-plotter is niet daadwerkelijk door Océ ontworpen of geproduceerd, maar het is de bedoeling is dat deze wordt gebruikt om kennis op te doen over, en inzicht te verkrijgen in dergelijke systemen en de problemen die zich er eventueel bij zouden kunnen voordoen. Bovendien is het de bedoeling dat de opgedane kennis kan worden gebruikt om in de toekomst een nieuwe, door Océ zelf ontwikkelde plotter te kunnen analyseren.

In het kader van deze opdracht is eerst onderzocht wat de werking van de afzonderlijke onderdelen van de plotter is, en hoe zij binnen het gehele functioneren van de plotter passen.
Nadat er op basis van de verkregen kennis enkele aanpassingen aan de mechanica en de elektronica van de plotter zijn gedaan, is het mogelijk metingen te verrichten die een beter inzicht in de dynamica van het apparaat bieden.
Naast het opdoen van kennis over het systeem is het verder de wens om de slede met printkoppen in regeling te brengen en de plotter met eigen regeling een plot te laten maken.
1. Doelstelling

De opzet van deze stage was om zoveel mogelijk te weten te komen over de gegeven A0-plotter en zo mogelijk een eigen regelaar te implementeren op de translatie van de printkop om zo eventueel de plotkwaliteit te verbeteren.

Gedurende de uitvoering van deze onderzoekende stage kon deze omschrijving echter worden genuanceerd tot een tweeledige doelstelling:

1. inzicht krijgen in de eigenschappen van de plotter:
 a. in de mechanica,
 b. in de dynamisch,
2. de plotter zodanig aanpassen dat besturing met behulp van een eigen regelaar mogelijk wordt en deze vervolgens zelf ontwerpen.

1.1. Eigenschappen van de plotter

Het eerste deel van de doelstelling komt neer op een algemene beschouwing van de werking van de plotter; de mechanica en de dynamica. Daarbij zal specifiek worden ingegaan op de componenten van het systeem die zorgen voor de translatie van het *carriage* met de printkoppen. Het *carriage* met de printkoppen zal voor de eenvoud in het vervolg worden aangeduid met ‘printkop’.

In verband met het tweede deel van de doelstelling (het maken van een regelaar) zal er ook aandacht worden besteed aan de dynamische eigenschappen van het systeem. Daartoe zal er een eenvoudig dynamisch model worden opgesteld, dat aan de hand van experimenten kan worden getoetst en waarvan de parameters eventueel kunnen worden afgeschat.

1.2. Regelaar

Het tweede doel behelst het gebruiken van de opgedane kennis van de al dan niet dynamische eigenschappen van de plotter om een regelaar te ontwerpen die de printkop van de plotter voldoende nauwkeurig kan positioneren om een mooie print te kunnen maken.

1.3. Opbouw van het verslag

In hoofdstuk 2 zal het systeem – de plotter – nader worden bekeken. Vooral de werking van onderdelen die relevant zijn voor de genoemde doelstellingen zullen daarbij onder de loep worden genomen. Vervolgens zullen in hoofdstuk 3 een aantal technische aanpassingen worden genoemd en uitgewerkt, die nodig zullen zijn om de bovenstaande doelen te kunnen verwezenlijken.

In hoofdstuk 4 zal een dynamisch model van het systeem worden opgesteld, dat vervolgens zal worden vergeleken met meetgegevens van het werkelijke systeem. Op basis van deze resultaten zal vervolgens in hoofdstuk 5 een eenvoudige regelaar worden ontworpen en geïmplementeerd.
2. Inventarisatie en mechanische eigenschappen

Het plotter-systeem kan in feite in twee afzonderlijke delen worden gesplitst. Het belangrijkste deel – het constructiegedeelte dat ervoor zorgt dat de printkop kan translateren – zal in het vervolg het ‘translatiebed’ worden genoemd. De constructie die dit bed draagt zal worden aangeduid met ‘draagconstructie’. In de volgende paragrafen zullen deze delen, te weten
1. de draagconstructie,
2. het translatiebed met printkop respectievelijk nader worden bekeken.

2.1. De draagconstructie

De constructie van de plotter is eenvoudig van opzet. Twee kokers, aan de bovenzijde en in het midden verbonden met een dwarsbalk, brengen het bed met de geleiding voor de translaterende printkop op een hoogte van ruwweg 1 [m]. Als gevolg van het ontbreken van diagonale constructie-elementen, en de aanzienlijke massa van het translate-bed, geeft dit een vrij slappe indruk. Eenvoudige metingen, waarbij de printkop met een sinusvormige beweging met instelbare frequentie werd bewogen, toonden aan dat het systeem in de translatierichting van de printkop een laagste eigenfrequentie heeft van 2 à 3 [Hz]. Het bewegen van de printkop doet de plotter dan ook behoorlijk trillen. Latere theoretische analyse van deze opbouw (zie paragraaf 4.3) zal echter aantonen dat dit weinig tot geen negatieve invloed zal hebben op de nauwkeurigheid van het positioneersysteem en daarmee op de haalbare plotsnelheid.

2.2. Het translatiebed met printkop

Achter in het translatiebed ligt de draagstang waarover de printkop glijdt door middel van twee in één lijn liggende bussen (zie Figuur 2-1). Voorin het bed ligt een u-profiel evenwijdig aan de draagstang, dat als tweede geleider dient voor de printkop, maar deze slechts in verticale richting ondersteunt. Zoals in de figuur is afgebeeld glijdt de printkop met twee bronzen bussen over de draagstang. Op deze manier worden twee maal vier vrijheidsgraden vastgelegd, waardoor de constructie in feite statisch over bepaald is, en er positieafhankelijkheden zullen ontstaan in de optredende wrijving. Door de voor deze constructie noodzakelijke speling in de geleiding, zal de printkop bovendien gaan schranken. Bij omkering van bewegingsrichting klappt de orientatie

Figuur 2-1: De geleiding van de printkop. Bronzen bussen laten de printkop glijden over de ronde draagstang en zijn star aan de printkop bevestigd. Zo leggen zij samen $2 \times 4 = 8$ graden van vrijheid vast, waardoor de constructie overbepaald is.
daarvan bovendien om, zodat de speling doorlopen wordt. Dit leidt ertoe, dat de posities van de inkt-spuimondjes bij verschillende bewegingsrichtingen niet precies gelijk zijn. Dit is de reden dat fabrikanten er vaak voor kiezen om slechts bij afdrukken in draft-mode in beide richtingen te printen, terwijl normaal in slechts één richting inkt wordt gespoten.

2.2.1. De tandriemen

2.2.1.1. Voorspanveren

De printkop wordt voortbewogen door een tweetal tandriemen: één van de motor naar de linker pulley, en één over de twee buitenste pulleys, zoals te zien in Figuur 2-2. Om deze tandriemen gespannen te houden zijn er voor beide riemen voorspanveren aangebracht. Deze zijn echter niet in de figuur afgebeeld. De voorspanveer die de korte (rode) riem gespannen houdt is gerealiseerd door middel van een tandloos wiel, dat continu van buitenaf tegen de riem aandrukt. Zodoende is er echter een richtingafhankelijkheid gecreëerd: bij beweging van de printkop van links naar rechts bevindt zich de voorspanveer niet in de krachtlus van de aandrijving, terwijl dit in de andere richting wel het geval is, hetgeen de overbrenging in dit geval een lage stijfheid geeft. Dit betekent bovendien dat er aandrijfenergie in de voorspanveer zal worden opgeslagen.

2.2.1.2. Vertanding

De vertanding op de beide tandriemen heeft een tand-tot-tand afstand van ongeveer 2 [mm], die bij een normale bewegingsnelheid van $4 \times 10^{-1} \text{[m/s]}$ van de printkop een frequentie zal genereren van $2 \times 10^3 \text{[Hz]}$. Deze frequentie is terug te vinden in versnellingsmetingen bij beweging van de printkop, waarbij er ook boventonen zichtbaar zijn. Deze zijn waarschijnlijk het gevolg van het feit dat de tandriem over twee pulleys loopt, waarbij er per tand verplaatsing steeds twee tanden een pulley op gaan en twee tanden de pulley verlaten. De boventonen zullen dan ook afhankelijk zijn van de hoekafstand tussen de in- en uitlopende tanden. De trillingen als gevolg van de vertanding hebben echter een zeer lage amplitude, zodat ze geen nadelige invloed kunnen hebben op de nauwkeurigheid van de positionering van de printkop. Bovendien hebben ze een frequentie die ver boven de beoogde regelbandbreedte valt, zodat ze niet door de regelaar zullen worden onderdrukt.

2.2.2. De aandrijfmotor

De beweging van de printkop wordt met behulp van een stappenmotor gerealiseerd. Een stappenmotor kan nauwkeurig stappen maken van een vaste grootte, zonder dat hiervoor ingewikkelde en relatief dure regelsystemen nodig zijn. De aanwezige stappenmotor heeft volgens zijn specificaties een nauwkeurigheid van 0,72 graden per
stap. Per volledige omwenteling van de motor worden er dus \(\frac{360}{0,72} = 500 \) stappen gemaakt. De rotatie van de beweging wordt via de twee beschreven aandrijfsnaren vertaald in een translaterende beweging voor de printkop. Per volledige omwenteling van de motor voert de printkop een translatie uit van ongeveer 50 [mm]. Hiermee wordt de theoretische nauwkeurigheid waarmee de stappenmotor de printkop kan positioneren 10 stappen per [mm], ofwel ongeveer 250 [DPI].

Wat opvalt is dat deze resolutie lager ligt, dan de resolutie waarmee de plotter volgens zijn specificaties kan afdrukken, namelijk 360 [DPI]. Dit is waarschijnlijk een economische keuze. Het probleem van de beperkte nauwkeurigheid van standaard – en dus goedkope – stappenmotoren kan namelijk eenvoudig worden gereduceerd. Op twee mogelijke methoden zal nu kort worden ingegaan: microstepping-technieken en het gebruiken van een tweede, nauwkeurigere positiemeting.

2.2.2.1. Microstepping

Microstepping is een techniek die in principe een normale stappenmotor op een speciale manier aanstuurt. Aangezien enige kennis van de werking van stappenmotoren van pas zal komen om de werking van *microstepping* te kunnen begrijpen, zal in Appendix 2 nader worden ingegaan op de werking van de stappenmotor.

Normaal gesproken kan een stappenmotor – zoals zijn naam al zegt – slechts stappen van een vooraf vastgelegde grootte maken en kan zich dus maar op een beperkt aantal hoekposities bevinden. Bij gebruikmaking van *microstepping* technieken is het echter mogelijk om de stappen nog in een aantal kleinere stappen onder te verdelen. Dit laatste wordt bij microstepping gerealiseerd door het variëren van de amplitudes van de signalen die naar elk spoelenpaar worden gestuurd. Hierdoor worden de magnetische velden in de stator ongelijk van grootte en kunnen de voorkeursposities van de stappenmotor in principe overal liggen – grofweg afhankelijk van de verhouding in amplitude van de signalen. Een nadeel hiervan is wel, dat er een *driver-chip* nodig is, die veel ingewikkelder en dus duurder is dan in het geval zonder *microstepping*. Bovendien gaan nu niet lineaire effecten – zoals wrijving zowel in de motor als in de last – een veel grotere rol spelen, die de haalbaarheid van hogere nauwkeurigheid verminderen. Bij het plottersysteem, waarbij een aanzienlijke hoeveelheid wrijving in de beweging van de printkop aanwezig is, zal *microstepping* daarom waarschijnlijk niet bijzonder geschikt zijn.

2.2.2.2. Een nauwkeurige meetliniaal

Een andere methode die kan worden gebruikt om de lage positienauwkeurigheid van de stappenmotor te compenseren, is het gebruiken van een afzonderlijke meetliniaal, die wel over de benodigde nauwkeurigheid beschikt. Deze kan redelijk eenvoudig en daarmee goedkoop worden uitgevoerd, aangezien een absolute positiemeting niet noodzakelijk is. Bij een plotter of printer kan de lineaal zo worden gemonteerd dat direct de positie van de printkop kan worden gemeten; de plaats die uiteindelijk van belang is voor het spuiten van de inkt. Met behulp van de stappenmotor wordt de printkop met een zo constant mogelijke snelheid voortbewogen over het te bedrukken gebied, terwijl in de printkop afhankelijk van een nauwkeurige meting wordt bepaald wanneer de druppel inkt moet worden gespoten.

Een nadeel van deze methode is echter, dat er redelijk hoge eisen moeten worden gesteld aan de lineaal. Indien er een zweving zit in de verdeling van de stapmarkeringen, is dit direct op de print zichtbaar. Door het constante repeteerbare karakter van deze zweving zou daar in de software echter voor kunnen worden gecompenseerd.
Aangezien deze methode bovendien eenvoudiger (en dus goedkoper) is in uitvoering en bovendien veel directer is – de positiemeting gebeurt op de plaats waar die van belang is – dan de eerder beschreven methode met microstepping, wordt deze in printers en plotters vrijwel altijd toegepast. Zo ook in dit geval.

2.2.3. Defecte schakelaar

Een onderdeel dat de werking van de plotter in eerste instantie daadwerkelijk heeft belemmerd is een defecte micro-switch. Bij het initialiseren van de plotter en bij het opnieuw inleggen van papier neemt de printkop het uiteinde van een soort rolmaat mee heen en weer over het translatiebed. Het doel hiervan, is om te voorkomen dat een niet netjes afgesneden papierrol vast zal lopen door deze vlak te drukken. Echter, vlak voor de ‘rolmaat’ bevindt zich een klein schakelaartje, dat aangeeft of de rolmaat geheel opgerold is. Deze schakelaar bleek defect, hetgeen storingen van de plotter tijdens de genoemde initialisatiefases opleverde, waardoor de plotter niet kon functioneren. De schakelaar is door een standaard micro-switch vervangen, waarna de initialisaties weer normaal konden verlopen.
3. Technische aanpassingen

Om de in hoofdstuk 1 beschreven doelen te kunnen realiseren, is er een aantal technische aanpassingen nodig aan de plotter. Deze zullen aan het begin van dit hoofdstuk opgesomd worden, waarna in paragraaf 3.2 zal worden ingegaan op de praktische uitvoering ervan.

3.1. Inventarisatie

3.1.1. De motor
Om de dynamische eigenschappen te kunnen achterhalen, zal het nodig zijn om de printkop naar eigen beloefen te kunnen bewegen. In de huidige toestand wordt in de aandrijving voorzien door een stappenmotor. Door het ontbreken van elektrische schema's van de elektronica in de plotter is deze erg moeilijk zelf te regelen. Het zal daarom nodig zijn om deze te vervangen door een motor die wel eenvoudig kan worden geregeld. In dit geval een DC-motor.

3.1.2. Positiemeting
Aangezien de plotter zelf ook de positie van de printkop meet, zal de eenvoudigste methode zijn, om de signalen voor de positiemeting af te tapen van de reeds in de plotter aanwezige meteisignalen. Omdat een eventuele regelaar zal gaan draaien op een dSpace-systeem, zal dit signaal hiervoor geschikt moeten zijn, of worden gemaakt.

3.1.3. Versnellingsmeting
Om een indruk te krijgen van de in een systeem optredende trillingen, is een versnellingsopnemer een geschikte kandidaat. Deze kan eenvoudig op de printkop worden bevestigd en kan worden uitgelezen via SigLab4 en eventueel zelfs dSpace. Aangezien niet alleen de printkop, maar de gehele plotter bij beweging van de printkop zal gaan bewegen, zullen er twee opnemers nodig zijn: één op de printkop en één op de plotter-kast.

3.1.4. Referentiepositie
Voor een regelaar is een referentie nodig: een traject dat hij (zo nauwkeurig mogelijk) moet volgen. Dit traject kan voor testdoeleinden zelf worden gegenereerd, maar om de regelaar te kunnen gebruiken om daadwerkelijk een plot te maken, zal kennis van de positie – zoals de plotter die zou willen zien – nodig zijn. Het stuursignaal van de plotter naar de stappenmotor kan hierin wellicht voorzien.

3.2. Uitvoering

3.2.1. Vervanging van de stappenmotor
Aangezien zoals gezegd het aansturen van een stappenmotor een specifieke driverchip vereist en bovendien wat regelingen betreft vrij beperkt is, is ervoor gekozen de stappenmotor op de plotter te vervangen door een DC-motor met bijbehorende servo. De stappenmotor kan eenvoudig worden gedemonteerd, en een andere 24-volt DC-motor blijkt eenvoudig aan te passen, zodat deze kan worden ingebouwd. Hiertoe hoeft naast een klein montage-plaatje alleen nog een kleine metalen bus te worden
vervaardigd. Op deze bus kan het tandwiel worden overgezet, waarover de tandriem loopt, aangezien de motor-as te glad is en niet de juiste diameter heeft.

Na overzetting van het tandwiel op de vervaardigde bus, blijkt dat het gat in deze bus in geringe mate excentrisch is. Hierdoor zal de arm waarmee het motorkoppelt wordt overgedragen aan de tandriem periodiek gaan fluctueren, hetgeen nadelig zal zijn voor de te behalen resultaten (zie paragraaf 4.6). Gezien de tijd en de grote kans op eveneens een excentriciteit in een nieuwe bus is er besloten deze excentriciteit voor lief te nemen.

3.2.2. De positiemeting

Zoals genoemd in paragraaf 2.2.2.2 maakt de bestaande regeling op de plotter hoogstwaarschijnlijk gebruik van een eigen positiemeting. Indien dit het geval is, zou dit signaal wellicht kunnen worden afgetaapt en worden aangesloten op dSpace. Na enig onderzoek aan de plotter blijkt zich in de printkop een klein element te bevinden, bestaande uit een tweetal evenwijdige bussen, die schuiven over een metalen snaar. Aan het element zijn een viertal draden bevestigd. De snaar is verend opgehangen aan de twee zijden van de geleiding van de printkop, maar verder nergens met draden aan verbonden. Deze snaarsensor is vereenvoudigd weergegeven in Figuur 3-1.

![Figuur 3-1: De snaarsensor, waarbij de boutjes dienen ter bevestiging aan de printkop. De snaar wordt gebruikt om (incrementeel) de positie van de printkop te bepalen.](image)

Op welk principe de positiemeting door het beschreven systeem berust is niet helemaal duidelijk. Aangezien de snaar nergens geleidend mee is verbonden valt een weerstandsmeting af. Verder zijn op de snaar geen fysieke onregelmatigheden met het blote oog zichtbaar, waarop een metrologisch principe gebaseerd kan zijn. Een mogelijk werkingsprincipe is gebaseerd op wisselingen van magnetische polariteit in de snaar. Deze wisselingen zouden echter zo klein zijn, dat ze niet zomaar te meten zijn. Zonder destructieve methoden van onderzoek te gebruiken, i.e. demagnetisatie van de snaar, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten. Zonder directe inzage in de constructie van de printkop, is het daarom zeer moeilijk om de waarden van de printkop te weten.
pulsen te genereren. Dit is gemeten door te bekijken hoeveel stappen dSpace ziet, wanneer de printkop (langzaam) over een bekende afstand wordt verschoven. Dit komt neer op een meetresolutie van ongeveer $1,4 \times 10^3$ [DPI]. Aangezien de plotter volgens zijn specificaties kan plotten met 360 [DPI], ligt het voor de hand dat deze resolutie daar in werkelijkheid een veelvoud van is. In het vervolg van dit verslag zal er daarom vanuit worden gegaan dat de resolutie 1440 [DPI] bedraagt.

3.2.2.1. Geïnverteerde signalen
In eerste instantie blijkt de snaar-encoder zonder problemen de positieverandering van de printkop te kunnen waarnemen en op de computer zichtbaar te maken. Het systeem blijkt echter bij hogere snelheden van de printkop niet meer te werken: de positieveranderingen worden dan niet meer waargenomen en het lijkt voor de computer alsof de printkop stil staat.
Na enig onderzoek (zie Appendix 3-A) blijkt dit het gevolg te zijn van het niet aan- sluiten van ge'inverteerde signalen op de encoder-ingang van dSpace. Deze ge'inverteerde signalen zijn niet beschikbaar, maar het probleem kan worden opgelost door niet 0, maar 2,5 [V] aan de ge'inverteerde encoder-ingang van dSpace te leggen.

3.2.3. De referentiepositie
Om uiteindelijk een regelaar te kunnen implementeren, waarmee ook daadwerkelijk een plot kan worden gemaakt, is het noodzakelijk te weten naar welke positie de plotter wil dat zijn printkop zich moet begeven. Deze positie wordt door de software in de plotter gegenereerd, en vermoedelijk via een soort encoder-signalen) doorgegeven aan de hardware. De driver-chip voor de stappenmotor zet vervolgens dit signaal om in de rotorstroomen voor de verschillende spoelenparen in de stappenmotor – zie Appendix 2 en paragraaf 2.2.2.1.
Metingen aan de elektronica in de plotter bevestigen het vermoeden (zie Appendix 3-B), waardoor eenvoudig een signaal kan worden afgetapt en aangesloten op dSpace, dat de gezocht positie-informatie bevat.
Na verder onderzoek (zie Appendix 6) blijkt dat de resolutie van de aansturing van de stappenmotor ongeveer 101 [DPI] bedraagt. Dit stemt niet overeen met de in paragraaf 2.2.2 afgeleide resolutie van de stappenmotor. Ook zijn dit geen gehele veelvouden van elkaar. Ook navraag bij Océ kan geen verheldering bieden
4. Dynamische eigenschappen

Naast een mechanische beschouwing van het plotter-systeem zal er nu met het oog op het regelaar-ontwerp in hoofdstuk 5 worden ingegaan op een aantal dynamische aspecten van het translatiebed met printkop. Dit dynamisch systeem bestaat eenvoudigweg uit:
- een motor,
- de riemoverbrenging
- de op een geleiding bewegende printkop.

4.1. Werkwijze

Aan de hand van de genoemde componenten van het systeem van de printkop kan er een eenvoudig systeemmodel worden opgesteld. Aangezien wrijving een grote rol speelt in het systeem, zal dit eerst duidelijk in kaart gebracht worden. Door het niet-lineaire karakter hiervan zal dit echter niet volledig geparameteriseerd kunnen worden.

Verder zal er met behulp van inspuiting van witte ruis, een overdrachtsfunctie worden gemeten van het regelsignaal naar de positie van de printkop, die kan worden vergeleken met de gemodelleerde overdracht.

4.2. Modelvorming

Een eenvoudig model voor het beschreven systeem kan worden voorgesteld zoals in Figuur 4-1. De printkop (massa M_{pk}) ondervindt een wrijvingskracht F_w ten opzichte van zijn geleiding op het translatiebed (massa M_b) en wordt via een tandriem (gemodelleerd als een veer met stijfheid k_r) aangedreven door de elektromotor. Dit is een dynamisch systeem op zichzelf, dat in de volgende paragraaf nader zal worden toegelicht.

De kracht van de motor wordt afgezet op het translatiebed en de printkop kan zonder voorkeursstand bewegen over de geleiding, slechts beperkt door de wrijving die daarbij optreedt. De geleiding wordt verondersteld te zijn verbonden met de vaste wereld door middel van de draagconstructie; hier eenvoudig weergegeven door de veer k_{dc} en de demper b_{dc}.

Figuur 4-1: Model van het systeem, waarbij het motorkoppel op de aandrijfriem is voorgesteld als een kracht (F_{motor}) aangrijpend op een veer (k_r) verbonden met de printkop. De printkop wordt gezien als een massa met een wrijving F_w t.o.v. het translatiebed – voorgesteld door een massa M_b. Dit bed is op zijn beurt aan de vaste wereld verbonden middels de draagconstructie, hier geregiseerd door een veer met stijfheid k_{dc} en een demper b_{dc}.

In de volgende paragrafen zullen een aantal onderdelen nog een keer nader worden bekeken en verdere vereenvoudigingen beargumenteerd.
4.2.1. De motor

Elektromotoren wekken een koppel op, dat evenredig is met de stroom die door de rotorwindingen loopt:

\[T = C_m I_r \text{, waarbij } C_m \text{ een motorafhankelijke constante} \quad (\text{Vgl. 4.1}) \]

De rotorstroom \(I_r \) wordt in het geval van de plotter geregeld door een servoregelaar. Deze zet een ingaande spanning om in een uitgaande stroom, waarmee het opgewekte koppel direct bepaald wordt door het stuursignaal \(u \), dat naar de D/A uitgang van dSpace wordt gestuurd. De geleverde stroom wordt echter door de servoregelaar be grensd op 6 [A], zodat ook het maximale motorkoppel begrensd is.

Indien voor \(I_r \) de lineaire afhankelijkheid van het regelsignaal \(u \) wordt ingevuld, geldt voor het motorkoppel:

\[T = C_m I_r C_r u = C_r u \text{, waarbij de omzetverhouding } C_r = \frac{I_r}{u} = \frac{A}{V} \text{ en } C_r = C_m C_r \quad (\text{Vgl. 4.2}) \]

Het koppel dat de motor op deze wijze opwekt, verschijnt echter niet geheel aan de uitgaande as: een gedeelte ervan zal nodig zijn om de motor zelf te laten versnellen of vertragen. Indien de massastraagheid van de motor \(J_m \) wordt gesteld, geldt voor het opgenomen koppel in de motor:

\[T_o = J_m \dot{\omega} \quad (\text{Vgl. 4.4}) \]

Waarbij \(\dot{\omega} \) de hoekversnelling is van de motor-as. Eventuele wrijvingseffecten worden bij de modelvorming van de motor verwaarloosd, aangezien die ook deel uit maken van de wijving gemeten bij translatie over de geleiding. Het totale koppel, dat voor de aandrijving van de printkop beschikbaar is, wordt nu:

\[T_o = C_r u - J_m \dot{\omega} \quad (\text{Vgl. 4.5}) \]

4.2.2. De riemoverbrenging

Het koppel aan de uitgaande as van de motor wordt via een tweetal tandriemen (zie Figuur 2-2) omgezet in een kracht op de printkop. Uit experimentele gegevens blijkt dat de translatie van de printkop 50 [mm] per volledige omwenteling van de motoras bedraagt. Hiermee is de omzetverhouding van hoekverdraaiing naar translatie bekend:

\[I_{ht} = \frac{50 \cdot 10^{-3}}{2\pi} = 8,0 \cdot 10^{-3} \text{ [m]} \quad (\text{Vgl. 4.6}) \]

Wanneer \(\varphi \) de hoekverdraaiing van de motor-as in [rad] is, dan geldt voor de positie van de motor:

\[x_m = I_{ht} \varphi \quad (\text{Vgl. 4.7}) \]

De aandrijfsriem vormt in principe geen starre verbinding, maar kan als een veer met stijfheid \(k \), worden gemoodelleerd. In dit geval zal het model van het sub-systeem bestaande uit de motor, de aandrijfsriem en de printkop eruit zien zoals in Figuur 4-2. Voor het koppel-evenwicht in de motor geldt nu:

\[T = J_m \dot{\varphi}_m + R(x_{pk} - x_m)k_r \quad (\text{Vgl. 4.8}) \]
waarbij R de overbrengverhouding tussen hoekverdraaiing ϕ_m en positie x_m. Gezien de zeer geringe traagheid van de rotor ten opzichte van de printkop, kan de massa van de printkop beschouwd worden als een soort vaste wereld, waarmee de traagheid van de rotor via de riemstijfheid is verbonden. Voor de eigenfrequentie van dit massa-veer systeem geldt:

$$\omega_e = \sqrt{\frac{R k_r}{J_m}}. \quad (Vgl. 4.9)$$

Hetgeen met ruwe schattingen voor de parameters

$$R \approx 1 \cdot 10^3 [rad/m]$$

$$k_r = \frac{E A}{J_1} = 1 \cdot 10^5 [N/m],$$

$$J_m = 1 \cdot 10^{-3} [kg \cdot m^2]$$

neerkomt op $1 \cdot 10^5$ [rad/s]. De invloed van dit systeem op het te meten dynamisch gedrag van de plotter zal dus pas bij frequenties van deze ordegrootte merkbaar zijn; zeer ver boven de beoogde regelbandbreedte en daarmee niet interessant. De traagheid J_m van de rotor, alsnog de riemstijfheid k_r zullen daarom niet verder worden meegeno men, zodat het motorkoppel via een overbrengverhouding direct als kracht aan de printkop beschikbaar wordt geacht. Het verband tussen stuurspanning ($u [V]$) en motor-kracht $F_{motor} [N]$ wordt daarmee lineair met overbrengverhouding $C [N/V]$:

$$F_{motor} = Cu \quad (Vgl. 4.10)$$

4.2.3. De printkop

De printkop kan eenvoudig als een massa M_{pk} worden gemodelleerd, die een wrijving F_w ondervindt bij beweging over de geleiding, die afhankelijk is van zowel de relatieve positie (x_2-x_1) als de relatieve snelheid ($\dot{x}_2 - \dot{x}_1$). De massa wordt bovendien aangedreven door de motor met een kracht F_{motor}. Echter, deze kracht wordt ‘afgezet’ tegen het translatiebed, waar daarom een reactiekracht optreedt. Uit het krachtenevenwicht volgt nu:

$$M_{pk}\ddot{x}_2 - F_w (x_2 - x_1) - F_{motor} = 0 \quad (Vgl. 4.11)$$

4.2.4. De draagconstructie

Als laatste relevante onderdeel van het model is de draagconstructie van belang. Aangezien de constructie vrij slap oogt, is het interessant te weten of de stijfheid invloed heeft op de resultaten die met de plotter kunnen worden behaald. De draagconstructie
zal in het model worden meegenomen als een veer met stijfheid k_{dc}, die met de vaste wereld is verbonden.

De massa van de draagconstructie wordt niet specifiek meegenomen. De gecombineerde massa van het translatiebed en de draagconstructie wordt echter gemodelleerd met de massa M_b. Bij deze massa kan het volgende krachtenevenwicht worden opgesteld, waarbij F_{motor} de reactiekracht van de op de printkop uitgeoefende aandrijfkracht is:

$$M_b \ddot{x}_1 + k_{dc} x_1 + b_{dc} \dot{x}_1 + F_r (x_2 - x_1, \dot{x}_2 - \dot{x}_1) + F_{motor} = 0 \quad (Vgl. \ 4.12)$$

4.3. Vereenvoudigd model

Na de besproken vereenvoudigingen blijft het model zoals afgebeeld in Figuur 4-3 over. Dit kan nu voor een groot gedeelte in toestandsvorm worden geschreven. De wrijving F_w zal daar in gezien zijn niet-lineaire karakter echter niet passen. Deze zal daarom als tweede externe kracht worden meegenomen in de ingangsvector u. De aard van de wrijving zal nader worden onderzocht in paragraaf 4.6.

![Figuur 4-3: Het vereenvoudigde systeemmodel, waarbij de motordynamica en de riemoverbrenging zijn weggelaten.](image)

Indien voor de toestand wordt gekozen:

$$\bar{x} = \begin{bmatrix} x_1 \\ \dot{x}_1 \\ x_2 \\ \dot{x}_2 \end{bmatrix} \quad (Vgl. \ 4.13)$$

en voor de systeemingangen:

$$u = \begin{bmatrix} F_{motor} \\ F_w \end{bmatrix}, \quad (Vgl. \ 4.14)$$

met $F_w = F_r (x_2 - x_1, \dot{x}_2 - \dot{x}_1)$, dan kan het model in toestandsvorm als volgt worden genoteerd:

$$\dot{\bar{x}} = \bar{A} \bar{x} + \bar{B} u \quad (Vgl. \ 4.15)$$

Indien voor de toestand wordt gekozen:

$$\bar{x} = \begin{bmatrix} x_1 \\ \dot{x}_1 \\ x_2 \\ \dot{x}_2 \end{bmatrix} \quad (Vgl. \ 4.13)$$

en voor de systeemingangen:

$$u = \begin{bmatrix} F_{motor} \\ F_w \end{bmatrix}, \quad (Vgl. \ 4.14)$$

met $F_w = F_r (x_2 - x_1, \dot{x}_2 - \dot{x}_1)$, dan kan het model in toestandsvorm als volgt worden genoteerd:

$$\dot{\bar{x}} = \bar{A} \bar{x} + \bar{B} u \quad (Vgl. \ 4.15)$$
waarbij als uitgang de relatieve positie \((x_2 - x_1) \) van de printkop beschikbaar is:

\[
\vec{y} = C\vec{x} + Du = [-1 \ 0 \ 1 \ 0] \vec{x} + [0 \ 0] u
\]

\((Vgl. \ 4.16) \)

4.4. Modelbeschouwing

De enige koppeling tussen \(M_b \) en \(M_{pk} \) is de wrijving. Indien de wrijving even buiten beschouwing wordt gelaten, betekent dit dat de twee ontstane losse systemen eenvoudigweg door een even grote, maar tegengestelde kracht worden aangestoten. Echter, doordat de positie van \(M_{pk} \) wordt gemeten ten opzichte van het translatiebed komt toch de eigenfrequentie van het massa-veer-demper systeem – \(M_b, k_{dc}, b_{dc} \) – terug in de overdrachtsfunctie van \(F_{motor} \) naar \(y \). Indien zowel de demping ten opzichte van de vaste wereld \((b_{dc}) \) als de wrijving \(F_w \) nul worden verondersteld, dan geldt de volledig ongedempte overdrachtsfunctie in Figuur 4-4 (doorgetrokken lijn), bestaande uit een anti-resonantie gevolgd door een resonantie.

In geval van \(b_{dc} > 0 \), dan zullen beide pieken worden afgevlakt en krijgt de magnitude-plot tot de resonantiefrequentie een -1 helling in plaats van een -2 helling. Indien voor de wrijving \(F_w \) voor het gemak een demper (viskeuze wrijving) wordt genomen, dan wordt de resonantie nog verder afgevlakt en blijft de -1 helling nog verder dan de resonantiefrequentie doorlopen. In Figuur 4-4 zijn de Bode-diagrammen voor de beschreven gevallen weergegeven.

![Bode-diagrammen](image)

\(F_{w} = 0, b_{dc} = 0 \)
\(F_{w} = 0, b_{dc} > 0 \)
\(F_{w} > 0, b_{dc} = 0 \)
\(F_{w} > 0, b_{dc} > 0 \)

Figuur 4-4: Bode-diagrammen van het model. De doorgetrokken lijn geeft het ongedempte systeem weer, de gestippelde lijn is het systeem zonder wrijving tussen de printkop en het translatiebed, maar met demping in de draagconstructie. Bij de gestreepte lijn is bovendien als wrijving \(F_w \) viskeuze wrijving toegevoegd.

Echter, indien voor de in de figuur weergegeven situaties realistischere waarden worden genomen voor de massa’s, zullen de anti-resonantie en de resonantie veel dichter bij elkaar liggen. De verschillen tussen de verschillende genoemde situaties worden daardoor veel minder duidelijk. Het werkelijke systeem is echter flink gedempt door een grote wrijving \(F_w \), maar minder gedempt ten opzichte van de vaste wereld, dus een relatief lage \(b_{dc} \).
4.5. De dynamica vanuit een regeltechnisch oogpunt

Bij het regelen van het gemodelleerde systeem met een feedback regelaar is de eerste eis dat dit geregelde systeem stabiel is. Een puur massa-systeem is met een stabiele regelaar niet zomaar instabiel te maken, maar wellicht kunnen de gemodelleerde veren en dempers roet in het eten gooien.

In geheel ongedempte toestand beschikt het model laagfrequent over een -2 helling met de daarbij horende -180° fasedraaiing. Deze springt bij de resonantiefrequentie even terug naar 0°, om bij de hoogfrequente -2 helling in de magnitude weer op -180° te komen. Door deze fase zou het systeem met slechts een proportionele actie randstabil in het systeem zeker goed doen. Echter, in het systeem is een aanzienlijke hoeveelheid demping aanwezig, die laagfrequent de fase naar -90° trekt. Deze zorgt al voor veilige stabiliteit van het met een proportionele actie geregeld systeem, zodat een differentiërende actie niet direct noodzakelijk is.

Wat de resonantie betreft, kan worden opgemerkt dat de fasedraaiing die daar het gevolg van is nooit zomaar de stabiliteit zal kunnen verstoren; de fasedraaiing is immers positief en draait de lijn in een Nyquist-plot rechts weg van het punt -1. De magnitude van de resonantie is daarentegen niet zomaar verdwenen en zal zeker in het foutsignaal terug komen. Echter, door de grote demping in het systeem zal dit waarschijnlijk niet merkbaar zijn.

Bij het ontwerp van de plotter dient er uit oogpunt van de levensduur van de draagconstructie wel voor te worden gezorgd, dat de resonantie tijdens het plotten niet te veel wordt aangestoten, Voor de stijfheid van de constructie geldt daarom, dat deze ofwel zeer laag, ofwel zeer groot dient te zijn. Aangezien de laatste in de praktijk veel moeilijker te realiseren is, is de door de fabrikant gemaakte keuze voor een lage eigenfrequentie van de draagconstructie zeer begrijpelijk. Bovendien is deze resonantie in de praktijk goed gedempt, zodat het effect ervan op de plotkwaliteit zeer gering zal zijn.

4.6. Wrijving

De wrijving tussen de printkop en het translatiebed zal waarschijnlijk voor een groot gedeelte bestaan uit coulombse wrijving, maar zal ook een kleine viskeuze component hebben, als gevolg van o.a. geringe smering in glijlagers en pulleys. Aangezien de glijlagers van de printkop echter gevormd worden door twee star aan de printkop bevestigde bussen (zie Figuur 2-1), en deze daardoor beide 4 vrijheidsgraden vastleggen, is de geleiding statisch overbepaald. Als gevolg hiervan en van het feit dat de geleidingsbalk nooit helemaal recht zal zijn, zal de wrijving afhankelijk zijn van de positie op de balk.

4.6.1. Experimenten

Om de wrijving in kaart te kunnen brengen is er een aantal experimenten gedaan. Hierbij werd de printkop door middel van een eenvoudige PD-regelaar (zie paragraaf 5.1) in een gesloten lus geplaatst, zodat de printkop een gewenste referentietrajectorie kon volgen. Deze trajectorie bestond daarbij uit een heen- en weer gaande beweging met een instelbare, constante snelheid.

Door de printkop met een constante snelheid te laten bewegen, zullen de invloeden van de traagheden in het systeem zeer gering zijn. Er zal slechts een kracht opgewekt moeten worden die de wrijving opheft. Aangenomen wordt, dat de wrijving afhankt van de bewegingssnelheid (viskeuze wrijving). Om deze viskeuze component af te
kunnen schatten, zal de snelheid worden gevarieerd, gekozen tussen 50 [μm/s] en 1 [m/s].

4.6.2. Meetresultaten
De meetresultaten van de experimenten laten een aantal problemen zien. Zoals verwacht blijkt het benodigde stuursignaal sterk afhankelijk van de positie te zijn. Echter, dit is niet alleen het gevolg van de glijcontacten: de in paragraaf 3.2.1 genoemde excentriciteit heeft een duidelijke periodieke zweving tot gevolg, terwijl daarnaast nog duidelijk een hoger frequentie trilling op het signaal aanwezig is. In Figuur 4-6 zijn deze zwevingen zichtbaar.

Ondanks enig inzicht in de periodieke componenten in het benodigde motorkoppel laat de tijd-plot niets van plaatsafhankelijkheid zien. Om te achterhalen of de trillingen beide plaatsafhankelijk zijn is er in Figuur 4-7 een plot afgebeeld van het stuursignaal tegen de positie van de printkop op het translatiebed over een beperkt gedeelte van de bereikbare breedte. In de volgende paragrafen zal op een aantal kenmerken van deze grafiek worden ingegaan.

4.6.2.1. Excentriciteit
De laagfrequentie trilling in het foutsignaal (zie Figuur 4-7) blijkt een periode te hebben van 50 [mm], hetgeen exact overeen komt met de eerder gemeten translatie van de printkop per omwenteling van de motor. Deze trilling is daarmee zeer waarschijnlijk het gevolg van de excentriciteit van de motor-as in het tandwiel. Merk op, dat de pieken en dalen van de trilling bij de heen- en weer bewegingen in tegenfase zijn. Zoals gezegd verandert de lengte van de arm waarmee het motorkoppel in kracht omgezet. Indien een korte arm zich aan de ene zijde van het tandwiel bevindt, dan bevindt zich de lange arm aan de andere kant. Aangezien de tandriem slechts trekspanning kan overbrengen, zal bij beweging in de ene richting de korte arm gebruikt worden, terwijl in de andere richting de lange arm het motorkoppel in kracht omzet.

![Diagram](image)
Figuur 4-6: Weergave van het benodigde regelsignaal als functie van de tijd [s], bij een beweging heen en terug over 1 [m] met een snelheid van 0,25 [m/s]. Bovenop een duidelijk herkenbare lagafrequente trilling is er nog een tweede, hoger frequentie trilling aanwezig.

Figuur 4-7: Om de positie-affankelijkheid van de wrijving in kaart te brengen is in deze plot de absolute stuurspanning geplot tegen de positie van de printkop. Om de plot duidelijker te maken is er slechts een gedeelte van het afgelegde traject afgebeeld.
Het effect van excentriciteit in de aandrijfas leidt echter niet tot een sinusvormige fluctuatie. Indien, zoals afgebeeld in Figuur 4-5 de excentriciteit \(r_e \) [m] bedraagt op een as met straal \(R \) [m], dan kan als volgt de afstand \(D \) [m] van dit excentrische punt tot de cirkelboog als functie van de hoek \(\theta \) [rad] worden bepaald:

\[
\begin{align*}
 y(\theta) &= \sqrt{R^2 - x(\theta)^2} \\
 x(\theta) &= R \cos(\theta) \\
 D(\theta) &= \sqrt{(x - r_e)^2 + \left(\sqrt{R^2 - x^2(\theta)}\right)^2} \\
 &= \sqrt{r_e^2 + R^2 - 2r_eR \cos(\theta)}
\end{align*}
\]

waarbij bovendien geldt dat

\[D(\theta) = D\left(x_2 \cdot \frac{\pi}{50 \cdot 10^{-3}}\right) \]

(Vgl. 4.17)

(Vgl. 4.18)

In een experimentercropstelling is het in principe mogelijk om voor een dergelijke excentriciteit te compenseren, d.m.v. een geschikt feedforward signaal in een regelaar. Ondanks dat compensatie voor variabele constructiefouten in een commercieel product vrijwel onmogelijk en wellicht zelfs onwenselijk, zal in paragraaf 4.6.3 toch deze zweving zo goed mogelijk worden geparameteriseerd, om zo de werkelijke plaatsafhankelijke wrijving in het systeem in kaart te kunnen brengen.

4.6.2.2. Cogging

Eveneens zichtbaar in Figuur 4-7, is het feit dat ook de hoger frequente trilling plaatsafhankelijk is. Bij twee achtereenvolgende bewegingen in dezelfde richting blijken de trillingen vrijwel identiek te zijn; zowel in fase als in amplitude. De periode van een trilling is ruwweg \(4 \cdot 10^{-3} \) [m], hetgeen ongeveer het dubbele is van de afstand tussen de tanden van de aandrijfsnaren (zie paragraaf 2.2.1). In eerste instantie lijkt hierin dan ook de oorzaak van de trilling te liggen. Echter, de reden van deze verdubbeling is niet duidelijk. Ook het laten bewegen van de printkop met een zeer lage snelheid – hetgeen de trilling duidelijker zichtbaar maakt – biedt geen extra inzicht.

Een tweede mogelijkheid, is dat de trilling het gevolg is van een periodieke fluctuatie in het door de spoelen in de DC-motor opgewekte koppel – beter bekend als cogging. Bij nader inzien blijkt de periode van de trilling \((x_{eff}) \) precies gelijk te zijn aan een twaalfde van de afstand afgelegd door de printkop per omwenteling van de motoras (zie paragraaf 2.2.1):

\[x_{eff} = \frac{50 \cdot 10^{-3}}{12} = 4,167 \cdot 10^{-3} \text{ [m]} \]

(Vgl. 4.19)

hetgeen afwijkt van de \(2 \times 2 = 4 \) [mm] van de vertanding. Het ligt daarom voor de hand om de oorzaak niet bij de vertanding, maar in de motor zelf te leggen. Aangezien de motor echter niet de originele motor is, heeft het weinig zin verder op de mogelijke gevolgen van deze verstoring in te gaan.

In de praktijk heeft het bovendien weinig zin voor de trilling te compenseren in een regelaar. Bij eventueel onderhoud aan de plotter, waarbij iets aan de motor of de tandwielen verandert, zal waarschijnlijk toch de fase of amplitude van de trilling veranderen, waardoor de compensatie niet meer zal werken.

4.6.2.3. Richtingsafhankelijkheid

Tenslotte kan nog worden opgemerkt, dat het stuursignaal naar de motor verschillend van amplitude is bij verschillende bewegingsrichtingen. Dit kan onder andere worden
geweten aan een niet geheel symmetrische servo-regelaar, aan slijtage aan de (tweedehands) elektromotor, of aan een richtingsafhankelijkheid in de wrijving van de printkop.

4.6.3. Wrijvingsmodel

Nu er wat meer bekend is over de samenstelling van de krachten die zorgen voor het benodigde motorkoppel om de printkop met een constante snelheid te laten bewegen, zal geprobeerd worden een eenvoudig wrijvingsmodel te vinden. Daarbij zal worden getracht een beschrijving te vinden voor de wrijvingskracht $F_{w}(x_{pk},\dot{x}_{pk})$, waarbij

$$x_{pk} = x_2 - x_1$$

Vgl. 4.20

de de relatieve positie van de printkop ten opzichte van het translatiebed. Omgerekend naar benodigd motorkoppel bij constante snelheid wordt de volgende beschrijving voorgesteld:

$$u = \frac{T_m(x_{pk},\dot{x}_{pk})}{C_m} = \frac{D(x_{pk})F_{w}(x_{pk},\dot{x}_{pk})}{C_m}$$

Vgl. 4.21

waarbij u het benodigde regelsignaal, T_m het motorkoppel en D de arm van de kracht, zoals afgeleid in vgl. 4.15. De hoger frequentie trilling zoals beschreven in paragraaf 4.6.2.2 wordt genegeerd. Voor de nog onbekende parameters in $D(x_{pk})$ zijn met behulp van een fit-methode op de meetdata, waarbij de amplitude van de trilling werd geminimaliseerd, de waarden zoals genoteerd in Tabel 4-1 gevonden.

<table>
<thead>
<tr>
<th>R</th>
<th>r_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.55 \cdot 10^{-3}$</td>
<td>$6.93 \cdot 10^{-3}$</td>
</tr>
</tbody>
</table>

Tabel 4-1: Parameterwaarden voor de straal van het tandwiel op de motor, ofwel de arm waarmee het motorkoppel [Nm] wordt omgezet in kracht [N].

Nadat de armlengte D uit het regelsignaal weg is gedeeld en de trilling beschreven in paragraaf 4.6.2.2 uit het regelsignaal weg is gefilterd, blijft een wrijvingskracht – als functie van de onbekend motorconstante C_m – over: $F_{w}(x_{pk},\dot{x}_{pk})$. Ondanks dat er nog steeds een residu van de periodieke trillingen aanwezig is, zal worden aangenomen dat het gevolg is van zowel positie- als snelheidsafhankelijke wrijving in de geleding. Deze zal nu als volgt worden voorgesteld:

$$F_{w}(x_{pk},\dot{x}_{pk}) = G(\dot{x}_{pk}) \cdot H(x_{pk})$$

Vgl. 4.22

De wrijving wordt hierbij opgesplitst in een snelheidsafhankelijk gedeelte (G [N]) en een positieafhankelijk gedeelte (H [-]). Voor het positieafhankelijke gedeelte zal een op 1 genormaliseerde versie van F_{w} worden gebruikt, afgebeeld in Figuur 4-9. Hier is zichtbaar, dat de wrijving aanzienlijk meer dan 16% - varieert over de positie. Nu de positieafhankelijke functie H bekend is, kan de snelheidsafhankelijke wrijvingscomponent $G(\dot{x}_{pk})$ worden berekend door het bij elke bewegingssnelheid gemeten stuursignaal te ontdeken van positieafhankelijkheden. In Figuur 4-8 is de gevonden snelheidsafhankelijkheid weergegeven, die afgezet van de geringe richtingsafhankelijkheid vrij goed blijkt te kunnen worden weergegeven als een combinatie van coulombse en viskeuze wrijving:

$$G(\dot{x}_{pk}) = \text{sign}(\dot{x}_{pk}) + v\dot{x}_{pk}$$

Vgl. 4.23

21
waarbij \(\gamma \) en \(\nu \) respectievelijk de coefficients voor de coulombse en viskeuze wrijving voorstellen, die kunnen worden geschat op \(\nu = 3,2 \) [Nsm\(^{-1}\)] en \(\gamma = 25,2 \) [N].

Figuur 4-9: Positieafhankelijkheid in de wrijving, waaruit de trillingen zoals beschreven in 4.6.2.1 en 4.6.2.2 grotendeels zijn verwijderd. De functie is op 1 genormaliseerd en geeft daarmee de relatieve wrijving (ten opzichte van de positie met maximale wrijving) weer als functie van de positie.

Figuur 4-8: Snelheidsafhankelijke wrijving. Ook is de richtingsafhankelijkheid zichtbaar uit de scheve symmetrie tussen positieve en negatieve snelheden.
4.7. Frequentieresponsie

Een goede methode om een model te valideren, is door frequentieresponsies van het werkelijke systeem te meten en te vergelijken met de door het model opgeworpen verwachtingen. In de komende paragrafen zal op de meting van deze frequentieresponsie worden ingegaan en zullen de gevonden resultaten worden besproken.

4.7.1. Experiment

Het meten van de frequentieresponsie van het printkop-translatie-systeem is gedaan met behulp van band-gelimiteerde witte ruis. Deze methode is echter weinig informatief voor niet-lineaire systemen; de grote hoeveelheid aanwezige wrijving zal daarom een sterk negatieve invloed op de kwaliteit van de metingen hebben. Om de niet-lineaire eigenschappen van de wrijving zoveel mogelijk buiten spel te laten, dient ervoor gezorgd te worden dat de bewegingsrichting van de printkop niet continu omkeert. Daarbij treedt het meest sterke niet-lineaire effect op: de coulombse wrijving. Dit kan worden voorkomen door de printkop een 'jog'-beweging te laten maken, d.w.z. door tijdens de meting de printkop een trajectorie met een constante snelheid te laten volgen. Dit kan echter alleen worden gerealiseerd door de printkop in gesloten lus te plaatsen. Hiertoe is de eenvoudige PD-regelaar uit paragraaf 5.1 gebruikt, waarbij \(P = 1000 \) en \(D = 5 \). Aan het door deze regelaar gegenereerde stuursignaal \(u \) wordt nu echter een door Siglab opgewekt ruisignaal toegevoegd. De frequentie-overdrachtsfunctie die nu meten kan worden tussen de door Siglab gegenereerde ruis, en het van ruis voorziene stuursignaal \(u \), is gelijk aan de sensitivity \(S \):

\[
S = \frac{1}{1 + CP} \tag{Vgl. 4.24}
\]

waarbij \(C \) de regelaar en \(P \) het translatiesysteem. Een *matlab-simulink*[^3]schema dat gebruikt is bij implementatie van de beschreven methode is afgebeeld in Figuur 4-10. Bij beschouwing van de *sensitivity*-functie \(S \), is duidelijk dat de enige onbekende hierin het systeem \(P \) is. Omschreven naar \(P \) geldt nu:

\[
P = \frac{1 - S}{SC}, \tag{Vgl. 4.25}
\]

zodat de frequentieresponsie van het systeem \(P \) eenvoudig kan worden berekend uit de gemeten *sensitivity*-functie \(S \). Het resultaat hiervan is afgebeeld in Figuur 4-11.

![Figuur 4-10: Simulink schema van het gesloten lus systeem. Als trajectory-generator is bij de in de tekst beschreven metingen de driehoek-golf generator gebruikt uit Appendix 5.](image-url)
Uit de lange –2 helling blijkt het systeem zich hoofdzakelijk als een massa-systeem te gedragen. Dit is zoals verwacht uit het opgestelde model. Het lijkt echter alsof er laag-frequent nog een resonantie optreedt, maar door de slechte coherentie van de metingen en het geringe aantal punten in dit gebied is hier niet veel van te zeggen. Pogingen om deze coherentie te verbeteren met andere instellingen van de regelaar en andere bandbreedtes van de ruis waren vruchteloos. Een mogelijke reden voor de lage coherentie is het laagfrequent aflopende karakter van de sensitivity-functie, waardoor de

![Figuur 4-11: De gemeten frequentieresponsie. De doorgetrokken lijn is gemeten met breed-bandige witte ruis, de gestippelde met laag frequentie ruis; beide bij gebruik van een PD-regelaar zonder demping (D=0). De gestreepte lijn is gemeten met breedbandige ruis en D=5. De –2 helling van een massa-systeem is duidelijk zichtbaar, maar laag-frequent is de coherentie van de metingen te slecht om iets te kunnen zeggen over een eventueel aanwezige resonantie of demping.](image)

frequentie-inhoud eenvoudigweg te gering wordt om mee te kunnen werken. Door de sensitivity-functie al veel eerder te laten oplopen zou dit kunnen worden verbeterd. Echter, om dit te bereiken dient de performance van de regelaar sterk te worden gereduceerd, waardoor de ‘jog’-beweging niet meer voldoende kan worden gevolgd, en de niet-lineaire wrijving een te grote rol gaat spelen.

De oplossing zal dus elders gezocht moeten worden; wellicht door niet de sensitivity-functie te meten, maar een andere overdracht, zoals bijvoorbeeld de process sensitivity P_s:

$$P_s = \frac{P}{1 + PC}$$

(Vgl. 4.26)

Deze zou kunnen worden gemeten uit de overdracht tussen y en r (zie Figuur 4-10). Die blijft bij dit systeem laag frequent veel groter dan de sensitivity-functie, maar valt hoog frequent juist sterk af (-2 helling). De hiertoe benodigde metingen zijn echter niet meer uitgevoerd.
5. Ontwerpen van een regelaar

Nu er zoveel mogelijk over de plotter en zijn werking bekend is en alle relevante aanpassingen aan gedaan zijn, kan er begonnen worden met het ontwerpen van een regelaar. In eerste instantie zal er eenvoudig worden begonnen met een PD-regelaar. Deze zal experimenteel worden getuned, waarbij zonodig nog extra filters aan de lus worden toegevoegd.

5.1. Eenvoudige PD-regelaar

Een PD-regelaar zoals die is ontworpen in Matlab-simulink™ (schematisch afgebeeld in figuur Figuur 5-1) en vervolgens is geïmplementeerd op het dSpace systeem, werkt op basis van een bekend fout-siginaal. Dit signaal dient te bestaan uit zowel een positie- als een snelheidsfout. Het via de regelwet

\[u(t) = P e(t) + D \dot{e}(t) \]

berekende stuursignaal \(u \) wordt vervolgens op de regel-uitgang gezet. Het foutsignaal wordt berekend uit het verschil tussen het referentiesignaal en de gemeten positie van de printkop en hun tijdsafgeleiden.

Figuur 5-1: Algemene vorm van de PD-regelaar zoals die in Matlab-simulink is ontworpen en in dSpace is geïmplementeerd. Zoals beschreven in de tekst kan het referentiesignaal op verschillende manieren ingevuld worden.

5.1.1. Referentiesignalen

Het referentiesignaal kan op twee manieren worden verkregen. Voor experimenteerdoeleinden kan het in het simulink-schema zelf worden gegenereerd. Hierbij is onder andere gebruik gemaakt van het simulink blok Ref3\(^2\), en van een driehoeksgolfgenerator zoals beschreven in Appendix 5. Echter, om de printkop te laten bewegen zoals de plotter dit voorschrijft, dient het referentie-siginaal te worden gebruikt, zoals dit verkregen wordt uit de plotter (zie paragraaf 3.2.3). Dit signaal komt in het simulink-schema binnen in een foutieve schaal. Om dit signaal te converteren naar incrementen, dient het te worden vermenigvuldigd met \(2^{23} [-]\). Aangezien de overige onderdelen van het schema in [m] werken, dient deze incrementevaarde vervolgens te worden omgeschaald naar [m]. Uitgaande van een resolutie van 101 [DPI] (zie paragraaf 3.2.3), is deze tweede schaalfactor gelijk aan \(2,5 \cdot 10^{-4} [\text{m per increment}]\).

5.1.2. Optimaal instellen van de regelaar

Nu de PD-regelaar op het dSpace\(^5\) control board draait, kan deze via het programma Control Desk \(^6\) eenvoudig worden ingesteld. Om later de printkop de door de plotter opgegeven trajectorie zo goed mogelijk te kunnen laten volgen dienen de waarden voor P en D worden gevonden, waarbij de positiefout zo klein mogelijk wordt. Zoals eerder beschreven in paragraaf 4.5 zijn hier theoretisch geen duidelijke grenzen. Deze
komen echter wel voor in de praktijk, waar bijvoorbeeld de maximale stuurspannngen begrensd zijn, en er met discrete gekwantiseerde signalen wordt gewerkt.

Het zgn. 'tunen' is gedaan met behulp van een experiment. Met de in Appendix 5 beschreven traeject-generatie methode is een heen- en weer gaande beweging gegenereerd. Terwijl de regelaar draaide is vervolgens de P-actie van de regelaar geleidelijk aan opgevoerd, totdat de positiefout niet meer kleiner werd. Daarna is hetzelfde gedaan met de D-actie. Hierbij treedt echter al vrij snel een ruis-achtige component op de voorgrond (kwantisatieruis), veroorzaakt door het differentiëren van het gekwantiseerde positiesignaal. Door deze differentiatiatie wordt de stappgroote van kwantisatie vermenigvuldigd met de sample-frequentie. Voor een samplefrequentie van 1 [KHz] betekent dit, dat terwijl de positie (1440 [DPI]) stappen maakt van 17,6 [μm], de snelheid stappen maakt van meer dan 17 [mm s⁻¹], overeenkomend met bijna 2% van de maximaal te halen snelheid, waardoor de differentiërende component van het regelsignaal er al snel niet meer glad uitziet.

Uiteindelijk is er met een PD-regelaar, waarbij P=1500 en D=5 het beste resultaat gehaald: een volgfout van 1·10⁻⁶ [m]. Deze afwijking is hoofdzakelijk te wijten aan de grote wrijving: het toevoegen van een geschikt feedforward signaal zou daarin wellicht verbetering kunnen brengen, maar dit is niet verder uitgediept. In Figuur 5-2 is in een Nyquist-plot van de kringversterking te zien, dat er redelijke stabiliteitsmarges aanwezig zijn. Echter, de fase-marge houdt niet over en zou gebaat zijn bij een grotere differentiële actie. Door de eerder genoemde versterking van de stappen in de positie bij differentiatiatie naar de snelheid levert dit echter geen positieve bijdrage aan de plotbeweging.

\[\text{Nyquist-plot van de loopgain.} \]

\[\text{Zoals te zien is, is de amplitude marge ruim voldoende. De fase marge houdt echter niet over.} \]

5.1.3. Gebruiken van de referentiepositie uit de plotter

Eén van de doelen van deze stage, was om de plotter zelf een plot te laten maken terwijl een zelf ontworpen regelaar de printkop aanstuurd. Hiervoor zijn nu alle benodigde componenten aanwezig: er is een werkende regelaar en er is een referentiesignaal vanuit de plotter beschikbaar. Helaas is er op dit punt nog een tweetal problemen opgedoken: de geschatte schaalfactor \(l_{\text{ref}} \) (zie Appendix 6) is niet voldoende nauwkeurig en de lage resolutie van de referentietrajectorie blijkt een te hoekig signaal op te leveren om te kunnen volgen.
Zoals beschreven in paragraaf 3.2.3 is het referentiesignaal niet van gelijke schaal als het positiesignaal. Er is experimenteel een omrekeningsfactor I_{res} vastgesteld, maar deze is verre van exact. Het gevolg is, dat wanneer het opgeschaalde referentiesignaal aan de regelaar wordt toegediend, de plotter tijdens zijn initialisatie procedure een fatale foutmelding geeft en er mee ophoudt. Door middel van trial and error is er geprobeerd een betere schatting van de schaalfactor I_{res} te verkrijgen, maar ondanks dat de plotter uiteindelijk zijn volledige initialisatie heeft kunnen doorlopen, is het niet gelukt de foutmelding te voorkomen.

Een tweede probleem dat succes in de weg heeft gestaan, is de lage nauwkeurigheid van de referentiepositie ten opzichte van de positiemeting. Het resultaat hiervan is een zeer hoekig referentietraject, waarbij in feite steeds zeer sterk dient te worden versneld om vervolgens weer kort stil te staan. Dit is een erg luidruchtige manier van bewegen! Met het invoegen van een laag-doorlaat filter op het referentiesignaal is dit aanzienlijk verminderd. Voor de kantelfrequentie is daarbij een compromis gezocht, waarbij het effect van de lage resolutie juist niet meer zichtbaar was, terwijl de (verre van vloeiende) referentietrajectorie nog voldoende nauwkeurig werd gevolgd. Hierbij was vooral de door het filter gegenereerde fase-achterstand problematisch, aangezien dit al snel een foutmelding van de plotter tot gevolg had. De orde van het filter diende daarom laag te blijven. Uiteindelijk bleek een 1° orde Butterworth filter met een kantelfrequentie van 15 [Hz] het best te voldoen.

Ondanks de oplossing van de beschreven problemen gaf de plotter aan het einde van zijn initialisatieprocedure consequent een foutmelding. Het is niet onwaarschijnlijk dat de reden daarvan niet direct met de regelaar verband houdt. Resultaat is echter, dat er geen plot is gemaakt met de zelf ontworpen regelaar.
6. Conclusies en aanbevelingen

Ter afsluiting kan worden opgemerkt dat de door de fabrikant van de plotter gemaakte ontwerpkeuzes voor het grootste gedeelte goed te verdedigen zijn. De enigszins slap aandoende draagconstructie en diens lage eigenfrequentie hebben waarschijnlijk weinig invloed op de printkwaliteit. Ook de keuze van een nauwkeurige meetliniaal voor het bepalen van de positie van de printkop in combinatie met een vrij grove stappenmotor is goed verdedigbaar.

Echter, wat betreft de door wrijving gedomineerde geleiding van de printkop zijn er nog veel verbeteringen mogelijk. Deze zullen direct leiden tot een energiezuiniger en minder luidruchtig systeem, waarbij wellicht een kleinere stappenmotor voor de aanrijving volstaat. Wat plotsnelheid betreft heeft het overigens weinig voordelen de geleiding te verbeteren, aangezien deze op dit moment beperkt wordt door de spuitmommen voor de inkt.

Verder bleek het implementeren van een regelaar op de printkop-translatie mogelijk, zij het dat het niet is gelukt de plotter een plot te laten maken met deze regelaar, onder andere als gevolg van schaalproblemen tussen de resoluties van meetliniaal en stappenmotor.

Om in de toekomst een betere en snellere plot te kunnen maken – aangenomen dat de inkt-spuitkoppen verbeterd kunnen worden – dient er vooral naar de geleiding van de printkop te worden gekeken. Door deze statisch bepaald te maken en eventueel rollend (i.p.v. glijdend) te maken kan het grootste gedeelte van de wrijving worden voorkomen. Om schranken over de geleiding te voorkomen zou er daarbij ook kunnen worden gelet op de positie van aangrijping van de aandrijfkracht.

Om zonder aan plotnauwkeurigheid in te boeten de plotter minder te laten schudden tijdens bedrijf, zou overwogen kunnen worden een balansmassa te gebruiken. Deze beweegt tegengesteld aan de printkop en reduceert zo (ideaal gezien) de netto kracht op de draagconstructie tot nul. Door de aanwezigheid van de aandrijfriem is de omgekeerde bewegingsrichting bovendien al aanwezig.
Appendix 1. Symbolenlijst

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Omschrijving</th>
<th>Grootheid</th>
<th>Eenheid</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,B,C,D</td>
<td>Toestandsmatrices</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>Totale conversiecoëfficiënt</td>
<td>-</td>
<td>[V/N]</td>
<td>Volt per Newton</td>
</tr>
<tr>
<td>C_m</td>
<td>Motorconstante</td>
<td>-</td>
<td>[Nm/A]</td>
<td>Koppel per Ampère</td>
</tr>
<tr>
<td>C_r</td>
<td>Servo-versterking</td>
<td>-</td>
<td>[A/V]</td>
<td>Ampère per Volt</td>
</tr>
<tr>
<td>C_t</td>
<td>Totale motorconstante</td>
<td>-</td>
<td>[Nm/V]</td>
<td>Koppel per Volt</td>
</tr>
<tr>
<td>D</td>
<td>Differentiërende regelactie</td>
<td>-</td>
<td>[V s/m]</td>
<td>Volt sec. per meter</td>
</tr>
<tr>
<td>$D(\theta)$</td>
<td>Afstand tot de cirkelboog</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>E</td>
<td>Positiefout</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>F_{motor}</td>
<td>Door de motor opgewekte kracht</td>
<td>Kracht</td>
<td>[N]</td>
<td>Newton</td>
</tr>
<tr>
<td>F_w</td>
<td>Wrijvingskracht</td>
<td>Kracht</td>
<td>[N]</td>
<td>Newton</td>
</tr>
<tr>
<td>G</td>
<td>Snelheidsafhankelijke wrijving</td>
<td>Kracht</td>
<td>[N]</td>
<td>Newton</td>
</tr>
<tr>
<td>H</td>
<td>Positieafhankelijke wrijving</td>
<td>Kracht</td>
<td>[N]</td>
<td>Newton</td>
</tr>
<tr>
<td>I_{ht}</td>
<td>Overbrengverhouding motor</td>
<td>Stroom</td>
<td>[A]</td>
<td>Ampère</td>
</tr>
<tr>
<td>I_r</td>
<td>Motorstroom</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I_{res}</td>
<td>Resolutieverhouding</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J_1</td>
<td>Massatraagheid van de motor</td>
<td>Traagheid</td>
<td>[Nm s2]</td>
<td>Koppel seconde2</td>
</tr>
<tr>
<td>k_{dc}</td>
<td>Stijfheid van de draagconstructie</td>
<td>Stijfheid</td>
<td>[N/m]</td>
<td>Newton per meter</td>
</tr>
<tr>
<td>k_r</td>
<td>Stijfheid van de aandrijfriem</td>
<td>Stijfheid</td>
<td>[N/m]</td>
<td>Newton per meter</td>
</tr>
<tr>
<td>M_b</td>
<td>Massa van het translatiebed</td>
<td>Massa</td>
<td>[Kg]</td>
<td>Kilogram</td>
</tr>
<tr>
<td>M_{pk}</td>
<td>Massa van de printkop</td>
<td>Massa</td>
<td>[Kg]</td>
<td>Kilogram</td>
</tr>
<tr>
<td>P</td>
<td>Overdrachtsfunctie $F_{motor} \rightarrow x_2$</td>
<td>-</td>
<td>[V/N]</td>
<td>meter per Newton</td>
</tr>
<tr>
<td>P_s</td>
<td>Proportionele regelactie</td>
<td>-</td>
<td>[V/m]</td>
<td>1 per Volt</td>
</tr>
<tr>
<td>R</td>
<td>Process sensitivity functie</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>R_f</td>
<td>Straal</td>
<td>Spanning</td>
<td>[V]</td>
<td>Volt</td>
</tr>
<tr>
<td>r_e</td>
<td>Excentriciteit</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>S</td>
<td>Sensitivity functie</td>
<td>-</td>
<td>[1/Vm]</td>
<td>1 per Volt meter</td>
</tr>
<tr>
<td>T</td>
<td>Motorkoppel</td>
<td>Koppel</td>
<td>[Nm]</td>
<td>Newton meter</td>
</tr>
<tr>
<td>T_o</td>
<td>In de motor opgenomen koppel</td>
<td>Koppel</td>
<td>[Nm]</td>
<td>Newton meter</td>
</tr>
<tr>
<td>T_s</td>
<td>Sampletijd</td>
<td>Tijd</td>
<td>[s]</td>
<td>seconde</td>
</tr>
<tr>
<td>U</td>
<td>Stuurspanning</td>
<td>Spanning</td>
<td>[V]</td>
<td>Volt</td>
</tr>
<tr>
<td>X</td>
<td>Trajectorie</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>$x(\theta)$</td>
<td>Afstand in x-richting</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>x_0</td>
<td>Nulpositie</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>x_1</td>
<td>Positie van M_b</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>x_2</td>
<td>Positie van M_{pk}</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>\dot{x}_1</td>
<td>Snelheid van M_b</td>
<td>Snelheid</td>
<td>[m/s]</td>
<td>meter per seconde</td>
</tr>
<tr>
<td>\dot{x}_2</td>
<td>Snelheid van M_{pk}</td>
<td>Snelheid</td>
<td>[m/s]</td>
<td>meter per seconde</td>
</tr>
<tr>
<td>\ddot{x}_1</td>
<td>Versnelling van M_b</td>
<td>Versnelling</td>
<td>[m/s2]</td>
<td>meter per seconde2</td>
</tr>
<tr>
<td>\ddot{x}_2</td>
<td>Versnelling van M_{pk}</td>
<td>Versnelling</td>
<td>[m/s2]</td>
<td>meter per seconde2</td>
</tr>
<tr>
<td>x_{pk}</td>
<td>Relatieve positie printkop</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>x_{0f}</td>
<td>Ruimtelijke trillingsperiode</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>x_m</td>
<td>Virtuele motorpositie</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>x_{ref}</td>
<td>Referentiepositie</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>x</td>
<td>Toestandsvector</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$y(\theta)$</td>
<td>Afstand in y-richting</td>
<td>Afstand</td>
<td>[m]</td>
<td>meter</td>
</tr>
<tr>
<td>Symbool</td>
<td>Omschrijving</td>
<td>Grootheid</td>
<td>Eenheid</td>
<td>Omschrijving</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Hoek</td>
<td>Hoek</td>
<td>[rad]</td>
<td>radialen</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Viskeuze wrijvingscoëfficiënt</td>
<td>-</td>
<td>[N s/m]</td>
<td>Newton sec. per meter</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Coulombse wrijvingscoëfficiënt</td>
<td>-</td>
<td>[N]</td>
<td>Newton</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Hoekversnelling van de motor</td>
<td>Versnelling</td>
<td>[m/s²]</td>
<td>meter per seconde²</td>
</tr>
</tbody>
</table>
Appendix 2. De stappenmotor

In een normale elektromotor wordt de kracht opgewekt door de afstotende elektromagnetische velden tussen de rotor en de stator. De stator kan hierbij een permanente magneet zijn, maar is over het algemeen een elektromagneet. De rotor bestaat uit een groot aantal draadwindingen, of spoelenparen, waardoor elektrische stroom doorheen wordt gestuurd. Aangezien deze zich in een magnetisch veld bevinden zal er een kracht op werken die de rotor laat roteren. De grootte van de hoekverandering die bij de rotatie optreedt is echter niet eenduidig bekend.

Om direct en bepaalde hoekverdraaiing te kunnen afdwingen, zonder gebruik te hoeven maken van een extra regeling bevat een stappenmotor over het algemeen permanente magneten met een groot aantal wisselingen van veldrichting, waarmee zijn voorkeursstanden worden vastgelegd. Dit is echter geen vereiste. Wel vraagt een stappenmotor meerdere rotorstromen, die verschillende sets van spoelenparen in de rotor kunnen bekrachtigen (zie fig. 1). Door het al dan niet bekrachtigen van deze wikkelingen kan een kracht worden opgewekt waarmee de rotor in een nieuwe voorkeurstand wordt gedwongen.

Afhankelijk van de interne opbouw, het aantal spoelenparen in de rotor en het aantal wisselingen van het magneetveld van de stator, wordt het aantal stappen per omwenteling bepaald.

Onder andere om de beweging vloeiend te laten verlopen wordt er niet direct een blok-vormig signaal aan de wikkelingen aangeboden. Door een driver-chip wordt uit een aangeboden encoder-signal een complex signaal gegenereerd, dat zodanig van vorm is dat de stappenmotor netjes stappen maakt. Daarbij wordt ook rekening gehouden met de optredende 'tegen-EMK' (tegenwerkende spanning opgewekt in de rotor door rotatie van lading in een magnetisch veld), zodat dit signaal er op een oscilloscoop erg rommelig uit ziet. Gezien zoals in fig. 1 komt het er op neer, dat de polen in de stator gaan roteren. Voor elke richting van de stator-polen zoekt de rotor weer een evenwichtspositie, waardoor de rotor in de tegengestelde richting gaan draaien. De magnetische velden in de stator kunnen echter in slechts een beperkt aantal richtingen worden opgewekt, afhankelijk van de wikkelingen. Indien de magnetische velden in de stator steeds gelijk van sterkte worden gehouden, dan zal de rotor steeds stapjes gaan maken van een vaste grootte.

![fig 1: Schematische weergave van de verschillende, afzonderlijk te bekrachtigen spoelenparen in een stappenmotor (links) en de verdeling van de magnetische polen in de permanente magneet (rechts).](image)
Appendix 3. Aansluiting van encoder-signalen op *dSpace*

A. De positiesensor

In eerste instantie blijkt de snaar-encoder zonder problemen de positieverandering van de printkop te kunnen waarnemen en op de computer zichtbaar te maken. Het systeem blijkt echter bij hogere snelheden van de printkop niet meer te werken: de positieveranderingen worden dan niet meer waargenomen en het lijkt voor de computer alsof de printkop stil staat.

Een mogelijke verklaring zou kunnen zijn, dat de pulstrein die de encoder genereert te snel is om nog door *dSpace* te kunnen worden gezien als afzonderlijke pulsen. In dit geval zou de meting van de positie uit de snaar erg problematisch worden.

Om te onderzoeken of dit het geval zou kunnen zijn, zijn gegevens nodig over de maximale snelheid waarmee *dSpace* de pulsen kan tellen en het aantal pulsen dat er per seconde door de (snaar-) encoder worden gegenereerd.

Het blijkt dat bij een maximale snelheid van de printkop van iets minder dan 1 m/s maximaal 5.5 × 10^4 pulsen per seconde worden gegenereerd. De snelheid waarmee *dSpace* de pulsen kan tellen ligt echter veel hoger, 8.2 × 10^6 [Hz]. Het probleem moet dus elders worden gezocht.

Aangezien de snelheid van de pulstrein toch niet gering is, zou een andere verklaring kunnen zijn dat het signaal te zeer verstoord is, waardoor de encoder-ingang van *dSpace* de pulsen niet meer goed kan onderscheiden. Aangesloten op een oscilloscoop blijkt het signaal er echter redelijk net uit te zien. De verschillen tussen een hoog en een laag signaal zou voldoende moeten zijn, al is er wel aanzienlijk wat ruis aanwezig. Met name bij snelle bewegingen van de printkop worden de overgangen ook enigszins afgerond, en wordt de 5 [V] niet altijd volledig bereikt. Er is een methode die gebruik maakt van geïnverteerde encodersignalen om de effecten van ruis grotendeels teniet te doen. Hier wordt in Appendix 4 kort op ingegaan.

Uit de snaar-encoder komen echter geen geïnverteerde signalen, waardoor de gevoeligheid voor verstoringen aanzienlijk groter is dan wanneer deze ook zouden zijn aangesloten. Zoals nu zal blijken, zijn deze verstoringen niet de reden van het slechte functioneren van de encoder. De *dSpace* encoder gaat er namelijk vanuit dat er zowel een normaal als een geïnverteerd signaal aanwezig is. Bij de waarneming van hoog-laag veranderingen betekent dit een verschil tussen 0 en 2 × 5 = 10 [V], hetgeen waarschijnlijk inhoudt dat in de *dSpace* elektronica de grens tussen hoog en laag ergens rond 5 [V] zal zijn gekozen. Hier ligt dan ook het probleem: bij lage snelheden wordt deze grens nog wel gehaald, maar indien bij hogere snelheden zoals gezegd de overgangen wat beginnen te worden afgerond en de grens niet meer (voldoende) wordt overschreden, zullen de overgangen door *dSpace* niet meer worden waargenomen. Dit kan eenvoudig worden opgelost door op de geïnverteerde ingang niet 0 [V], maar 2,5 [V] aan te bieden. Het verschil signaal bevindt zich dan niet meer tussen 0 en 5 [V], maar tussen 2,5 en 7,5 [V], waardoor de 5 [V] grens veel duidelijker wordt doorsneden.

Met behulp van een spanningsdeling door twee gelijke weerstanden en een capaciteit wordt uit de voedingsspanning 2,5 [V] gemaakt, die kan worden aangesloten op de ingang voor het geïnverteerde signaal. Na deze aanpassing blijkt de encoder ook bij hogere snelheden van de printkop diens positie correct te kunnen volgen.
B. De referentie trajectorie

Voor het te volgen traject van de printkop genereert de software in de plotter een signaal, dat aan der hardware voor de besturing van de stappenmotor wordt doorgegeven. Een zgn. driver-chip voor de stappenmotor zet vervolgens dit signaal om in de rotorstromen voor de verschillende spoelenparen in de stappenmotor – zie Appendix 2 en paragraaf 2.2.2.1.

Zoals daar eveneens is beschreven, is het uitgaande signaal naar de stappenmotor een vrij complex signaal, dat niet eenvoudig gebruikt kan worden om een referentietrajectorie mee te reconstrueren. Metingen met behulp van een oscilloscoop hebben dit duidelijk bevestigd. Een signaal dat wellicht wel bruikbaar is, is het signaal, dat aan de ingang van de driver-chip wordt aangeboden. Dit signaal is vermoedelijk een soort encoder-signal.

Op de printplaat in de ingewanden van de plotter, waar de stappenmotor op is aangesloten, kan na enig zoekwerk een driver chip voor een stappenmotor worden geïdentificeerd. Uit het oscilloscoopsignaal blijkt echter, dat ondanks dat deze een fraaie blokgolf krijgt aangeboden, deze niet bestemd is voor aansturing van de printkop maar voor de doorvoer van het papier. Zij is daarmee dus niet interessant meer.

Bij het ontbreken van een gelijke tweede driver-chip is de enige mogelijkheid het terugvolgen van printbanen vanaf de aansluiting van de stappenmotor. Deze leidden onder andere tot een buffer-chip, die een aantal mooie blokgolven blijkt te ontvangen wanneer de printkop wordt voortbewogen. Verdere metingen maken duidelijk, dat deze blokgolven netjes in twee paren van tegengestelde (geïnverteerde) signalen voorkomen, die onderling 90 graden verschoven zijn (zie Appendix 4). Aangezien de signalen een amplitude hebben van 5 [V] wordt besloten ze aan te sluiten op de tweede encoder-ingang van dSpace. De te volgen trajectorie van de printkop verschijnt nu netjes op het computerscherm.
Appendix 4. Encoder signalen

Een encodersignaal is in feite een blokgolf (zie fig. II), waarbij elke verandering van hoog (5V) naar laag (0V) en andersom kan worden gezien als een bepaalde afstand waarover de te meten positie is veranderd. Om echter ook de richting van de beweging te kunnen onderscheiden is een enkele blokgolf niet voldoende. Indien een tweede encoder een blokgolf kan genereren die precies 90° verschoven is ten opzichte van de eerste, dan kan de richting echter wel worden achterhaald.

Bij aanwezigheid van een grote component ruis op de blokgolf, zal de elektronica vaak foutief een hoog-laag of laag-hoog overgang in het signaal noteren. Voor encoders is er echter een zeer gangbare techniek die de effecten van signaalruis aanzienlijk kan verminderen.

Signaalruis is over het algemeen het gevolg van de afstand die deze in een kabel moet afleggen. De kabel dient in feite als een soort antenne die allerlei elektromagnetische golven opvangt. Wanneer er twee kabels parallel worden aangelegd zullen de verstorengen op beide signalen dan ook vrijwel identiek zijn. Hiervan wordt bij het reduceren van de effecten van ruis op encoder signalen dankbaar gebruik gemaakt. Wordt er naast het normale signaal over een parallelle draad zijn geïnverteerde doorgegeven (zie fig. III), dan wordt in het verschilssignaal tussen

 deze signalen de blokgolf twee keer zo groot, maar heffen de verstorengen elkaar grotendeels op (zie fig. IV). De gevoeligheid voor verstorengen op de signaalkabels verminderd hierdoor sterk.
Appendix 5. Genereren van een driehoek-golf

Om de printkop een eenvoudige heen- en weer gaande beweging met constante snelheid te laten maken, is een simulink-schema ontworpen dat een dergelijke trajectie online kan genereren. Dit is afgebeeld in fig. V.

\[T_s \rightarrow \text{Snelheid} \rightarrow \begin{array}{c} 1 \rightarrow \text{Gelimiteerde integrator} \rightarrow \text{Ref} \\ \times \end{array} \]

fig. V: Simulink-schema dat een trajectorie genereert voor een heen- en weer gaande beweging.

Een constante waarde – de sample-tijd \(T_s \) – wordt vermenigvuldigd met een gewenste snelheid, hetgeen daarmee de tijdsafgeleide van de trajectorie voorstelt. De rest van het systeem is in feite een integrator, die deze tijdsafgeleide integreert naar een daadwerkelijke trajectorie. Echter, indien een uiterste positie is bereikt, dient de richting om te keren. Dit is gedaan door de integrator te limiteren op de uiterste waarden van de gewenste trajectorie. Bij het bereiken van de bovengrens wordt er daardoor een ‘1’ op de tweede uitgang van de integrator gezet, terwijl bij de ondergrens een ‘-1’ uitgestuurd wordt. Elders is deze uitgang 0. De richting-generator bestaat hoofdzakelijk uit een puls-generator afgebeeld in fig. VI. Dit sub-systeem wordt alleen uitgevoerd indien het systeem in een uiterste toestand verkeert. In dit geval zal de pulsgenerator één stapje maken, dus een verandering van 0 naar 1 of omgekeerd. Deze waarde wordt door het aangrenzende functieblok omgevormd tot een signaal met waarde -1 of 1, hetgeen aan de uitgang wordt aangeboden.

\[\text{Enable} \rightarrow \text{Discrete Pulse Generator} \rightarrow u^*2-1 \rightarrow 1 \text{of-1} \rightarrow \]

fig. VI: Subsysteem “Richting generator”, dat ervoor zorgt dat bij het bereiken van een uiterste positie de bewegingsrichting omkeert.

Indien het systeem met een vaste sample-tijd wordt uitgevoerd, zoals dit in een dSpace-implementatie zal gebeuren, dan wordt een signaal gegenereerd zoals afgebeeld in figuur VII. De snelheid is 1 [m/s] en de positie wordt gelimiteerd tussen 0 en 1 [m].

\[\begin{array}{c|c|c|c|c|c|c|c|c|c} \text{Tijd [s]} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline \text{Positie [m]} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \]

fig. VII: De gegenereerde trajectorie voor een heen- en weer gaande beweging.
Appendix 6. Positie-resolutie

Om een indruk te krijgen van de resolutie waarmee de stappenmotor wordt aange- stuurd, is het volgende experiment gedaan: tijdens het uitvoeren van een plot-opdracht, die een redelijke breedte bestreek, werden de beide encoders uitgelezen, t.w.

fig. VIII: Posities van de beide encoders, gemeten tijdens een plot-opdracht. Uit deze signalen kan op verschillende manieren worden getracht de verhouding tussen de stap-resoluties worden bepaald, zoals nader beschreven in de tekst.

de werkelijke positie van de printkop en de referentietrajectorie. Uit het resultaat – afgebeeld in fig. VIII – kan vervolgens op een aantal verschillende manieren worden afgeleid wat de verhouding in resolutie van de beide encodersignalen is. Aangezien er een nulverschuiving tussen de beide signalen aanwezig is, kan de positie van de printkop \(x_2 \) niet slechts als een geschaalde referentie \(x_{\text{ref}} \) worden gezien, maar moet er een nulverschuiving worden meegenomen:

\[x_2 = I_{\text{res}} x_{\text{ref}} + X_0 \]

\((Vgl. 6.1)\)

waarbij \(F \) de verhouding tussen de resoluties en \(X_0 \) de nulverschuiving. Via de kleinste-kwadraten-methode kunnen voor de parameters \(I_{\text{res}} \) en \(X_0 \) respectievelijk de waarden 14,19 [-] en 22,55 [m] worden gevonden. Gezien het incrementele karakter van de positie is echter slechts de verhouding \(F \) van belang. Indien de resolutie van de liniaal voor de positie van de printkop wordt gesteld op 1440 [DPI], dan bedraagt de resolutie van de aansturing van de printkop 101,5 [DPI]. Voor het goed laten functioneren van de plotter is het van groot belang dat deze waarde correct is. Onder andere vanwege overshoot in de positie van de printkop, die immers niet star is verbonden met de printkop, is er helaas geen exacte waarde voor de verhouding \(F \) te vinden. Bovendien maakt de printkop altijd een onbekende positiefout ten opzichte van de referentiepositie.
Een tweede methode om de verhouding F te bepalen zou kunnen zijn, door de verschillen in uiterste waarden van de posities uit fig. VIII te nemen en deze op elkaar te delen.

Een derde methode zou tenslotte kunnen zijn, door de verhouding te berekenen van de snelheden tijdens de trajectoriegedeelten waarbij een constante snelheid wordt gehandhaafd tussen de beide encoders. Op deze manier worden effecten van nulafwijking, fase-achterstand (de stappenmotor kan niet oneindig snel naar een nieuwe positie bewegen) en overshoot vermeden en wordt de enigszins afwijkende verhouding 14,18 gevonden.

Een schatting van de benodigde nauwkeurigheid in F kan als volgt worden gemaakt: indien voor de resolutie van de aansturing van de stappenmotor 101 [DPI] wordt genomen, en de volledig bereikbare breedte van het translatiebed $1,3 \cdot 10^2$ bedraagt, dan zijn er per volledige translatie 5169 stappen nodig. Indien de positiefout niet groter dan 1 volledige stap van de stappenmotor mag zijn, dan moet de nauwkeurigheid van F in de orde van $2 \cdot 10^{-4}$ liggen. De afwijking tussen de beschreven methoden voor de schatting van F is daarmee significant. Een betere waarde voor F kan wellicht worden verkregen uit trial and error -methoden.
Appendix 7. Referenties

2. "Ref3" a third degree reference trajectory design tool for Matlab/Simulink/RTW, by R. v.d. Molengraft
3. Matlab/Simulink v5.3
4. Siglab data acquisitie en signaal generatie apparatuur
5. dSpace real-time controller board waarop de regelaars zijn geïmplementeerd
6. Control Desk voor het real-time monitoren en beïnvloeden van de dSpace- implementaties