Theorem on the existence of solutions of quasi-static moving boundary problems
Klein Obbink, B.

Published: 01/01/1994

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Theorem on the existence of solutions of quasi-static moving boundary problems

by

B. Klein Obbink
Theorem on the existence of solutions of quasi-static moving boundary problems

Bart Klein Obbink; Technical University Eindhoven
Department of Mathematics and Computational Science
P.O. Box 513, Eindhoven, email: bartk@win.tue.nl.

Using the theory of conformal mappings, we show that two-dimensional quasi-static moving boundary problems can be described by a non-linear Löwner-Kufarev-equation and a functional relation F between the shape of the boundary and the velocity at the boundary. Together with the initial data this leads to an initial value problem (i.v.p.). Assuming that F satisfies certain conditions, we prove a theorem stating that this i.v.p. has a local solution in time. The proof is based on some straightforward estimates on solutions of Löwner-Kufarev-equations and an iteration technique.

1. Introduction

Consider a clump of matter in the two-dimensional plane which is moving according to its hydrodynamical velocity v. The geometric shape evolution is determined by the normal component v_n of this velocity. Assume that the domain G_t occupied by the matter at time t is simply connected and includes 0 for all time t. Then, the unique conformal mapping $f(\cdot, t)$, mapping the open unit disc $D \subset C$ to G_t and normalized by:

$$f(0, t) = 0; \quad f'(0, t) > 0$$

satisfies the Löwner-Kufarev-equation ([1], [2]):

$$\dot{f}(\zeta, t) = f'(\zeta, t)h(\zeta, t)$$

(with: $\cdot = \frac{\partial}{\partial t}, \quad ' = \frac{\partial}{\partial \zeta}$). The regular function h on D hereby is defined by the relations:

$$\operatorname{Re} h(\zeta, t) \bigg|_{\partial D} = v_n(f(\zeta, t))/|f'(\zeta, t)| \bigg|_{\partial D}, \quad \operatorname{Im} h(0, t) = 0.$$

The relation (2) can best be understood by identifying f and $f = (f_1, f_2)$:

$$\dot{f}(\zeta, t) \cdot n(f(\zeta, t)) = \operatorname{Re} \frac{\dot{f}(\zeta, t)f'(\zeta, t)\overline{\zeta}}{|f'(\zeta, t)|} = \operatorname{Re} f'(\zeta, t) \cdot h(\zeta, t) = v_n(f(\zeta, t)).$$

So to speak, the velocity v is replaced by a “regular” velocity with a normal component that equals v_n – assuring that the shape evolution is not modified –
and such that its pull-back under \(f \) is a regular function.
There are several problems in physics ([3], [4], [5]) of the following form: the hydrodynamical velocity of a clump of matter occupying a simply connected domain \(G \) is determined by the geometric shape of this domain \(G \). Given the domain \(G_0 \) at time \(t = 0 \), what is the domain \(G_t \) at time \(t > 0 \)? We call such problems quasi-static moving boundary problems. Formulating the problem mathematically, there is a mapping \(\mathcal{F} \) from the space \(S \) of univalent functions on \(D \) to the space of regular functions on \(D \):

\[
\mathcal{F} : h \in S \rightarrow \mathcal{F}(h) = f[h]
\]

(5)

(see also the relations (3)). We are interested under which conditions on \(\mathcal{F} \) the i.v.p. given by:

\[
\begin{align*}
\dot{f}(\zeta, t) &= f'(\zeta, t) h[f(\zeta, t)](\zeta) \\
f(\zeta, 0) &= f_0(\zeta)
\end{align*}
\]

(6a)

(6b)
can be solved (with \(f_0 : D \rightarrow G_0 \) conformal). In section 2 we will prove some estimates on the solution \(f \) of equation (2). These estimates are used to prove a theorem in section 3 where sufficient conditions on \(\mathcal{F} \) are stated for the i.v.p. (6) to have a local solution.

2. Preliminary Results

First we recapitulate an old result on the Löwner–Kufarev equation (2). We deal with functions \(h \) on \(D \times [0, \infty) \) with the following properties:

- \(h \) is continuous on its domain
- \(h \) is regular with respect to its first (complex) variable
- \(\Re h(\zeta, t) \leq 0 \); \(\Im h(0, t) = 0 \) (for all \(\zeta \in D \) and all \(t \geq 0 \)).

So we only consider problems where the velocity at the boundary is pointing inwards.

Theorem. Let the function \(h \) have the above stated properties. The i.v.p. given by the equations (2) and (6b) has an unique solution. This function \(h(\cdot, t) \) is univalent for all \(t \geq 0 \).

Proof. We will not prove this theorem (see [6], [7], [8]) but only show the main ideas. In the i.v.p. given by:

\[
\begin{align*}
\dot{\varphi}(\zeta, t) &= -\varphi(\zeta, t) h(\varphi(\zeta, t), t) \\
\varphi(\zeta, 0) &= \zeta
\end{align*}
\]

(7)

the \(\zeta \in D \) can be viewed as a parameter. Applying Picard's theorem ([9]) in its simplest form, one shows that the problem (7) has a unique maximal solution. One shows that for each \(t \geq 0 \) the function \(\varphi(\cdot, t) \) is regular (as it can be shown that it is the limit of a sequence of regular functions -- coming
from Picard's iteration - which converge uniformly on compacta). Moreover, as \(\varphi(\cdot,t) \) is univalent (as trajectories do not cross each other), there is a regular, univalent inverse \(\varphi^{-1}(\cdot,t) \) such that:

\[\varphi^{-1}(\varphi(\zeta,t),t) = \zeta. \]

(8)

To show that this so defined inverse function \(\varphi^{-1} \) has a domain \(D \times [0,\infty) \), one considers the time-inversed problem; i.e. for each \(T \geq 0 \) one considers the i.v.p.:

\[
\begin{align*}
\dot{\psi}_T(\zeta,t) &= \psi_T(\zeta,t)h(\psi_T(\zeta,t),T-t) \\
\psi_T(\zeta,0) &= \zeta.
\end{align*}
\]

(9)

It is easy to show that the modulus of the solution \(\psi_T(\zeta,t) \) is monotonously non-increasing with time. It follows that \(\psi_T(\cdot,t) \) has a domain \(D \). Finally one establishes the relation:

\[\varphi^{-1}(\zeta,t) = \psi_t(\zeta,t) \]

(10)

and checks by differentiation that:

\[f(\zeta,t) = f_0(\varphi^{-1}(\zeta,t)) \]

(11)

satisfies the i.v.p.

\[\square \]

We proceed by making some estimates on the solution \(f \). First of all, it is remarked that the solution \(\psi_T \) of the i.v.p. (9) can be written as:

\[\psi_T(\zeta,t) = \zeta + \int_0^t \psi_T(\zeta,\tau)h(\psi_T(\zeta,\tau),T-\tau)d\tau. \]

(12)

This leads immediately to:

Lemma 1. If:
- \(f_0 \) has a bounded derivative
- \(h \) is bounded on \(D \times [0,t] \) for each \(t \geq 0 \),

then the solution \(f \) of the i.v.p. satisfies:

\[
\sup_{\zeta \in D} |f(\zeta,t) - f_0(\zeta)| \leq t \sup_{\zeta \in D} |f'_0(\zeta)| \max_{\tau \in [0,t]} \{ \sup_{\zeta \in D} |h(\zeta,\tau)| \}. \]

(13)

Proof. Straightforward from the relations (10),(11) and (12).

\[\square \]

Next we remark that the real quantity \(|\psi_T(\zeta,t)| \) can be bounded as follows. Let \(M_0 \) be a continuous function on \([0,1] \times [0,\infty)\) which is Lipschitz-continuous with respect to its first variable and is such that:

\[
\sup_{|k|<r} \text{Re} h(\zeta,t) \leq M_0(r,t) \leq 0. \]

(14)
Let r_T for a fixed, arbitrary $T \geq 0$ on $[0, T]$ be defined as the solution of the following i.v.p.:

$$
\begin{align*}
\dot{r}_T(t) &= r_T(t)M_0(r_T(t), T-t) \\
r_T(0) &= 1.
\end{align*}
$$

(15)

We define: $r(t) = r_1(t)$.

Lemma 2. For all $T \geq 0$, $t \in [0, T]$ and all $\zeta \in D$, the function ψ_T satisfies:

$$
|\psi_T(\zeta, t)| \leq r_T(t) \leq 1.
$$

(16)

Proof. Assuming the statement is false, one easily derives a contradiction using the mean value theorem. \qed

Next we prove a lemma that is interesting in its own.

Lemma 3. Under the conditions that:

- f_0 has a bounded derivative
- there exists a continuous function M_1 on $[0, 1] \times [0, \infty)$ such that:

$$
\sup_{|\zeta|<r} \text{Re}\{h(\zeta, t) + h'(\zeta, t)\zeta\} \leq M_1(r, t),
$$

the derivative f' of the solution f of the i.v.p. is bounded:

$$
\sup_{\zeta \in D} |f'(\zeta, t)| \leq \sup_{|\zeta|<r} |f_0(\zeta)|e^a.
$$

(17)

(18)

Proof. Differentiating the relations (9) with respect to ζ we get:

$$
\begin{align*}
\psi_T(\zeta, t) &= \psi_T'(\zeta, t)\{h(\psi_T(\zeta, t), T-t) + h'(\psi_T(\zeta, t), T-t)\psi_T(\zeta, t)\} \\
\psi_T(\zeta, 0) &= 1.
\end{align*}
$$

(19)

Regarding ψ_T as a known function and regarding T as a parameter, one checks that the solution of this i.v.p. (19) can be written as:

$$
\psi_T(\zeta, t) = e^a
$$

(20)

Using the previous lemma we get:

$$
\sup_{\zeta \in D} |\psi_T''(\zeta, t)| \leq e^a.
$$

(21)

Substituting this result for $T = t$ in the relation (11), inequality (18) follows. \qed
Remarks. It is clear from the proof that the conditions on M_1 can be weakened; it is already sufficient that $M_1(1, \cdot)$ is locally integrable for $f'(\cdot, t)$ to be bounded.

Starting with differentiating the relations (9) k times to ζ, one generalizes this result easily by deducing conditions on h and f_0 for $f^{(k)}$ to be bounded (together with the theorem of Kellog-Warschanski ([10]) such results are practical for applications).

Now we are able to prove a lemma which generalizes lemma 1.

Lemma 4. Under the conditions stated in the lemma's 1 and 3, the solution f of the i.v.p. satisfies for all $t_1 \geq t_2 \geq 0$:

$$
\sup_{\zeta \in D} |f(\zeta, t_1) - f(\zeta, t_2)| \leq \int_0^{t_2} M_1(\tau, t - \tau) d\tau \cdot \max_{\tau \in [t_2, t_1]} \left\{ \sup_{\zeta \in D} |h(\zeta, \tau)| \right\}.
$$

(22)

Proof. It follows from the theory of ordinary differential equations that:

$$
\psi_T - \psi_T(\zeta, t, \tau) = \psi_T(\zeta, t + \tau)
$$

(23)

for all $\zeta \in D$ and all $T, t, \tau \geq 0$ such that $t + \tau \leq T$. Using this relation for the case: $T = t_1$, $t = t_1 - t_2$ and $\tau = t_2$, we find:

$$
\sup_{\zeta \in D} |\psi_{t_1}(\zeta, t_1) - \psi_{t_2}(\zeta, t_2)| = \sup_{\zeta \in D} |\psi_{t_2}(\psi_{t_1}(\zeta, t_1 - t_2), t_2) - \psi_{t_2}(\zeta, t_2)| = \sup_{\zeta \in D} \left| \int_{t_1}^{t_2} \psi'_2(\zeta, t_2) d\zeta \right| \leq \sup_{\zeta \in D} \left| \psi_{t_1}(\zeta, t_1 - t_2) - \zeta \right| \cdot e^0 \int_0^{t_2} M_1(\tau, t - \tau) d\tau
$$

(24)

where we used lemma 3. The first term of the right-hand side can be estimated by (see relation (12)):

$$
\sup_{\zeta \in D} |\psi_{t_1}(\zeta, t_1 - t_2) - \zeta| \leq (t_1 - t_2) \cdot \max_{\tau \in [t_2, t_1]} \left\{ \sup_{\zeta \in D} |h(\zeta, \tau)| \right\}.
$$

(25)

So, we conclude:

$$
\sup_{\zeta \in D} |f(\zeta, t_1) - f(\zeta, t_2)| \leq \sup_{\zeta \in D} |f_0(\psi_{t_1}(\zeta, t_1)) - f_0(\psi_{t_2}(\zeta, t_2))| \leq \int_0^{t_2} M_1(\tau, t - \tau) d\tau \cdot \max_{\tau \in [t_2, t_1]} \left\{ \sup_{\zeta \in D} |f(\zeta, \tau)| \right\}.
$$

(26)
We end this section with a lemma on the solutions \(f_1 \) and \(f_2 \) of the i.v.p.'s given by:

\[
\begin{align*}
\dot{f}_i(\zeta, t) &= f'_i(\zeta, t)h_i(\zeta, t)\zeta \\
f_i(\zeta, 0) &= f_0(\zeta)
\end{align*}
\]

(27)

where both \(h_1 \) and \(h_2 \) satisfy the conditions mentioned in the beginning of this section. The corresponding functions \(\psi_T \) (see the relations (9)) are denoted by \(\psi_{1/2}, \ i = 1, 2 \).

Lemma 5. Under the conditions that

- \(f_0 \) has a bounded derivative
- \(h_1 \) and \(h_2 \) are bounded on \(D \times [0, t] \) for each \(t \geq 0 \),

the solutions \(f_{1,2} \) of the i.v.p.'s (27) satisfy:

\[
\sup_{\zeta \in D} |f_1(\zeta, t) - f_2(\zeta, t)| \leq t \sup_{\zeta \in D} |f'_0(\zeta)| \cdot \max_{r \in [0,t]} \left\{ \sup_{\zeta \in D} |h_1(\zeta, r) - h_2(\zeta, r)| \right\} \cdot \left(\max_{r \in [0,t]} \left\{ \sup_{\zeta \in D} |h_1(\zeta, r)| + \sup_{\zeta \in D} |h_2(\zeta, r)| \right\} \right)
\]

(28)

Proof.

\[
\begin{align*}
\sup_{\zeta \in D} |\psi_{1/2}(\zeta, t) - \psi_{1/2}(\zeta, t)| &= \\
\sup_{\zeta \in D} \left| \int_0^t \left\{ \psi_{1/2}(\zeta, \tau)h_1(\psi_{1/2}(\zeta, \tau), T - \tau) - \psi_{1/2}(\zeta, \tau)h_1(\psi_{1/2}(\zeta, \tau), T - \tau) \right\} d\tau \right| \leq \\
\int_0^t \sup_{\zeta \in D} |\psi_{1/2}(\zeta, \tau)| \cdot |h_1(\psi_{1/2}(\zeta, \tau), T - \tau) - h_1(\psi_{1/2}(\zeta, \tau), T - \tau)| d\tau + \\
\int_0^t \sup_{\zeta \in D} |\psi_{1/2}(\zeta, \tau)| \cdot |h_1(\psi_{1/2}(\zeta, \tau), T - \tau) - h_2(\psi_{1/2}(\zeta, \tau), T - \tau)| d\tau + \\
\int_0^t \sup_{\zeta \in D} |\psi_{1/2}(\zeta, \tau) - \psi_{1/2}(\zeta, \tau)| \cdot |h_2(\psi_{1/2}(\zeta, \tau), T - \tau)| d\tau \leq \\
\int_0^t \sup_{\zeta \in D} |\psi_{1/2}(\zeta, \tau) - \psi_{1/2}(\zeta, \tau)| \cdot \left(\sup_{\zeta \in D} |h'_1(\zeta, T - \tau)| + \sup_{\zeta \in D} |h_2(\zeta, T - \tau)| \right) d\tau + \\
\int_0^t \sup_{\zeta \in D} |h_1(\zeta, T - \tau) - h_2(\zeta, T - \tau)| d\tau .
\end{align*}
\]

(29)
As the last term can be estimated by:

\[
\int_0^1 \sup_{\zeta \in D} |h_1(\zeta, T - \tau) - h_2(\zeta, T - \tau)|d\tau \leq T \max_{\tau \in [0, T]} \left(\sup_{\zeta \in D} |h_1(\zeta, \tau) - h_2(\zeta, \tau)| \right),
\]

we get from inequality (29) and the lemma of Grönwall:

\[
\sup_{\zeta \in D} |\psi_f^1(\zeta, t) - \psi_f^2(\zeta, t)| \leq T \max_{\tau \in [0, T]} \left\{ \sup_{\zeta \in D} |h_1(\zeta, \tau) - h_2(\zeta, \tau)| \right\} \ast \tau \left(\max_{\tau \in [0, T]} \left(\sup_{\zeta \in D} |h_1'(\zeta, \tau)| + \sup_{\zeta \in D} |h_2'(\zeta, \tau)| \right) \right\}.
\]

By substituting this result in the relation:

\[
f_1(\zeta, t) - f_2(\zeta, t) = \int_{\psi_f^1(\zeta, t)}^{\psi_f^2(\zeta, t)} f_0'(z) \, dz.
\]

inequality (28) follows.

3. Final Result

We return to the i.v.p. (6). Let \(S \) as in section 1 denote the space of all conformal mappings on \(D \), and let \(T \) be the space of regular functions \(h \) on \(D \) such that:

\[
\text{Re } h \leq 0 \quad ; \quad \text{Im } h(0) = 0 \quad ; \quad h' \text{ is bounded}.
\]

A mapping \(\mathcal{F} : S \rightarrow T \) is called Lipschitz-continuous if there exists a \(K \) such that for all \(f_1, f_2 \in S \):

\[
\sup_{\zeta \in D} |h_{[f_1]}(\zeta) - h_{[f_2]}(\zeta)| \leq K \sup_{\zeta \in D} |f_1(\zeta) - f_2(\zeta)|.
\]

A mapping \(\mathcal{F} : S \rightarrow T \) is called continuous with respect to the derivative if the functional

\[
\mathcal{F}' : f \in S \rightarrow \sup_{\zeta \in D} |h_{[f]}'(\zeta)|
\]

is continuous.

Theorem. Let the mapping \(\mathcal{F} : S \rightarrow T \) have the above stated properties in a neighbourhood of a function \(f_0 \in S \) which has a bounded derivative. Then the i.v.p. (6) has a local solution. The function \(f(\cdot, t) \) is univalent.

Proof. Step 1. At this stage we do not bother whether the functions \(f_n \) to be defined are in a neighbourhood of \(f_0 \). Let \(f_n \) for each \(n \in \mathbb{N} \) be defined by:

\[
\begin{align*}
 f_0(\zeta, t) &= f_0(\zeta) \\
 f_{n+1}(\zeta, t) &= f_{n+1}(\zeta, t) h_{[f_n]}(\zeta)(\zeta) \\
 f_{n+1}(\zeta, 0) &= f_0(\zeta).
\end{align*}
\]
It follows from the theorem stated in section 2 that the functions f_n are properly defined on $D \times [0, \infty)$ if the functions $h_n(\zeta, t) := h_{y,n}(\zeta)\zeta$ have the following properties:

- h_n is continuous
- $\sup_{\zeta \in D} |h'_n(\zeta, t)|$ is a continuous function of t.

We show by induction that h_n has indeed this properties. As f_0 does not depend on t, neither does h_0 and therefore h_0 has these properties. Now assume that h_n have the mentioned properties. This implies that f_{n+1} is properly defined, i.e. exists and is unique. Moreover, it follows from lemma 4 that for all finite $t_1, t_2 \geq 0$ there is a constant k such that:

$$\sup_{\zeta \in D} |f_{n+1}(\zeta, t_1) - f_{n+1}(\zeta, t_2)| < k |t_1 - t_2| .$$

(37)

One checks by some analysis that this inequality and the continuity of h_{n+1} with respect to the first variable (so: for fixed t), together with inequality (34) implies the continuity of h_{n+1}. The second property ($\sup_{\zeta \in D} |h'_n|$ continuous) follows from inequality (37) and the continuity of F'.

Step 2. We now show that for every $d > 0$, there is a $T > 0$ such that for all non-negative $t < T$ and all $n \in \mathbb{N}$:

$$\sup_{\zeta \in D} |f_n(\zeta, t) - f_0(\zeta)| < d .$$

(38)

Define:

$$M = \sup_{\zeta \in D} |h_0(\zeta)| ; \quad C = \sup_{\zeta \in D} |f'_0(\zeta)| ; \quad T = \frac{d}{C M + K d} .$$

(39)

We prove the induction step that for all nonnegative $t < T$ and all $n \in \mathbb{N}$:

$$\sup_{\zeta \in D} |f_n(\zeta, t) - f_0(\zeta)| \leq \frac{M}{K} \left(\sum_{k=1}^{n} (CKt)^k \right) .$$

(40)

Assume that this inequality holds for a certain $n \in \mathbb{N}$. Applying lemma 1, we find that for all $t < T$:

$$\sup_{\zeta \in D} |f_{n+1}(\zeta, t) - f_0(\zeta)| \leq C t \max_{\tau \in [0, t]} \{ \sup_{\zeta \in D} |h_n(\zeta, \tau)| \} \leq C t \max_{\tau \in [0, t]} \{ \sup_{\zeta \in D} |h_n(\zeta, \tau)| \} + M \leq C t \max_{\tau \in [0, t]} \{ K \sup_{\zeta \in D} |f_n(\zeta, \tau) - f_0(\zeta)| + M \} \leq C t \max_{\tau \in [0, t]} \{ M \left(\sum_{k=0}^{n} (CKt)^k \right) \} \leq \frac{M}{K} \left(\sum_{k=1}^{n+1} (CKt)^k \right) .$$

(41)
Then it is remarked that the inequalities \(t < T \) and inequality (40) imply inequality (38) and:

\[
\sup_{\zeta \in D} |f_n(\zeta, t)| < M + K d \quad \text{for } t < T .
\]

(42)

Step 3. It follows from the result deduced in step 2 and from the continuity of \(\mathcal{F} \) that there exists a \(T > 0 \) and numbers \(K_2, K_3 \) such that for all \(n \in \mathbb{N} \) and all non-negative \(t < T \):

\[
\sup_{\zeta \in D} |h_n(\zeta, t)| < K_2 , \quad \sup_{\zeta \in D} |h_n(\zeta, t)| < K_3 .
\]

(43)

Defining:

\[
L = C e^{T(K_2+K_3)}
\]

(44)

and using lemma 5, we find for arbitrary \(n \in \mathbb{N} \) and all \(t < T \):

\[
\sup_{\zeta \in D} |f_{n+1}(\zeta, t) - f_n(\zeta, t)| \leq e^{T(K_2+K_3)t} \max_{\zeta \in \partial D} \left\{ \sup_{\tau \in [0,t]} |h_n(\zeta, \tau) - h_{n+1}(\zeta, \tau)| \right\} \leq
\]

(45)

One then shows in the standard way that \(f_n(\cdot, t) \) is a Cauchy–sequence in \(S \) with the sup–norm for all non-negative \(t < \overline{T} := \min\{T, (LK)^{-1}\} \). Therefore, \(f_n(\cdot, t) \) is a sequence of univalent functions converging uniformly to a regular function \(f(\cdot, t) \) on \(D \). One easily shows that the function \(f(\cdot, t) \) cannot be constant and therefore is univalent ([11]). One shows by standard techniques that the function \(f \) on \(D \times [0, \overline{T}) \) thus defined is a solution of the i.v.p. (6). \(\Box \)

4. Concluding Remarks

Our main result is the theorem formulated in section 3 which gives sufficient conditions on the mapping \(\mathcal{F} : S \rightarrow T \) for the i.v.p. (6) to be locally solvable. Direct applications of this result for standard physical problems are restricted for two reasons. The first reason is that \(\mathcal{F} \) maps into the space of functions \(h \) which have negative real part. This corresponds to moving boundary problems where the domain is shrinking. If one wants to generalize the theorem such that \(\mathcal{F} \) maps into a larger space containing also functions \(h \) which have real parts that are not purely negative, the same methods only apply if those functions \(h \) can be extended regularly outside \(D \). The second reason is that the conditions on \(\mathcal{F} \) can be formulated as continuity conditions on how the normal component \(v_n \) of the velocity depends on the shape of the boundary (see section 1, in particular the relations (3)). For standard problems (for instance the Hele-Shaw problem, [12]), it is non-trivial, and it may even be impossible, to show that these conditions are indeed satisfied.
Acknowledgements
The author likes to thank Professors J. de Graaf and Y. Hohlov for stimulating discussions.

References

