Analyse van het muntproces m.b.v. de eindige elementenmethode

Citation for published version (APA):

Document status and date:
Gepubliceerd: 01/01/1984

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
ANALYSE VAN HET MUNTPROCES M.B.V. DE
EINDIGE ELEMENTENMETHODE

Auteur: J. Vromans

WPB-Rapport nr. 0119 sept. '84
VFCMVC D1/D3

Verslag Il-opdracht

Begeleider: dr.ir. J.A.H. Ramaekers
SAMENVATTING

In dit verslag is een berekening uitgevoerd aan een muntproces m.b.v. de eindige elementen methode. Doel van de berekening was om inzicht te verkrijgen in de optredende spanningen en het verloop daarvan als functie van de vullings graad van de gravure. De berekeningsresultaten zijn vergeleken met andere berekenings methodes.

De eindige elementen methode geeft een goede beschrijving van het proces, zeker als het om het verplaatsingsveld gaat. De berekende spanningen zullen nog aan een extra onderzoek onderworpen moeten worden.
INHOUDSOPGAVE

I INLEIDING 6/2
II MODELLERING 1
III MARC INVOER 5
IV RESULTATEN 10
V BESPREKING RESULTATEN 23
VI VERGELUKING E.E.M. EXPERIMENTEL RESULT. 28
VII VERGELUKING E.E.M. MET SCHILLEN MET. 32
VIII VERGELUKING E.E.M. MET RASTER OPNAME 33
IX OPMERKINGEN 34
X CONCLUSIES 37

Literatuur.
Bylage I : MARC INVOER 48
Bylage II : VERVORMDE MESHES 54
Bylage III : SPANNINGEN LOOP 61
Bylage IV : SPANNINGEN ALU. 70
I INLEIDING

Het muntje is een van de oudste koudomvormtechnieken die bekend is. De bewerking houdt slechts in dat een gravure zo scherp mogelijk wordt overgenomen. Een schematische voorstelling van de munt-opstelling ziet u in figuur 1.

In ons geval bestaat de bovengrondse stempel niet uit een ingewikkelde gravure, maar zijn de stempels vlak uitgevoerd. De munt blank bestaat niet zoals gewoonlijk uit een vlakke blank, maar bezit een schuine rand. Zie figuur 2.

Deze opstelling heeft niet tot doel een vlakke munt te maken, omdat dit wel op een eenvoudigere manier kan, maar om meer inzicht te verkrijgen in de benodigde stempelkracht en de optredende inwendige spanningen bij het uitten van de gravure (schuine holte).

In het bijzonder zijn we geïntresseerd in het verloop van de spanningen als functie van de steeds kleiner wordende schuine rand p. Zie figuur 3.

Er bestaan verschillende methodes om achter dit verbond te komen (als het bestaat).

1. * experimenteel
 * schijven method
 * upperbound method
 * eindige elementen method
In dit verslag wordt de eindige elementen methode beschouwd.

Een van de problemen die hierbij ontstaan in de beschrijving van het toenemende contact oppervlak tussen stempel en blank en tussen muntring en blank. resp. ΔA_s en ΔA_m in figuur 8. Dit probleem wordt opgelost met zijn gap-elementen.
fig 1
Ons probleem is rotatorisch symmetrisch en bovendien symmetrisch t.o.v. \(z = 0 \).
Het inwerking van de juiste randvoorwaarden is in beschrijving van \(\frac{1}{4} \) deel van de munt blank voldoende. De ingevoerde randvoorwaarden zijn weergegeven in figuur 3.
Er wordt aangenomen dat de stempels en de muntring starr zijn. Een volgende aanname is dat het contact tussen munt blank en gereedschappen (stempels en muntring) wryvingsloos is.
De modellering gebeurt met het niet lineaire eindige elementen pakket "MARC" in combinatie met de "SDRC"-software "SUPERLAB" dat als voor een naloop programmatuur dienst doet.
De gang van zaken bij deze combinatie is als volgt:
1) interactief genereren van de elementen verdeling, aanbrengen van randvoorwaarden, specificeren van de voorgeschreven belasting, evenals het definiëren van materiaal en andere parameters m.b.v. "SDRC/MODELCREATION". De verkregen data wordt vastgelegd in een zog. "UNIVERSAL"-file.
2) De bovengenoemde "UNIVERSAL"-file wordt met in vertaal programma FT (file translator) omgezet naar een "MARC"-invoer file.
c) Na enige toevoegingen aan de MARC-inleverfile (eigenlijk alleen de speciale opties voor niet-lineaire problemen), kan het "MARC"-programma opgestart worden. De berekeningsresultaten worden in een file (de "DSST"-tape) vastgelegd.
d) De "DSST"-tape wordt met een virtueel programma weer omgetol in een "UNIVERSAL"-file
e) Interactieve verwerking van de resultaten met "SORE/OUTPUT DISPLAY"

Een gedeelte van op deze manier verkregen MESH (m.b.v. SORC/MODEL CREATION) ziet u in figuur 4 en 5. Hierin zijn element nr. 48 4871 de zijn gap elementen. Voor de theorie achter deze elementen verwijzen we naar [3]

In het kort kunnen we zeggen dat deze gap-elementen de afstand tussen de twee uiterste knooppunten van dit element kunnen beschrijven. en zodoende kunnen bepalen of deze afstand nul wordt.
(d.w.z. er wordt contact gemaakt tussen gereedschap en munt blank).

De muntblank zelf is beschreven met een 8-knoops isoparametrisch element (type 20 zie [3])
Er is voor een 8-knoops element gekozen omdat deze een kwadratisch verplaatsingsveld hebben; waardoor ze een lineair spanningsveld kunnen beschrijven
De elementen zijn bovendien iss-parametrisch zodat de randen goed beschreven kunnen worden. De verdeling van de Muntbank in elementen zien we in figuur 6.

III MARC INVOER

In dit hoofdstuk bespreken we de opbouw van het programma pakket "MARC". De afzonderlijke commando's en subroutines worden besproken aan de hand van bijlage I. De nadruk zal hierbij liggen op het gedeelte dat niet volgt uit het voorloop programma "SDRC MODEL-CREATION" dus op de speciale opties voor het niet lineaire gedeelte. De invoer van "MARC" kunnen we onderverdelen in drie hoofdgroepen. Deze groepen vormen een natuurlijke onderverdeling van de invoer gegevens. Binnen elke groep afzonderlijk is er een keuze uit een groot aantal programma kaarten (opties - subroutines). Door een geschikte keuze van deze kaarten kan men met een minimum aan invoergegevens het gewenste probleem beschrijven. De invoer is verdeeld in de volgende drie hoofdgroepen. (zie ook blz 18)

Parameter cards

Deze set van kaarten wordt gebruikt voor
het aanwyzan van het benodigde geheugen en om het verloop van het programma door de gewenste analyse te sturen. Deze set van kaarten wordt afgesloten met een "END" kaart.

b) **MODEL DEFINITION CARDS**

Deze set van kaarten beschrijft de initiele geometrie, belasting en materiaalgegevens van het model. Deze kaarten verschaffen het programma de benodigde informatie voor het doorrekenen van het initiele elastische probleem.

('nulde increment"oplossing)

Deze set van kaarten wordt afgesloten met een "END OPTION" kaart.

c) **LOAD INCREMENTATION CARDS**

Deze set van kaarten voorziet in de belastings-incrementen en de sturing van het programma na de initiele elastische analyse.

Elke set van sturings kaarten wordt afgesloten door een "CONTINUE" kaart. Deze kaart stuurt het programma terug voor een nieuw increment of een serie van incrementen.

We kopen nu aan de hand van bijlage I door de verschillende groepen heen. Voor een uitvoerige beschrijving van de kaarten verwijzen we naar de "MARC-Manual" uit [3].
De met een (*) aangekruist kaarten worden
NIET door het vertaal programma FT gemaakt
maar worden later met de hand toegevoegd.

ad a) PARAMETER CARDS

TITLE : spreekt voor zich
SIZING : reserveert geheugen
ELEMENTS : geeft type elementen aan
ALL POINTS : Deze optie wordt gebruikt voor het
berekenen en opslaan van spanningen en
rekken in alle integratie punten van alle
elementen

(*) UPDATE : Deze kaart schakelt de updated
lagrange
procedure in voor de elementen waarbij deze
formulering gebruikt kan worden
Deze procedure heeft twee korte kwanties
1. De element stiffness matrix wordt bepaald
aan de hand van de kruistige vorm het
element
2. De spanning en rek uitvoer wordt ge-
geven in het coördinaten systeem wat
gebruikelijk is in de updated lagrange
procedure (in ons geval globaal z-r)

(*) FINITE : Wordt gebruikt bij grote rekken (tot 3%)
Met deze optie wordt rekening gehouden
met de geometrie veranderingen af
gedrag van niet elastische deformaties.
Deze kaart moet altijd samen gaan met de "UPDATE" kaart.

END: Deze kaart sluit de serie van
parameter cards af.

ad b) MODEL DEFINITION CARDS

(*) post: Naar file waar berekenings gegevens
op worden weggeschreven ("post"-file)
voor het maken van plots.
Voor de berekenings van de codes
1.2...24.27 ze 6/2 19.

(*) control: Deze optie geeft de gebruiker de
mogelijkheid om de gewenste nauwkeurig-
heid, en maximaal aantal iteratie-
stappen per increment op te geven.

(*) POST CHOICE: geeft de mogelijkheid om te kiezen
van welke elementen en knooppunten
je wilt/willst. In ons geval is deze
optie gebruikt om de grote hoeveelheid
van uitvoer te onderdrukken (d.w.z
geprinte uitvoer). De berekenings gegevens
staan ook op de "post"-file

coordinates: Dit blad geeft de coördinaten van
ele knooppunt weer.
CONNECTION: Dit blok geeft de typologie weer

dwz de knooppunten voor elke

element.

PROPERTY: geeft de materiaal eigenschappen van
de elementen weer, zoals E-modulus,
\(\nu \) en uieigens.

Voor de gap-elementen kan men hier de
mittele spiekt en wrijving coefficients
opgeven.

In ons geval is er voor lood opgegeven

E-modulus 14000 N/mm²

\(\nu \) 0,3

\(\sigma_0 \) 15 N/mm²

(*) WORK HARD: Deze kaart geeft de gebruiker de

mogelijkheid om een spannings rek

relatie op te geven voor elastisch

plastisch materiaal gedeeld.

De "work hardening" (verskruipen) kan

doel manieren opgegeven worden.

Een manier, die hier gekozen is, is om

dei kromme op te delen in rechte lyn-

stukken.

By deze methode geeft men op:

- het aantal lynen waarmee kromme

wordt benaderd (3 in ons geval)
op welk gedeelte van het model de versteuring betrekking heeft.
De "$7" verwijst naar het property blok 1 to 47. De versteuring heeft dus alleen
betrekking op de elementen 1 t/m 47 (de blank).
Daarna volgen drie haarden waarop de helling en het startpunt van de lijnen
staan.
Deze getallen zijn berekend volgens de
methode zoals aangegeven op blz 20.
Deze methode is toegepast op de
grafiek op blz 21 en 22.
Op deze grafieken zijn ook de gebruikte
waardes op terug zijn te vinden.

BOUNDARY-

CONDITION : Geeft een lijst van randvoorwaarden
weer, op welk knooppunt ze werken en
in welke richting (1 = 2, 2 = R)

END OPTION : Sluit de reeks van
"MODEL DEFINITION CARDS" af

ad(c) LOAD INCREMENTATION CARDS

(*) AUTO LOAD : Geeft het aantal incrementen aan wat
na het elastische increment volgen.
De grootte van het increment hangt af van de school factor zoals die in opgegeven by “proportional increment”

(*) PROPORTIONAL-

INCREMEN: geeft de school factor aan waarmee het voorgaande increment vermenigvuldigd wordt.

(*) CONTINUE: Deze kaart is nodig om aan te geven dat alle data voor dit increment of serie van incrementen in gelezen is. De berekening wordt dan opgestart.

In ons geval rekenen we de volgende incrementen door, waarbij de stempel verplaatsing opgedrukt wordt:

<table>
<thead>
<tr>
<th>Incr.</th>
<th>Δh_i</th>
<th>$\sum_{i=1}^{n} \Delta h_i$</th>
<th>Load case / stap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.001</td>
<td>0.001</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.011</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>0.021</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>0.031</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>0.041</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>0.051</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0.025</td>
<td>0.076</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>0.101</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>0.116</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>0.151</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>0.176</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>0.201</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>0.226</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td>0.251</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>"</td>
<td>0.276</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>"</td>
<td>0.301</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>9.025</td>
<td>0.326</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.351</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>0.376</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0.401</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.426</td>
<td>21</td>
</tr>
</tbody>
</table>
Linear and Nonlinear Analysis
Requiring Incrementation

Load Incrementation

Connectivity
Coordinates
Boundary Conditions
Mesh Display
Etc.

Title
Sizing
Mesh Plot
Etc.

Control Cards
Main Program
and Machine
Related
Information

MODEL DEFINITION

PARAMETER

CONTROL

"MARC", Input Deck

Proportional Increment
Auto Load
Etc.
The next series of cards in this option is used for input of codes for selecting strains and stresses for plotting to be written to the post tape.

The following code is used:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>Components of strain. For rigid-perfectly plastic flow problems, components of strain rate.</td>
</tr>
<tr>
<td>7</td>
<td>Equivalent plastic strain (integral of equivalent plastic strain rate). For rigid-perfectly plastic flow problems, equivalent plastic strain rate.</td>
</tr>
<tr>
<td>8</td>
<td>Equivalent creep strain (integral of equivalent creep strain rate).</td>
</tr>
<tr>
<td>9</td>
<td>Total temperature.</td>
</tr>
<tr>
<td>10</td>
<td>Increment of temperature.</td>
</tr>
<tr>
<td>11-16</td>
<td>Components of stress.</td>
</tr>
<tr>
<td>17</td>
<td>Equivalent Mises stress.</td>
</tr>
<tr>
<td>18</td>
<td>Mean normal stress (tensile positive) for Mohr-Coulomb.</td>
</tr>
<tr>
<td>19</td>
<td>User selected variable based on stress and temperatures defined in PLOTV. See user subroutine section.</td>
</tr>
<tr>
<td>20</td>
<td>Thickness of element.</td>
</tr>
<tr>
<td>21-26</td>
<td>Components of the total plastic strain.</td>
</tr>
<tr>
<td>27</td>
<td>Total equivalent plastic strain. $\varepsilon_p = \sqrt{\frac{2}{3} \Delta \varepsilon_{ij}^p \Delta \varepsilon_{ij}^p}$</td>
</tr>
<tr>
<td>29</td>
<td>Total value of second state variable.</td>
</tr>
<tr>
<td>31-36</td>
<td>Physical components of total creep strain.</td>
</tr>
<tr>
<td>37</td>
<td>Total equivalent creep strain. $\varepsilon_c = \sqrt{\frac{2}{3} \Delta \varepsilon_{ij}^c \Delta \varepsilon_{ij}^c}$</td>
</tr>
<tr>
<td>38</td>
<td>Total swelling strain (from subroutine VSWELL).</td>
</tr>
<tr>
<td>39</td>
<td>Total value of third state variable.</td>
</tr>
<tr>
<td>40</td>
<td>Higher order contribution obtained from QUALIFY option.</td>
</tr>
<tr>
<td>41-46</td>
<td>Components of Cauchy stress.</td>
</tr>
<tr>
<td>47</td>
<td>Equivalent Cauchy stress.</td>
</tr>
<tr>
<td>48</td>
<td>Strain energy; for elements with Mooney material only.</td>
</tr>
</tbody>
</table>
DEFINITION OF WORK-HARDENING SLOPES

Work-hardening slopes must be input for uniaxial stress data as change in stress per unit of plastic strain (see the diagram below):

![Diagram showing work-hardening slopes](image)

Figure A2.5-3 Work Hardening Slopes

1st work hardening slope = \(\frac{\Delta \sigma_1}{\Delta \varepsilon_1^p} \), breakpoint = 0.0

2nd work hardening slope = \(\frac{\Delta \sigma_2}{\Delta \varepsilon_2^p} \), breakpoint = \(\Delta \varepsilon_1^p \)

3rd work hardening slope = \(\frac{\Delta \sigma_3}{\Delta \varepsilon_3^p} \), breakpoint = \(\Delta \varepsilon_1^p + \Delta \varepsilon_2^p \)

NOTE: The slopes of the work hardening curves should be based on a plot of the stress versus plastic strain curve for a tensile test. The elastic components of the stress strain curve should not be included, and the first breakpoint of the work hardening slope should be 0.0.
Load $C = 34 \text{ N/mm}^2$

$n = 0.185$

$\sigma = C (\bar{e})^n$

Relatie van Neadai

Kromme wordt benaderd door 3 rechte lijnen:

$\Delta \sigma / \Delta \bar{e}^p = 90$ breakpoint 0.0

$\Delta \sigma / \Delta \bar{e}_2 = 32.5$ breakpoint 0.075

$\Delta \sigma / \Delta \bar{e}_3 = 16.4$ breakpoint 0.175

(\bar{e} = eff. logarithmische rek)
RESULTATEN

Op 6/12 25 ziel u de benodigde rekentijd voor de analyses.

De rekentijd voor lood is 5 uur, die voor aluminium bedraagt 1 uur 40 min.

Het verschil in rekentijd zit in de sizing.

De sizing bij aluminium was groter dan bij lood, zodat kon het hele probleem mors in de computer zonder dat er tussen resultaten weg behoefde te worden geschreven. ("out of core" werken)

Dit bespaart extra tijd.

Omdat we geïnteresseerd zijn in de spanningen (en dan vooral de Qzz, omdat deze de stempelkracht bepaald) als functie van de blank radius, hebben we van de interessante stappen de vervormde mesh en de bijbehorende spanningen laten uitgeholen m.b.v. "SDC/OUTPUT DISPLAY"

Omdat gebleken is dat zowel lood als aluminium een zelfs vervormde structuur te zien geven, is maar één serie plots in dit verslag opgenomen

De opgenomen stappen (vanaf lood case 12 of increment 11)

zijn weergegeven in bylage II

De bijbehorende spanningen zijn genomen over het symmetrie vlak X=0 (z=0)
De berekeningsresultaten voor lood zijn opgenomen in bijlage III, de resultaten voor Aluminium staan in bijlage IV. Aangezien we uit kunnen gaan van verschillende blank afmetingen en verschillende materialen worden de gegeven dimensie los gemaakt. De spanningen worden dimensie los gemaakt door ze te delen door de vloei spanning.

De afrondingsstraal p wordt dimensie los gemaakt door ze te delen door de momentene blank dikte. We zetten dan in een grafiek uit bij: $0.2/0.5$ tegen P/o (zie figuur)

De factor P/o wordt verkregen door de plaatjes op te meten van bijlage IV, volgens onderstaand plaatje.

De zo verkregen resultaten zien we in de grafieken 3 en 4 op blz. 26 en 27.

De spanningen plaatjes zien er niet zo fijn uit (zie bijlage III) in de buurt van $R=20$ mm beginnen ze te slingeren. Hier komen we later nog op terug.

Voor de bepaling van $V_e/10$ hebben we gebruik gemaakt van het eerste stuk van de grafieken van bijlage III en IV.
MARC MUNT.MRCIN MUNT.MRCOUT
started at Saturday September 1, 1984 10:50:12
Volume KLAD
111105 total records
37887 records available
65.9

MARC EXECUTION BEGINS
Volume KLAD
111105 total records
37320 records available
66.4

ready at Saturday September 1, 1984 12:27:04

MARC MUNT.MRCIN MUNT.MRCOUT
started at Saturday September 1, 1984 03:00:20
Volume KLAD
111105 total records
38580 records available
65.3

MARC EXECUTION BEGINS
Volume KLAD
111105 total records
38060 records available
65.7

ready at Saturday September 1, 1984 08:02:48
\[\sigma_2 / \sigma_1 \text{ voor loop} \]

\[\sigma_2 / \sigma_1 \text{ voor Alu} \]

\[\sigma_2 / \sigma_1 \text{ schillen-methode} \]

\[\sigma_2 / \sigma_1 = \frac{3}{13} \left(1.866 + \frac{4}{5} \times \frac{1}{p} \right) \]

\[m_1 = 0 \]

\[m_2 = 1 \]

\[\rho / \sigma_1 \rightarrow \]
V Bespreking resultaten

In de grafieken 3 en 4 op blz 26 en 27 zien we dat de lijn van lood hoger ligt dan die van aluminium, ondanks dat de waarde Ω_2/Ω_1 dimensieloos is gemaakt.

De oorzaak hiervan is waarschijnlijk terug te voeren naar het feit dat lood verskeiigt en aluminium niet. Vooral bij grote deformaties (Ω_1 klein) is dit goed te zien.

De grootste deformatie vindt plaats in de hoek waar het materiaal naar toe stroomt (zie figuur 8). Door het verskeiigen zal hier de vloeigrens aanvankelijk groter zijn dan op het vlak $\Omega = 0$.

Een beeld van de vloeispanning zien we in figuur 9. Er ontstaat op het ware een hardere prop voor de uitstroom opening waardoor een grotere stempelkracht, en daardoor een grotere Ω_2 nodig zal zijn in overhouding tot de vloeigrens.

Door eventueel een grotere vloeispanning in rekening te brengen (bv. gemiddeld over de blank) kan men de grafiek van lood omlaag drukkken.
<table>
<thead>
<tr>
<th>Load Case</th>
<th>Min Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.7E+01</td>
</tr>
</tbody>
</table>

Von Mises Stress:

- 1: 1.8E+01
- 2: 3.3E+01
- 3: 2.7E+01
- 4: 3.2E+01
- 5: 3.6E+01
- 6: 4.1E+01
- 7: 4.5E+01
- 8: 5.0E+01

834

Vondeling over de bente
Vergelijking E.E.M. met experimentele resultaten

In grafiek 8 op blz 27 staan ook de experimentele gevonden data uit.

Deze experimentele gegevens zijn overgenomen uit Lit [43]. We zien dat in eerste instantie de berekenings resultaten vooral bij grote R's in de buurt liggen van de experimentele gegevens.

Echter links van de aangebrachte stippe lijn worden de verschillen steeds groter, de berekende spanningen willen te hoog uit.

De stippe lijn geeft dan ook de scheiding weer tot waar aan de kromme straal p hoog door voldoende elementen wordt beschreven.

In bijlage II is dit stap 16. Stap 17, 18 en 19 liggen links van de stippe lijn. De kromme straal p ligt hier binnen een element grens. Er is ook nauwlijks verschil te onderscheiden in de drie laatste stappen.

De constructie in dus in dit slechts van de analyse veel stijver geworden, dan het geval zou zijn geweest indien men nog een fijnere element verdeling zou hebben. Dit klopt ook met de stelling dat de E.E.M. altijd een bovengrens geeft voor de stijfheid van een constructie.
VII. **Vergelyking E.EM met de schillen methode**

In grafiek 3 op blz. 26 staat ook de grafiek uit 26 de verkregen m.b.v. de schillen methode. Voor de afleiding van de formule

\[
\sigma_2/N_2 = \frac{2}{\sqrt{3}} \left(1,866 + \frac{f_1 + m_2}{8} \times 50\right) \text{ zie uit [4]}
\]

We zien dat de grafieken hetzelfde verloop vertonen. De legging van de lijn zoowel als verkregen is m.b.v. de schillen methode wordt bepaald door de \((f_1 + m_2)\) waarde. Hier in de grafiek getekend voor \(f_1 + m_2 = 1\). Aangezien de schillen methode uitgaat van een vrije verkeerde materiaal kan de lijn het best vergeleken worden met de lijn van Aluminium.

Men zou kunnen concluderen dat de waarde van \(f_1 + m_2\) kleiner dan 1 zou moeten zijn.

In feite verschilt de eindige elementen methode een uitspraak over de grootte van deze in de schillen methode willekeurig te kiezen grootte.

De schillen methode gaat uit van star-plastisch materiaal, de E.EM rekenelt elastisch-plastisch. De E.EM krygt dan nog een eindige waarde voor de spanning wanneer de grondige helaal opgevuld zou zijn. Indien men het punt met de grootste \(f_1/m_2\) van de Alu-kromme buiten beschouwing laat om eender genoemde redenen, dan loopt de lijn verkregen m.b.v. de schillen methode harder omhoog.
VIII Vergelyking EEM met Raster opname.

In figuur 10 op bladzijde u een raster foto van een door midden gesneden platine.
Het gaat om beeld van de deformatie zoals die in werkelijkheid opgetreden is.

Fig () stap 16 uit bylase II gaat het beeld zoals de vernormal structuur uitgerekend is
Opvallend is hierbij element no 6 (zie ook fig 4)

![Diagram](image)

We zien dat punt A achter blijft bij punt B.
Dit zien we ook terug in de raster foto bij het element aangegeven met de pyl.

Dit kan bij het experiment aan de vrijing gelegen hebben. De berekening in achter vrijings loos uitgevoerd, waarvoor er naar een andere oorzaak gezocht moet worden.

Een andere oorzaak kan zijn het op treden van zijn doode zones. Door deze doode zone blijft de snelheid van punt A achter bij die van punt B (zie onder)
Verder kunnen aan de hand van de vervormde vierkantjes globaal de E bepalen in de platine. We doen dit voor de met dubbele punt aangegeven vervormde vierkant. (fig 10) De plaats van dit gebiedje is globaal weergegeven in fig 8 door het ingekende vierkant.

Door te rekenen over een diagonaal en aan te nemen dat dit een hoofdrichting is komen we op een logarithmische reek van ln 15 ≈ 0,67. Deze waarde ligt in de buurt van de waardes uitgerekend in het vierkant op blz 29.

Hierbij moet nog opgemerkt worden dat het niet exact te achterhalen is of de stadia van deformatie van bepaalde figuren gelijk zijn (dus de zelfte p hebben). Uit de raster foto is niet te achterhalen of de rekken van 0,81 in werkelijkheid ook voor komen.
fig 10

Rasteropname

aöergenomen uit 66[4]
Opmerkingen over slingeringen O- grafieken

De spanningen grafieken van bijlage III en IV vertonen een opslagregeling in de buurt van R = 20 mm.

(Cf ook fig 6)

Dit opslagregeling gebeurt juist daar waar de elementen van langwerpige rechthoeken overgaan naar een soort Wyber norm.

Het zou dus kunnen dat er een interpretatie fout bestaat tussen de berekende gegevens van "17,18c" en het nalaag programma "SORC/OUTPUT DISPLAY". "MARC" werkt nl. met in dit geval 9 integratieranden in het element. "SORC/OUTPUT DISPLAY" gebruikt voor zijn plaatsjes de 8 knooppunten op de rand.

By de rechthoeken liggen de integratieranden mos gelegendarig verdeeld, en bovendien heerst er in dat gedeelte van de mesh een uniforme spanning verdeelning.

Een verhaal fout zal in het eerste deel niet opvallen.

Indien er een verhaal fout zit tussen deze twee programma's zal deel het sterkst tot uiting komen by de wijzer vormige elementen.

Een andere oorzaak zou de legging van de maximale verplaatsing in R richting over het vlak x=0 zijn.

Bykijken we figuur 11 op blz 38 dan zien we dat de maximale verplaatsing ook in de buurt van R = 20 mm optreedt.
We kunnen hierdoor het probleem opsplitsen in twee problemen m.a.w.

\[I \quad \begin{array}{c}
\begin{array}{c}
O_z \\
\downarrow u
\end{array}
\end{array} \quad P \quad \begin{array}{c}
\begin{array}{c}
\downarrow u
\end{array}
\end{array} \quad O_z \\
\]

In gebied I geldt: \(|p| = 10 \pi > 10 \pi \)

In gebied II geldt: \(|p| = 10 \pi < 10 \pi \)

We krijgen dus een vrij sterke gradient van \(\varepsilon \) over de \(R \)-richting.

De schillemethode geeft onderstaande oplossing

\[\begin{array}{c}
\begin{array}{c}
\uparrow O_x \\
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\uparrow O_x \\
\end{array}
\end{array} \quad O_z \\
\]

\[I \quad II \]

De spannings sprong wordt hier opgelopen door een schuifspanning \(\tau \) in \(z \)-richting die vrij lokaal werkt.

Dit beeld is evenzins terug te vinden in figuur 12 blz 41 waar de schuifspanning in uitgezet.

Het zou kunnen dat more deze snelle grofwijken niet goed kan beschrijven. De fout kan dus in de oplossing-procedure zitten.
Bovendien moet opgemerkt worden dat de slingeringen alleen optreden bij de plastische incrementen. Het hiërbelement (elastische begin stap) geeft mooie continue spanningsplaatsjes (niet opgenomen in verslag). Dit pleit voor het converter programma wat dan wel in staat is om de data uit de integratiepunten te transformeren naar de element knooppunten.
CONCLUSIES
De enzige elementen methode geeft een goede benadering voor het verplaatsings- en ruimteveld.

Over de nauwkeurigheid van de spanningen kan in dit stadium nog geen uitspraak gedaan worden.

In de eerste plaats ligt de oorzaak van het slingeren van de spanningen nog niet vast.

In de tweede plaats is blijkenbaar de spanning in het eerste stuk van de grafiek toch uitsluitend nauwkeurig om de grafieken om te bepalen, welke weer redelijk overeen komen met de andere berekenings methode.

Het is echter de moeite waard om uit te zoeken waar de slingeringen van komen.

We kunnen dan ook een uitspraak doen over de Or op de moot ring. Door het slingerende karakter (zie fig.13) kan hier geen juist uitspraak over gedaan worden.
DISTANCE BETWEEN NODES

LOAD CASE: 0
YY - STRESS

LOAD CASE: 0.15
XX - STRESS
LITERATUURLIJST

[1] Hans Leysen,
SDRC software als pre- en postprocessor
in combinatie met het MARC-pakket.
Een eenvoudig voorbeeld. Jan 1984

User manual Volume A, B en C

[3] SDRC/USERS MANUAL FOR MODEL CREATION
CROSS-SECTION ANALYSIS AND OUTPUT DISPLAY

Toetsen van rekenmodellen voor inwendige
spanningen aan experimentele waarden bij
het munten.
wpb. rapport nr 0114 aug. 84
Bylage I

MARC INVOER.
TITLE MUNTPROEF
SIZING 200000
ELEMENTS 12 28
ALL POINTS
UPDATE
FINITE
END
POST
14, 16, 17, 0, 1,
1,
2,
3,
4,
7,
11,
12,
13,
14,
21,
22,
23,
24,
27,
CONTROL
30, 30,
0.05,
PRINT CHOICE
1, 1,
1, 1,
1, 1,
COORDINATES
<table>
<thead>
<tr>
<th>3</th>
<th>240</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>4.1529</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.5417</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>1.0833</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>11.5737</td>
<td>0.0000</td>
</tr>
<tr>
<td>7</td>
<td>0.5417</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>1.0833</td>
<td>4.1529</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>1.6250</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>0.0000</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>1.0833</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>12</td>
<td>2.1667</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>17.5458</td>
<td>0.0000</td>
</tr>
<tr>
<td>14</td>
<td>0.5417</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>15</td>
<td>1.0833</td>
<td>11.5737</td>
<td>0.0000</td>
</tr>
<tr>
<td>16</td>
<td>1.6250</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>17</td>
<td>2.1667</td>
<td>4.1529</td>
<td>0.0000</td>
</tr>
<tr>
<td>18</td>
<td>2.7083</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>19</td>
<td>0.0000</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>1.0833</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>21</td>
<td>2.1667</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>22</td>
<td>3.2500</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.0000</th>
<th>20.7917</th>
<th>0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>0.5417</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>25</td>
<td>0.8287</td>
<td>21.0787</td>
<td>0.0000</td>
</tr>
<tr>
<td>26</td>
<td>1.0833</td>
<td>17.5458</td>
<td>0.0000</td>
</tr>
<tr>
<td>27</td>
<td>1.6250</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>28</td>
<td>2.1667</td>
<td>11.5737</td>
<td>0.0000</td>
</tr>
<tr>
<td>29</td>
<td>2.7083</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>30</td>
<td>3.2500</td>
<td>4.1529</td>
<td>0.0000</td>
</tr>
<tr>
<td>31</td>
<td>3.7020</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>32</td>
<td>0.0000</td>
<td>21.3333</td>
<td>0.0000</td>
</tr>
<tr>
<td>33</td>
<td>1.0833</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>34</td>
<td>1.6574</td>
<td>21.9074</td>
<td>0.0000</td>
</tr>
<tr>
<td>35</td>
<td>2.1667</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>36</td>
<td>3.2500</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>37</td>
<td>4.1540</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>38</td>
<td>0.0000</td>
<td>21.8750</td>
<td>0.0000</td>
</tr>
<tr>
<td>39</td>
<td>0.8075</td>
<td>21.9064</td>
<td>0.0000</td>
</tr>
<tr>
<td>40</td>
<td>1.6250</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>41</td>
<td>1.6564</td>
<td>21.0575</td>
<td>0.0000</td>
</tr>
<tr>
<td>42</td>
<td>1.9486</td>
<td>21.8871</td>
<td>0.0000</td>
</tr>
<tr>
<td>43</td>
<td>1.6371</td>
<td>22.1986</td>
<td>0.0000</td>
</tr>
<tr>
<td>44</td>
<td>2.2037</td>
<td>22.4537</td>
<td>0.0000</td>
</tr>
<tr>
<td>45</td>
<td>2.1667</td>
<td>17.5458</td>
<td>0.0000</td>
</tr>
<tr>
<td>46</td>
<td>2.7083</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>47</td>
<td>3.7020</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>48</td>
<td>3.2500</td>
<td>11.5737</td>
<td>0.0000</td>
</tr>
<tr>
<td>49</td>
<td>4.1540</td>
<td>4.1529</td>
<td>0.0000</td>
</tr>
<tr>
<td>50</td>
<td>4.4520</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>51</td>
<td>0.0000</td>
<td>22.4167</td>
<td>0.0000</td>
</tr>
<tr>
<td>52</td>
<td>1.6150</td>
<td>22.4795</td>
<td>0.0000</td>
</tr>
<tr>
<td>53</td>
<td>2.1667</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>54</td>
<td>2.2295</td>
<td>21.8650</td>
<td>0.0000</td>
</tr>
<tr>
<td>55</td>
<td>2.7500</td>
<td>23.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>56</td>
<td>3.2500</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>57</td>
<td>4.1540</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>58</td>
<td>4.7500</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>59</td>
<td>0.0000</td>
<td>22.9583</td>
<td>0.0000</td>
</tr>
<tr>
<td>60</td>
<td>0.7826</td>
<td>22.7135</td>
<td>0.0000</td>
</tr>
<tr>
<td>61</td>
<td>2.0932</td>
<td>22.8230</td>
<td>0.0000</td>
</tr>
<tr>
<td>62</td>
<td>1.5910</td>
<td>22.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>63</td>
<td>2.7083</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>64</td>
<td>2.4635</td>
<td>21.0325</td>
<td>0.0000</td>
</tr>
<tr>
<td>65</td>
<td>2.5001</td>
<td>21.8410</td>
<td>0.0000</td>
</tr>
<tr>
<td>66</td>
<td>2.5731</td>
<td>22.3491</td>
<td>0.0000</td>
</tr>
<tr>
<td>67</td>
<td>2.9760</td>
<td>23.2260</td>
<td>0.0000</td>
</tr>
<tr>
<td>68</td>
<td>2.6667</td>
<td>23.0833</td>
<td>0.0000</td>
</tr>
<tr>
<td>69</td>
<td>2.8333</td>
<td>22.9167</td>
<td>0.0000</td>
</tr>
<tr>
<td>70</td>
<td>3.2500</td>
<td>17.5458</td>
<td>0.0000</td>
</tr>
<tr>
<td>71</td>
<td>3.7020</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>72</td>
<td>4.1540</td>
<td>11.5737</td>
<td>0.0000</td>
</tr>
<tr>
<td>73</td>
<td>4.4520</td>
<td>8.3058</td>
<td>0.0000</td>
</tr>
<tr>
<td>74</td>
<td>4.7500</td>
<td>4.1529</td>
<td>0.0000</td>
</tr>
<tr>
<td>75</td>
<td>0.0000</td>
<td>23.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>76</td>
<td>1.5651</td>
<td>23.0103</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>77</td>
<td>2.5833</td>
<td>23.1667</td>
<td>0.0000</td>
</tr>
<tr>
<td>78</td>
<td>3.2500</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>79</td>
<td>2.7603</td>
<td>21.8151</td>
<td>0.0000</td>
</tr>
<tr>
<td>80</td>
<td>2.9167</td>
<td>22.8333</td>
<td>0.0000</td>
</tr>
<tr>
<td>81</td>
<td>3.2020</td>
<td>23.4520</td>
<td>0.0000</td>
</tr>
<tr>
<td>82</td>
<td>3.2500</td>
<td>21.0039</td>
<td>0.0000</td>
</tr>
<tr>
<td>83</td>
<td>3.0103</td>
<td>21.7874</td>
<td>0.0000</td>
</tr>
<tr>
<td>84</td>
<td>2.9218</td>
<td>22.2409</td>
<td>0.0000</td>
</tr>
<tr>
<td>85</td>
<td>3.1954</td>
<td>23.0066</td>
<td>0.0000</td>
</tr>
<tr>
<td>86</td>
<td>3.0000</td>
<td>22.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>87</td>
<td>3.3111</td>
<td>23.3229</td>
<td>0.0000</td>
</tr>
<tr>
<td>88</td>
<td>3.0730</td>
<td>23.5810</td>
<td>0.0000</td>
</tr>
<tr>
<td>89</td>
<td>3.3510</td>
<td>23.6010</td>
<td>0.0000</td>
</tr>
<tr>
<td>90</td>
<td>4.1540</td>
<td>24.0040</td>
<td>0.0000</td>
</tr>
<tr>
<td>91</td>
<td>4.7500</td>
<td>24.8415</td>
<td>0.0000</td>
</tr>
<tr>
<td>92</td>
<td>1.5078</td>
<td>23.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>93</td>
<td>0.0000</td>
<td>24.4040</td>
<td>0.0000</td>
</tr>
<tr>
<td>94</td>
<td>2.4167</td>
<td>23.3333</td>
<td>0.0000</td>
</tr>
<tr>
<td>95</td>
<td>2.9439</td>
<td>23.7101</td>
<td>0.0000</td>
</tr>
<tr>
<td>96</td>
<td>4.1540</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>97</td>
<td>3.2500</td>
<td>21.7578</td>
<td>0.0000</td>
</tr>
<tr>
<td>98</td>
<td>3.0833</td>
<td>22.6667</td>
<td>0.0000</td>
</tr>
<tr>
<td>99</td>
<td>3.4601</td>
<td>23.1939</td>
<td>0.0000</td>
</tr>
<tr>
<td>100</td>
<td>3.5000</td>
<td>23.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>101</td>
<td>4.7500</td>
<td>24.8415</td>
<td>0.0000</td>
</tr>
<tr>
<td>102</td>
<td>1.5078</td>
<td>23.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>103</td>
<td>0.0000</td>
<td>24.4040</td>
<td>0.0000</td>
</tr>
<tr>
<td>104</td>
<td>2.4167</td>
<td>23.3333</td>
<td>0.0000</td>
</tr>
<tr>
<td>105</td>
<td>2.9439</td>
<td>23.7101</td>
<td>0.0000</td>
</tr>
<tr>
<td>106</td>
<td>4.1540</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>107</td>
<td>3.2500</td>
<td>21.7578</td>
<td>0.0000</td>
</tr>
<tr>
<td>108</td>
<td>3.0833</td>
<td>22.6667</td>
<td>0.0000</td>
</tr>
<tr>
<td>109</td>
<td>3.4601</td>
<td>23.1939</td>
<td>0.0000</td>
</tr>
<tr>
<td>110</td>
<td>3.5000</td>
<td>23.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>111</td>
<td>4.7500</td>
<td>14.8416</td>
<td>0.0000</td>
</tr>
<tr>
<td>112</td>
<td>1.8789</td>
<td>23.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>113</td>
<td>1.5078</td>
<td>23.9520</td>
<td>0.0000</td>
</tr>
<tr>
<td>114</td>
<td>0.7539</td>
<td>24.4040</td>
<td>0.0000</td>
</tr>
<tr>
<td>115</td>
<td>0.0000</td>
<td>24.7020</td>
<td>0.0000</td>
</tr>
<tr>
<td>116</td>
<td>2.3333</td>
<td>23.4167</td>
<td>0.0000</td>
</tr>
<tr>
<td>117</td>
<td>2.5207</td>
<td>23.6813</td>
<td>0.0000</td>
</tr>
<tr>
<td>118</td>
<td>3.0751</td>
<td>23.8769</td>
<td>0.0000</td>
</tr>
<tr>
<td>119</td>
<td>2.7933</td>
<td>23.8607</td>
<td>0.0000</td>
</tr>
<tr>
<td>120</td>
<td>4.1540</td>
<td>21.0039</td>
<td>0.0000</td>
</tr>
<tr>
<td>121</td>
<td>4.4520</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>122</td>
<td>3.7020</td>
<td>21.7577</td>
<td>0.0000</td>
</tr>
<tr>
<td>123</td>
<td>3.2500</td>
<td>22.1289</td>
<td>0.0000</td>
</tr>
<tr>
<td>124</td>
<td>3.4313</td>
<td>22.7707</td>
<td>0.0000</td>
</tr>
<tr>
<td>125</td>
<td>3.1667</td>
<td>22.5833</td>
<td>0.0000</td>
</tr>
<tr>
<td>126</td>
<td>3.6269</td>
<td>23.3251</td>
<td>0.0000</td>
</tr>
<tr>
<td>127</td>
<td>3.6107</td>
<td>23.0433</td>
<td>0.0000</td>
</tr>
<tr>
<td>128</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>129</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>130</td>
<td>3.3562</td>
<td>23.8938</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>131</td>
<td>3.6438</td>
<td>23.6062</td>
<td>0.0000</td>
</tr>
<tr>
<td>132</td>
<td>4.7500</td>
<td>17.5458</td>
<td>0.0000</td>
</tr>
<tr>
<td>133</td>
<td>2.2500</td>
<td>23.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>134</td>
<td>1.5078</td>
<td>24.4040</td>
<td>0.0000</td>
</tr>
<tr>
<td>135</td>
<td>0.0000</td>
<td>25.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>136</td>
<td>2.6427</td>
<td>24.0113</td>
<td>0.0000</td>
</tr>
<tr>
<td>137</td>
<td>3.2124</td>
<td>24.0376</td>
<td>0.0000</td>
</tr>
<tr>
<td>138</td>
<td>4.1540</td>
<td>21.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>139</td>
<td>4.7500</td>
<td>20.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>140</td>
<td>3.2500</td>
<td>22.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>141</td>
<td>3.7613</td>
<td>22.8927</td>
<td>0.0000</td>
</tr>
<tr>
<td>142</td>
<td>3.7876</td>
<td>23.4624</td>
<td>0.0000</td>
</tr>
<tr>
<td>143</td>
<td>-0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>144</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>145</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>146</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>147</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>148</td>
<td>2.2500</td>
<td>23.9520</td>
<td>0.0000</td>
</tr>
<tr>
<td>149</td>
<td>1.5078</td>
<td>24.7020</td>
<td>0.0000</td>
</tr>
<tr>
<td>150</td>
<td>2.4463</td>
<td>24.2077</td>
<td>0.0000</td>
</tr>
<tr>
<td>151</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>152</td>
<td>2.2500</td>
<td>23.6062</td>
<td>0.0000</td>
</tr>
<tr>
<td>153</td>
<td>4.7500</td>
<td>17.5458</td>
<td>0.0000</td>
</tr>
<tr>
<td>154</td>
<td>2.2500</td>
<td>23.9520</td>
<td>0.0000</td>
</tr>
<tr>
<td>155</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>156</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>157</td>
<td>3.0216</td>
<td>24.2284</td>
<td>0.0000</td>
</tr>
<tr>
<td>158</td>
<td>4.1540</td>
<td>22.1289</td>
<td>0.0000</td>
</tr>
<tr>
<td>159</td>
<td>4.2307</td>
<td>21.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>160</td>
<td>4.7500</td>
<td>21.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>161</td>
<td>3.7020</td>
<td>22.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>162</td>
<td>3.9577</td>
<td>22.6963</td>
<td>0.0000</td>
</tr>
<tr>
<td>163</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>164</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>165</td>
<td>3.9784</td>
<td>23.2716</td>
<td>0.0000</td>
</tr>
<tr>
<td>166</td>
<td>3.5000</td>
<td>26.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>167</td>
<td>6.2500</td>
<td>23.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>168</td>
<td>1.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>169</td>
<td>-0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>170</td>
<td>-0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>171</td>
<td>1.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>172</td>
<td>2.2500</td>
<td>24.4040</td>
<td>0.0000</td>
</tr>
<tr>
<td>173</td>
<td>1.5078</td>
<td>25.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>174</td>
<td>2.8308</td>
<td>24.4192</td>
<td>0.0000</td>
</tr>
<tr>
<td>175</td>
<td>-0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>176</td>
<td>1.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>177</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>178</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>179</td>
<td>4.1540</td>
<td>22.5000</td>
<td>0.0000</td>
</tr>
<tr>
<td>180</td>
<td>4.7500</td>
<td>21.7577</td>
<td>0.0000</td>
</tr>
<tr>
<td>181</td>
<td>4.1692</td>
<td>23.0808</td>
<td>0.0000</td>
</tr>
<tr>
<td>182</td>
<td>4.1962</td>
<td>23.0808</td>
<td>0.0000</td>
</tr>
<tr>
<td>183</td>
<td>-0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>184</td>
<td>1.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>239</td>
<td>240</td>
<td>25.0000</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
</tr>
</tbody>
</table>

CONNECTIVITY

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>110</td>
<td>137</td>
<td>105</td>
<td>81</td>
<td>130</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>137</td>
<td>175</td>
<td>136</td>
<td>105</td>
<td>157</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>175</td>
<td>209</td>
<td>173</td>
<td>136</td>
<td>195</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>81</td>
<td>105</td>
<td>77</td>
<td>55</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>105</td>
<td>136</td>
<td>104</td>
<td>77</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>136</td>
<td>173</td>
<td>133</td>
<td>104</td>
<td>154</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>133</td>
<td>173</td>
<td>134</td>
<td>102</td>
<td>149</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>173</td>
<td>209</td>
<td>174</td>
<td>134</td>
<td>191</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>102</td>
<td>134</td>
<td>103</td>
<td>75</td>
<td>113</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>134</td>
<td>174</td>
<td>135</td>
<td>103</td>
<td>150</td>
</tr>
<tr>
<td>11</td>
<td>28</td>
<td>55</td>
<td>77</td>
<td>52</td>
<td>34</td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>28</td>
<td>77</td>
<td>104</td>
<td>76</td>
<td>52</td>
<td>88</td>
</tr>
<tr>
<td>13</td>
<td>28</td>
<td>104</td>
<td>133</td>
<td>102</td>
<td>76</td>
<td>116</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>34</td>
<td>52</td>
<td>32</td>
<td>19</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>28</td>
<td>52</td>
<td>76</td>
<td>51</td>
<td>32</td>
<td>62</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>76</td>
<td>102</td>
<td>75</td>
<td>51</td>
<td>87</td>
</tr>
<tr>
<td>17</td>
<td>28</td>
<td>55</td>
<td>34</td>
<td>54</td>
<td>80</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>34</td>
<td>19</td>
<td>33</td>
<td>54</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>80</td>
<td>54</td>
<td>79</td>
<td>108</td>
<td>66</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>54</td>
<td>33</td>
<td>53</td>
<td>79</td>
<td>41</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
<td>103</td>
<td>79</td>
<td>107</td>
<td>140</td>
<td>93</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>79</td>
<td>53</td>
<td>78</td>
<td>107</td>
<td>64</td>
</tr>
<tr>
<td>23</td>
<td>28</td>
<td>110</td>
<td>81</td>
<td>109</td>
<td>142</td>
<td>98</td>
</tr>
<tr>
<td>24</td>
<td>28</td>
<td>81</td>
<td>55</td>
<td>80</td>
<td>109</td>
<td>67</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>142</td>
<td>109</td>
<td>141</td>
<td>182</td>
<td>126</td>
</tr>
<tr>
<td>26</td>
<td>28</td>
<td>109</td>
<td>80</td>
<td>108</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>182</td>
<td>141</td>
<td>180</td>
<td>216</td>
<td>162</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>141</td>
<td>108</td>
<td>140</td>
<td>180</td>
<td>124</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>216</td>
<td>180</td>
<td>138</td>
<td>181</td>
<td>200</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>180</td>
<td>140</td>
<td>107</td>
<td>138</td>
<td>161</td>
</tr>
<tr>
<td>31</td>
<td>28</td>
<td>181</td>
<td>138</td>
<td>106</td>
<td>139</td>
<td>159</td>
</tr>
<tr>
<td>32</td>
<td>28</td>
<td>138</td>
<td>107</td>
<td>78</td>
<td>106</td>
<td>122</td>
</tr>
<tr>
<td>33</td>
<td>28</td>
<td>78</td>
<td>53</td>
<td>35</td>
<td>56</td>
<td>63</td>
</tr>
<tr>
<td>34</td>
<td>28</td>
<td>53</td>
<td>33</td>
<td>20</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>33</td>
<td>19</td>
<td>10</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>36</td>
<td>28</td>
<td>56</td>
<td>35</td>
<td>21</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>37</td>
<td>28</td>
<td>35</td>
<td>20</td>
<td>11</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>38</td>
<td>28</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>39</td>
<td>28</td>
<td>36</td>
<td>21</td>
<td>12</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>21</td>
<td>11</td>
<td>5</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>41</td>
<td>28</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>42</td>
<td>28</td>
<td>78</td>
<td>56</td>
<td>82</td>
<td>106</td>
<td>70</td>
</tr>
<tr>
<td>43</td>
<td>28</td>
<td>56</td>
<td>36</td>
<td>57</td>
<td>82</td>
<td>48</td>
</tr>
<tr>
<td>44</td>
<td>28</td>
<td>36</td>
<td>22</td>
<td>37</td>
<td>57</td>
<td>30</td>
</tr>
<tr>
<td>45</td>
<td>28</td>
<td>106</td>
<td>82</td>
<td>111</td>
<td>139</td>
<td>99</td>
</tr>
<tr>
<td>46</td>
<td>28</td>
<td>82</td>
<td>57</td>
<td>83</td>
<td>111</td>
<td>72</td>
</tr>
<tr>
<td>47</td>
<td>28</td>
<td>57</td>
<td>37</td>
<td>58</td>
<td>83</td>
<td>49</td>
</tr>
<tr>
<td>48</td>
<td>12</td>
<td>204</td>
<td>219</td>
<td>231</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>12</td>
<td>182</td>
<td>202</td>
<td>217</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>166</td>
<td>185</td>
<td>207</td>
<td>221</td>
<td></td>
</tr>
</tbody>
</table>
PROPERTY
25
0.140E 05 0.300E 00 0.000E 00 0.000E 00 0.000E 00 0.150E 02 0.000E 00
1 1 TO 47
0.290E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 48 TO 48
0.581E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 49 TO 49
0.772E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 50 TO 50
0.962E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 51 TO 51
0.111E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 52 TO 52
0.125E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 53 TO 53
0.139E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 54 TO 54
0.154E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 55 TO 55
0.173E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0 56 TO 56
0.192E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
57 TO 57
0.221E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
58 TO 58
0.250E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
59 TO 59
0.290E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
60 TO 60
0.518E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
61 TO 61
0.572E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
62 TO 62
0.962E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
63 TO 63
0.111E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
64 TO 64
0.125E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
65 TO 65
0.139E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
66 TO 66
0.154E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
67 TO 67
0.173E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
68 TO 68
0.192E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
69 TO 69
0.221E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
70 TO 70
0.250E 01 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
0
71 TO 71
WORK HARD
3, 1,
90, 0.0,
32.5, 0.075,
14.4, 0.175,
GEOMETRY
2
0.100E 01 0.100E 02 0.000E 00 0.000E 00 0.000E 00 0.000E 00
1 TO 47
0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00 0.000E 00
OLD
BOUNDARY CONDITIONS

92
1 1 1 1 0.000000E 00
1 1 2 2 0.000000E 00
2 2 1 1 0.000000E 00
3 3 2 2 0.000000E 00
4 4 1 1 0.000000E 00
5 5 2 2 0.000000E 00
6 6 1 1 0.000000E 00
9 9 2 2 0.000000E 00
10 10 1 1 0.000000E 00
12 12 2 2 0.000000E 00
13 13 1 1 0.000000E 00
18 18 2 2 0.000000E 00
19 19 1 1 0.000000E 00
22 22 2 2 0.000000E 00
23 23 1 1 0.000000E 00
31 31 2 2 0.000000E 00
32 32 1 1 0.000000E 00
37 37 2 2 0.000000E 00
38 38 1 1 0.000000E 00
50 50 2 2 0.000000E 00
51 51 1 1 0.000000E 00
58 58 1 1 -0.100000E-02
58 58 2 2 0.000000E 00
59 59 1 1 0.000000E 00
74 74 1 1 -0.100000E-02
75 75 1 1 0.000000E 00
83 83 1 1 -0.100000E-02
85 85 1 1 0.000000E 00
101 101 1 1 -0.100000E-02
103 103 1 1 0.000000E 00
111 111 1 1 -0.100000E-02
115 115 1 1 0.000000E 00
132 132 1 1 -0.100000E-02
135 135 1 1 0.000000E 00
135 135 2 2 0.000000E 00
139 139 1 1 -0.100000E-02
152 152 2 2 0.000000E 00
160 160 1 1 -0.100000E-02
167 167 1 1 0.000000E 00
167 167 2 2 0.000000E 00
168 168 1 1 -0.100000E-02
168 168 2 2 0.000000E 00
174 174 2 2 0.000000E 00
181 181 1 1 -0.100000E-02
187 187 1 1 0.000000E 00
187 187 2 2 0.000000E 00
188 188 1 1 -0.100000E-02
188 188 2 2 0.000000E 00
189 189 1 1 -0.100000E-02
189 189 2 2 0.000000E 00
190 190 1 1 0.000000E 00
190 190 2 2 0.000000E 00
192 192 2 2 0.000000E 00
196 196 1 1 -0.100000E-02
196 196 2 2 0.000000E 00
197 197 1 1 0.000000E 00
197 197 2 2 0.000000E 00
201 201 1 1 -0.100000E-02
205 205 1 1 -0.100000E-02
205 205 2 2 0.000000E 00
206 206 1 1 0.000000E 00
206 206 2 2 0.000000E 00
209 209 2 2 0.000000E 00
214 214 1 1 0.000000E 00
214 214 2 2 0.000000E 00
215 215 1 1 -0.100000E-02
215 215 2 2 0.000000E 00
216 216 1 1 -0.100000E-02
221 221 1 1 -0.100000E-02
221 221 2 2 0.000000E 00
222 222 1 1 0.000000E 00
222 222 2 2 0.000000E 00
224 224 1 1 -0.100000E-02
224 224 2 2 0.000000E 00
225 225 1 1 0.000000E 00
225 225 2 2 0.000000E 00
229 229 1 1 -0.100000E-02
229 229 2 2 0.000000E 00
230 230 1 1 0.000000E 00
230 230 2 2 0.000000E 00
234 234 1 1 0.000000E 00
234 234 2 2 0.000000E 00
235 235 1 1 -0.100000E-02
235 235 2 2 0.000000E 00
237 237 1 1 -0.100000E-02
237 237 2 2 0.000000E 00
238 238 1 1 0.000000E 00
238 238 2 2 0.000000E 00
239 239 1 1 -0.100000E-02
239 239 2 2 0.000000E 00
240 240 1 1 0.000000E 00
240 240 2 2 0.000000E 00

NEW
END OPTION
AUTO LOAD
5,
PROPORTIONAL INCREMENT
0,10,
CONTINUE
AUTO LOAD
15,
PROPORTIONAL INCREMENT
0,2.5,
CONTINUE
Bylage II

VERVORHDE MESHES

deg aangegeven stappen
comen overeen met de stappen
door uitgevoerd op blz 16/17
STAP 10
2owel oervormd —
als onoervormd ---
Bylage III

Spanningen LooD

De aangegeven stappen komen overeen met de stappen van de vervormde meshes op bylage II

De spanningen zijn in de vorm van x-y-plots getekend

Hierbij is de x-as de afstand over de R-as vanaf R=0
VLAK X=0

Distance between nodes:

Load case: 0

XX - Stress

Load case: 013

YY - Stress
Load Case: 0

Distance Between Nodes

XX- Stress
YY- Stress
Von Mises Stress
VLAK X=0

LOAD CASE: 0

XX- STRESS

YY- STRESS

VON MISES STRESS

DISTANCE BETWEEN NODES

0.0E+00 5.0E+00 1.0E+01 1.5E+01 2.0E+01 2.5E+01
VLAK X=0

Distance between nodes vs. load case.

Load case: 0
VLAK X=0

DISTANCE BETWEEN NODES

LOAD CASE: 0 LOAD CASE: 0 LOAD CASE: 018

XX- STRESS YY- STRESS VON MISES STRESS
Step 19

VLAK X=0

DISTANCE BETWEEN NODES

LOAD CASE: 0 LOAD CASE: 0 LOAD CASE: 019
XX- STRESS YY- STRESS VON MISES STRESS
Bylage IV

Spanningen Aluminium
VLAK X=0

DISTANCE BETWEEN NODES

LOAD CASE: 0

XX - STRESS
VLAK X=0

DISTANCE BETWEEN NODES

LOAD CASE: 0
XX- STRESS
LOAD CASE = 1

VLAK X = 0

DSTANCE BETWEEN NODES

-1.7E+03
-1.6E+03
-1.5E+03
-1.4E+03
-1.3E+03
-1.2E+03
-1.1E+03
Load Case: 0
XX - Stress
VLAK X=0

Load Case: 0
XX - Stress

Distance between Nodes

Data
-1.7E+03
-1.8E+03
-1.9E+03
-2.0E+03
-2.1E+03
-2.2E+03
-2.3E+03
-2.4E+03

0.0E+00 5.0E+00 1.0E+01 1.5E+01 2.0E+01 2.5E+01