Some remarks on the stability of feeddrives with DC-motors
van der Wolf, A.C.H.; Mulders, P.C.

Published: 01/01/1978

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 07. Jan. 2019
Some remarks on the stability of feeddrives with DC-motors.

Conventionally, there are two possibilities for the control of the DC-motor:

1. Control of the armature current I_a, while the field current I_f is kept constant.

 The input signal θ_i is proportional with U_a. Basically, the system is of third order. However, assuming the self-induction L_a to be small (which is very realistic), the system becomes of second order with a transfer function:

 $$\frac{\theta_o(s)}{\theta_i(s)} = \frac{K_i}{s(1+Ts)} = G(s)$$

 Although, this transfer function on itself can not cause instability, the system is often used in combination with a thyristor ignition circuit that causes the trouble. This circuit couples a time delay e^{-sT} with the transfer function $G(s)$ as follows:
In order to give an idea of the stability situation of this feedback system, let us assume that the function $G(s)$ has a phase angle of -135 degrees (in the middle of the second quadrant in the Nyquist diagram). So, only -45 degrees is necessary for instability as far as phase is concerned. This can be achieved at very low frequencies in the thyristor circuit. For example with a 50 Hz mains voltage:

<table>
<thead>
<tr>
<th>Type of Thyristor Circuit</th>
<th>$\pi/4$</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-acting</td>
<td>$2\pi f \times 2 \times 10^{-2}$</td>
<td>6.25 Hz</td>
</tr>
<tr>
<td>Double-acting</td>
<td>$2\pi f \times 10^{-2}$</td>
<td>12.5 Hz</td>
</tr>
</tbody>
</table>

2. Control of the field current I_f, while the armature current I_a is kept constant.

The input signal θ_i is proportional with U_f. The transfer function can be written as:

$$\frac{\theta_o(s)}{\theta_i(s)} = \frac{K}{s(1+\tau_1 s)(1+\tau_2 s)}$$

τ_1 = electrical time constant,
τ_2 = mechanical time constant.

Although, it is attractive to use the field current for controlling the DC-motor because this current is smaller than the armature current, the system opens immediately possibilities for instability since the transfer function is of third order.

Conclusions:

In using DC-motors for feeddrives, there are several possibilities for instabilities. One of the topics for cooperative research in this field can be an investigation of these instabilities, how to avoid them and, perhaps, looking for new ways of control for the DC-motor. In doing this, it is of importance to look not only into the DC-motor on itself, but to consider the complete feeddrive system.