Translation invariant operators on Lp-type spaces

van Eijndhoven, S.J.L.

Published: 01/01/1994

Citation for published version (APA):
Translation invariant operators on L_p-type spaces

by

S.J.L. van Eijndhoven
Translation invariant operators on L_p-type spaces

by

S.J.L. van Eijndhoven

Summary

The continuous, translation invariant, linear operators from $L^p_{\text{loc}}(\mathbb{R})$ into $L^p_{\text{loc}}(\mathbb{R})$ and from $L^p_{\text{comp}}(\mathbb{R})$ into $L^p_{\text{comp}}(\mathbb{R})$, $1 \leq p \leq \infty$ are characterized. This characterization is in terms of the convolution ring $\mathcal{ba}_c(\mathbb{R})$ consisting of all compactly varying, right continuous functions of bounded variation. It turns out that for $p = 1$ and $p = \infty$, each translation invariant operator on $L^p_{\text{loc}}(\mathbb{R})$ leaves invariant the space $C(\mathbb{R})$ of continuous functions on \mathbb{R}.

October 1994
1 Function spaces

For $1 \leq p < \infty$ by $L^p(\mathbb{R})$ we denote the Banach space of (equivalence classes of) Lebesgue measurable functions f on \mathbb{R} for which $|f|^p$ is integrable, with associated norm

$$
\|f\|_p = \left(\int_{\mathbb{R}} |f(t)|^p \, dt \right)^{1/p}.
$$

By $L^\infty(\mathbb{R})$ we denote the Banach space of essentially bounded measurable functions on \mathbb{R} with norm

$$
\|f\|_\infty = \text{ess}\sup_{t \in \mathbb{R}} |f(t)|.
$$

For $1 \leq p < \infty$ and $1 < q \leq \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$, the Banach space $L^q(\mathbb{R})$ represents the dual of $L^p(\mathbb{R})$ in the sense that each continuous linear functional F on $L^p(\mathbb{R})$ is of the form

$$
F(g) = \int_{\mathbb{R}} g(t)f(t) \, dt
$$

where $f \in L^q(\mathbb{R})$ with $\|F\|_p = \|f\|_q$.

For $A \subset \mathbb{R}$ let 1_A denote the characteristic function of the set A. The space $L^p_{\text{loc}}(\mathbb{R}))$, $1 \leq p \leq \infty$, consists of all measurable functions f on \mathbb{R} for which $f \cdot 1_A$ belongs to $L^p(\mathbb{R})$ for all bounded Borel sets $A \subset \mathbb{R}$. The locally convex topology for $L^p_{\text{loc}}(\mathbb{R})$ is brought about by the countable set of seminorms $\{s_{p,n} \mid n \in \mathbb{N}\}$ defined by

$$
s_{p,n}(f) = \|f1_{[-n,n]}\|_p.
$$

Thus $L^p_{\text{loc}}(\mathbb{R})$ is a complete metrizable locally convex space, i.e. a Frechet space. A linear functional F on $L^p_{\text{loc}}(\mathbb{R})$ is continuous if and only if there are $n \in \mathbb{N}$ and $C > 0$ (both depending on the choice of F) such that

$$
|F(g)| \leq Cs_{p,n}(g), \quad \forall g \in L^p_{\text{loc}}(\mathbb{R}).
$$

The space $L^p_{\text{comp}}(\mathbb{R})$ is the subspace of $L^p(\mathbb{R})$ consisting of all $f \in L^p(\mathbb{R})$ for which $f = f \cdot 1_K$ for some compact set $K \subset \mathbb{R}$, i.e. for which the support $\text{supp}(f)$ is bounded. Introducing the Banach subspaces $L^p_n(\mathbb{R})$ of $L^p(\mathbb{R})$ by

$$
f \in L^p_n(\mathbb{R}) : \iff f \in L^p(\mathbb{R}) \text{ with } \text{supp}(f) \subset [-n,n]
$$

we have

$$
L^p_{\text{comp}}(\mathbb{R}) = \bigcup_{n=1}^{\infty} L^p_n(\mathbb{R}).
$$
So, most naturally, $L^p_{\text{comp}}(\mathbb{R})$ carries the (strict) inductive limit topology generated by the strict inductive system of Banach spaces $\{L^p_n(\mathbb{R}) \mid n \in \mathbb{N}\}$, i.e. $L^p_{\text{comp}}(\mathbb{R})$ is a strict LB-space. (For a transparent introduction of strict inductive limits see [Co, Ch. IV].) Therefore, a linear functional F on $L^p_{\text{comp}}(\mathbb{R})$ is continuous if and only if the restriction of F to each $L^p_n(\mathbb{R})$ is continuous. Identifying $L^p_n(\mathbb{R})$ and $L^p([-n, n])$ and having in mind that for $1 \leq p < \infty$, $L^q([-n, n])$ represents the dual of $L^p([-n, n])$ it can be proved that each continuous linear function F on $L^p_{\text{comp}}(\mathbb{R})$ is of the form

\[(1.3) \quad F(g) = \int_{\mathbb{R}} f(t)g(t)dt, \quad g \in L^p_{\text{comp}}(\mathbb{R})\]

for some $f \in L^q_{\text{loc}}(\mathbb{R})$ where $\|F|_{L^p_{\text{loc}}(\mathbb{R})}\| = s_{q,n}(f)$.

Also, from the characterization of the continuous linear functionals on $L^p_{\text{loc}}(\mathbb{R})$ as presented, we conclude that $L^p_{\text{comp}}(\mathbb{R})$ represents its dual for $1 \leq p < \infty$. Indeed, let F be a linear functional on $L^p_{\text{loc}}(\mathbb{R})$ satisfying (1.2) for some $n \in \mathbb{N}$. Then for all $g \in L^p_{\text{loc}}(\mathbb{R})$, $F(g) = F(g \cdot 1_{[-n,n]})$ and $F|_{L^p_{\text{loc}}(\mathbb{R})}$ is continuous. So there exists $f \in L^q_n(\mathbb{R})$ such that

\[(1.4) \quad F(g) = F(g \cdot 1_{[-n,n]}) = \int_{\mathbb{R}} f(t)g(t)dt\]

For notational convenience we introduce the bilinear form $\langle \cdot, \cdot \rangle_p$ on $L^p_{\text{loc}}(\mathbb{R}) \times L^q_{\text{comp}}(\mathbb{R})$, $1 \leq p \leq \infty$, $1 \leq q \leq \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$ by

\[(1.5) \quad \langle g, f \rangle_p = \int_{\mathbb{R}} g(t)f(t)dt\]

We conclude that each continuous linear functional on $L^p_{\text{comp}}(\mathbb{R})$, $1 \leq p < \infty$, is given by

$g \mapsto \langle f, g \rangle_q$

and each continuous linear functional on $L^p_{\text{loc}}(\mathbb{R})$

$g \mapsto \langle g, f \rangle_p$.

In the sequel we use the spaces $C(\mathbb{R})$, $C_c(\mathbb{R})$ and $ba_c(\mathbb{R})$. Here $C(\mathbb{R})$ denotes the space of all continuous functions on \mathbb{R}; it is a closed subspace of $L^\infty_{\text{loc}}(\mathbb{R})$. So $C(\mathbb{R})$ is a Frechet space with respect to the seminorms $s_{\infty,n}$, $n \in \mathbb{N}$. The space $C_c(\mathbb{R})$ is the subspace of $C(\mathbb{R})$ consisting of all $f \in C(\mathbb{R})$ with bounded support. Define

$C_n(\mathbb{R}) = \{ f \in C_c(\mathbb{R}) \mid \text{supp}(f) \subset [-n,n]\}$.

Then $C_n(\mathbb{R})$ is a closed subspace of $L^\infty_{\text{loc}}(\mathbb{R})$ and

\[(1.6) \quad C_c(\mathbb{R}) = \bigcup_{n \in \mathbb{N}} C_n(\mathbb{R})\]
We see that $C_c(\mathbb{R})$ is a strict LB-space. The space $ba_c(\mathbb{R})$ consists of all right-continuous functions of bounded variation on \mathbb{R}, i.e., a right-continuous function μ belongs to $ba_c(\mathbb{R})$ if there exists $C > 0$ such that for any ordered tuple $t_1 < t_2 < \ldots < t_{N+1}$, $N \in \mathbb{N}$,

$$
\sum_{j=1}^{N} |\mu(t_{j+1}) - \mu(t_j)| \leq C
$$

and with the additional property that there exists $T > 0$ such that

$$
\mu(t) = 0 \quad \text{for } t < -T,
$$

$$
\mu(t) = \mu(T) \quad \text{for } t > T.
$$

The space $ba_c(\mathbb{R})$ represents (isomorphically) the dual of $C(\mathbb{R})$ in the sense that each continuous linear functional F on $C(\mathbb{R})$ is of the form

$$
(1.7) \quad F(g) = \int_{\mathbb{R}} g(t) d\mu(t), \quad g \in C(\mathbb{R}),
$$

where the integral is interpreted as a Riemann-Stieltjes integral. Moreover, $ba_c(\mathbb{R})$ is a convolution ring without zero divisors, where the convolution is defined by

$$
(1.8) \quad (\mu_1 * \mu_2)(t) = \int_{\mathbb{R}} \mu_1(t - \tau) d\mu_2(\tau).
$$

For an extensive discussion of the convolution ring $ba_c(\mathbb{R})$ we refer to [So] and [ES]. The dual of $C_c(\mathbb{R})$ can be represented by right continuous functions μ on \mathbb{R} which are locally of bounded variation. We sketch the proof. First observe that if μ is a right continuous function such that for each $n \in \mathbb{N}$, μ has bounded variation on $[-n, n]$, the integral

$$
F_\mu(g) = \int_{\mathbb{R}} g(t) d\mu(t)
$$

is well-defined for each $g \in C_c(\mathbb{R})$ as a Riemann-Stieltjes integral, and for $g \in C_n(\mathbb{R})$, $n \in \mathbb{N}$,

$$
|F_\mu(g)| \leq \text{var}(\mu|_{[-n,n]}) \|g\|_\infty.
$$

So F_μ is a continuous linear functional on $C_c(\mathbb{R})$. For the converse we apply the classical Riesz representation theorem for the dual of the Banach space $C[a, b]$. Identifying $C_n(\mathbb{R})$ and the closed subspace $C_0[-n, n]$

$$
C_0[-n, n] = \{ f \in C[-n, n] \mid f(n) = f(-n) = 0 \}
$$

of $C[-n, n]$ we see that for each $n \in \mathbb{N}$ there is a right continuous function μ_n of bounded variation on $[-n, n]$ with $\mu_n(0) = 0$ such that
\[
F(g) = \int_{-n}^{n} g(t) d\mu_n(t), \quad g \in C_{c,n}(\mathbb{R})
\]

where \(F \) is a given continuous linear functional on \(C_{c}(\mathbb{R}) \). Since for all \(n \in \mathbb{N} \) and \(g \in C_{c,n}(\mathbb{R}) \)

\[
\int_{-n}^{n} g(t) d\mu_n(t) = \int_{-n-1}^{n+1} g(t) d\mu_{n+1}(t)
\]

we have

\[
\mu_{n+1}(-n, n) = \mu_n, \quad n \in \mathbb{N}.
\]

So we can properly define \(\mu \) on \(\mathbb{R} \) by

\[
\mu(t) = \mu_n(t), \quad t \in (-n, n)
\]

and we see that

\[
F(g) = \int_{\mathbb{R}} g(t) d\mu(t), \quad g \in C_{c}(\mathbb{R}).
\]

Also, we shall employ the spaces \(C^\infty(\mathbb{R}) \) and \(C^\infty_c(\mathbb{R}) \), which play a prominent role in classical distribution theory. The space \(C^\infty(\mathbb{R}) \) consists of all infinitely differentiable functions on \(\mathbb{R} \). It is endowed with the Frechet topology brought about by the seminorms

\[
w_n(f) = s_{\infty,n}(f^{(n)}), \quad n \in \mathbb{N}_0.
\]

The space \(C^\infty_c(\mathbb{R}) \) consists of all functions in \(C^\infty(\mathbb{R}) \) with compact support and \(C^\infty_c(\mathbb{R}) \) is endowed most naturally with the strict inductive limit topology brought about by the closed subspaces \(C^\infty_n(\mathbb{R}) \) of \(C^\infty(\mathbb{R}) \).

\[
C^\infty_n(\mathbb{R}) = \{ f \in C^\infty(\mathbb{R}) \mid \text{supp}(f) \subset [-n, n] \}.
\]

So \(C^\infty_c(\mathbb{R}) \) is a strict LF-space, i.e. a strict countable inductive limit of Frechet spaces. In literature one often uses the notation \(E(\mathbb{R}) \) and \(D(\mathbb{R}) \) in stead of \(C^\infty(\mathbb{R}) \) and \(C^\infty_c(\mathbb{R}) \), respectively. Part of the results mentioned here can be found in the monographs [DS] and [Sch].

2 Translation group, translation invariance

For a function \(f \) on \(\mathbb{R} \) its translate \(\sigma_t f \) is defined by

\[
(\sigma_t f)(\tau) = f(t + \tau), \quad \tau \in \mathbb{R}.
\]
For measurable functions \(f_1 \) and \(f_2 \) on \(\mathbb{R} \) with \(f_1 = f_2 \) almost everywhere, \(\sigma_t f_1 = \sigma_t f_2 \) almost everywhere. So the translation \(\sigma_t \) can be defined on all of the spaces \(L^p_{\text{loc}}(\mathbb{R}) \), \(1 \leq p \leq \infty \). And for all \(t \in \mathbb{R} \) the operator \(\sigma_t \) is continuous from \(L^p_{\text{loc}}(\mathbb{R}) \) into \(L^p_{\text{comp}}(\mathbb{R}) \) into \(L^p_{\text{comp}}(\mathbb{R}) \), \(C(\mathbb{R}) \) into \(C(\mathbb{R}) \) and \(C_c(\mathbb{R}) \) into \(C_c(\mathbb{R}) \). In fact, \((\sigma_t)_{t \in \mathbb{R}} \) is a group on each of these spaces. This translation group is strongly continuous for the spaces \(C(\mathbb{R}) \), \(L^p_{\text{loc}}(\mathbb{R}) \), \(C_c(\mathbb{R}) \) and \(L^p_{\text{comp}}(\mathbb{R}) \) whenever \(1 \leq p < \infty \). But not for the spaces \(L^p_{\text{loc}}(\mathbb{R}) \) and \(L^p_{\text{comp}}(\mathbb{R}) \) which follows from the observation that

\[
\|\sigma_{t1_{[0,1]}} - 1_{[0,1]}\|_\infty = 1 \quad \forall t \in \mathbb{R}.
\]

Being \(c_0 \)-groups on Fréchet spaces and strict inductive limits of Frechet spaces, respectively, we may apply the theory presented in [E1] and [E2]: In short, let \(V \) be a sequentially complete locally convex vector space and let \((\alpha_t)_{t \in \mathbb{R}} \) be a strongly continuous group of continuous linear operators on \(V \). Then for each \(\mu \in \text{ba}_c(\mathbb{R}) \) the linear operator \(\alpha[\mu] \) defined by the \(V \)-valued Riemann–Stieltjes integral

(2.2) \[\alpha[\mu]x = \int \alpha_t x \, d\mu(t) \]

is continuous from \(V \) into \(V \) and for \(\mu_1, \mu_2 \in \text{ba}_c(\mathbb{R}) \)

(2.3) \[\alpha[\mu_1 * \mu_2] = \alpha[\mu_1] \alpha[\mu_2] \]

where the convolution * is defined in (1.8). Further it has been proved that for each \(\mu \in \text{ba}_c(\mathbb{R}) \) there exists a sequence \((\mu_n)_{n \in \mathbb{N}} \) in the linear span, \(\text{span}(\{\sigma_t H \mid t \in \mathbb{R}\}) \), such that for all \(x \in V \)

\[
\lim_{n \to \infty} \alpha[\mu_n]x = \alpha[\mu]x.
\]

Here \(H \) denotes the standard Heaviside function.

Let \(V \) denote any of the spaces \(L^p_{\text{loc}}(\mathbb{R}) \), \(L^p_{\text{comp}}(\mathbb{R}) \), \(C(\mathbb{R}) \), \(C_c(\mathbb{R}) \), \(C^\infty(\mathbb{R}) \), \(C^\infty_c(\mathbb{R}) \), where \(1 \leq p < \infty \), and let \(\alpha_t = \sigma_t \) for all \(t \in \mathbb{R} \). Then for \(\mu \in \text{ba}_c(\mathbb{R}) \) the operator \(\sigma[\mu] \) is defined according to (2.2). So \(\sigma[\mu] \) is a continuous translation invariant (i.e. \(\sigma[\mu] \sigma_t = \sigma_t \sigma[\mu] \), \(t \in \mathbb{R} \)) linear operator from \(V \) into \(V \). The question arises whether each continuous translation invariant linear operator from \(V \) into \(V \) is equal to \(\sigma[\mu] \) for some \(\mu \in \text{ba}_c(\mathbb{R}) \). This question originates from the fact that for \(V = C(\mathbb{R}) \) it has been proven to be the case. But for \(V = C^\infty(\mathbb{R}) \) it is evidently not true; a continuous linear operator \(\mathcal{L} \) from \(C^\infty(\mathbb{R}) \) into \(C^\infty(\mathbb{R}) \) is translation invariant if and only if \(\mathcal{L} = p(d/dt) \sigma[\mu] \) for a polynomial \(p \) and \(\mu \in \text{ba}_c(\mathbb{R}) \). See [So].

Next we discuss the spaces \(C_c(\mathbb{R}) \) and \(C^\infty_c(\mathbb{R}) \). We are aware of the fact that the results derived here for these spaces can be found in literature, e.g. in [Sch]. However, they are not formulated in our terminology and we like to keep this paper as self-contained as possible introducing no more terminology as necessary.
Theorem 1. Let \mathcal{L} from $C_c(\mathbb{R})$ into $C_c(\mathbb{R})$ be a continuous linear operator. Then \mathcal{L} is translation invariant, if and only if there exists $\mu \in \text{ba}_c(\mathbb{R})$ such that $\mathcal{L} = \sigma[\mu]$.

Proof. Because of the previous observations we only have to prove necessity.
So assume that \mathcal{L} is translation invariant. Then $(\mathcal{L} f)(t) = (\mathcal{L} \sigma f)(0)$ for all $t \in \mathbb{R}$ and $f \in C_c(\mathbb{R})$. The linear functional $f \mapsto (\mathcal{L} f)(0)$ is continuous on $C_c(\mathbb{R})$. So there exists a right continuous function $\tilde{\mu}$ on \mathbb{R} with $\tilde{\mu} | I$ of bounded variation for each bounded interval I such that

$$(\mathcal{L} f)(0) = \int f(\tau) d\tilde{\mu}(\tau), \quad f \in C_c(\mathbb{R}).$$

We conclude that

$$(\mathcal{L} f)(t) = \int f(t + \tau) d\tilde{\mu}(\tau), \quad f \in C_c(\mathbb{R}), \quad t \in \mathbb{R}. $$

Continuity of \mathcal{L} means that there is $m \in \mathbb{N}$ such that

$$\mathcal{L}(C_c(\mathbb{R})) \subset C_{m}(\mathbb{R})$$

and

$$\max_{t \in [-m,m]} |(\mathcal{L} f)(t)| \leq C \max_{t \in [-1,1]} |f(t)|$$

for all $f \in C_c(\mathbb{R})$. Hence for all $f \in C_{1}(\mathbb{R})$ and all $t \in \mathbb{R}$ with $|t| \geq m$

$$\int f(t + \tau) d\tilde{\mu}(\tau) = 0.$$

It follows that $\tilde{\mu}(t) = \tilde{\mu}(m)$ for $t > m$ and $\tilde{\mu}(t) = \tilde{\mu}(-m)$ for $t < -m$. Now put

$$\mu(t) = \tilde{\mu}(t) - \tilde{\mu}(-m), \quad t \in \mathbb{R}. $$

Then $\mu \in \text{ba}_c(\mathbb{R})$ and for all $f \in C_c(\mathbb{R})$ and $t \in \mathbb{R}$,

$$(\mathcal{L} f)(t) = \int f(t + \tau) d\mu(\tau) = (\sigma[\mu] f)(t).$$

To derive a similar result for the space $C_c^{\infty}(\mathbb{R})$ we have to do some preparations. For $\psi \in \text{ba}_c(\mathbb{R}) \cap C_c^{\infty}(\mathbb{R})$, its derivative $\frac{d\psi}{dt}$ belongs to $C_c^{\infty}(\mathbb{R})$. Also, for $\varphi \in C_c^{\infty}(\mathbb{R})$, we have $J \varphi \in \text{ba}_c(\mathbb{R}) \cap C_c^{\infty}(\mathbb{R})$, where

$$(J \varphi)(t) = \int_{-\infty}^{t} \varphi(\tau) d\tau.$$
So we can reformulate a result of Dixmier and Malliavin, see [DM] and [E2], in our terminology:

(2.4) For all \(g \in C^\infty(\mathbb{R}) \) there are \(\psi_1, \psi_2 \in \text{ba}_c(\mathbb{R}) \cap C^\infty(\mathbb{R}) \) and \(g_1, g_2 \in C^\infty(\mathbb{R}) \) such that

\[
g = \sigma[\psi_1]g_1 + \sigma[\psi_2]g_2 .
\]

Further, we observe that for \(\varphi \in C^\infty_c(\mathbb{R}) \) and \(\psi \in \text{ba}_c(\mathbb{R}) \cap C^\infty(\mathbb{R}) \)

(2.5) \(\sigma[\psi] \varphi = \sigma[J \varphi] \frac{d\psi}{dt} . \)

We use the notation \(\hat{\mu}(t) = -\mu(-t) \) such that

\[
\sigma[\hat{\mu}]f = \int \sigma_{-t}f \ d\mu(t) .
\]

Theorem 2. Let \(\mathcal{L} : C^\infty_c(\mathbb{R}) \rightarrow C^\infty_c(\mathbb{R}) \) be a continuous linear operator. Then \(\mathcal{L} \) is translation invariant if only if there are a polynomial \(p \) and \(\mu \in \text{ba}_c(\mathbb{R}) \) such that \(\mathcal{L} = p(\frac{d}{dt})\sigma[\mu] \).

Proof. The sufficiency of the condition is readily established. We prove its necessity. From [E2] we conclude that

\[
- - \forall \nu \in \text{ba}_c(\mathbb{R}) : \sigma[\nu] \mathcal{L} = \mathcal{L} \sigma[\nu] ,
\]

\[
- - \forall j \in \mathbb{N} : (\frac{d}{dt})^j \mathcal{L} = \mathcal{L}(\frac{d}{dt})^j
\]

and so for all \(g \in C^\infty(\mathbb{R}) \) and \(\varphi \in C^\infty_c(\mathbb{R}) \) the function

\[
t \mapsto (\sigma_{\mathcal{L}} \varphi, g) , \; t \in \mathbb{R}
\]

belongs to \(C^\infty(\mathbb{R}) \). Moreover, for all \(\psi \in \text{ba}_c(\mathbb{R}) \cap C^\infty(\mathbb{R}) \) and \(\varphi \in C^\infty(\mathbb{R}) \)

\[
\sigma[\psi] \mathcal{L} \varphi = \sigma[J \varphi] \mathcal{L} \frac{d\psi}{dt} .
\]

Let \(g \in C^\infty(\mathbb{R}) \). Then by (2.4) there are \(\psi_1, \psi_2 \in \text{ba}_c(\mathbb{R}) \cap C^\infty(\mathbb{R}) \) and \(g_1, g_2 \in C^\infty(\mathbb{R}) \) such that

\[
g = \sigma[\psi_1]g_1 + \sigma[\psi_2]g_2 .
\]

Hence for all \(\varphi \in C^\infty_c(\mathbb{R}) \),

\[
(\mathcal{L} \varphi, g) = (\sigma[\psi_1] \mathcal{L} \varphi, g_1)_1 + (\sigma[\psi_2] \mathcal{L} \varphi, g_2)_1
\]

\[
= (\sigma[\varphi] \mathcal{L} \frac{d\psi_1}{dt}, g_1)_1 + (\sigma[\varphi] \mathcal{L} \frac{d\psi_2}{dt}, g_2)_1
\]

\[
= \int \varphi(t)(\sigma_{\mathcal{L}} \frac{d\psi_1}{dt}, g_1)_1 + (\sigma_{\mathcal{L}} \frac{d\psi_2}{dt}, g_2)_1) dt .
\]
So the uniquely defined distribution \mathcal{L}^*g,

$$(\mathcal{L}^*g)(\varphi) = (\mathcal{L}\varphi, g)$$

is represented by the C^∞-function

$$t \mapsto \langle \sigma_1\mathcal{L} \frac{d\psi_1}{dt}, g_1 \rangle + \langle \sigma_2\mathcal{L} \frac{d\psi_2}{dt}, g_2 \rangle .$$

It follows that \mathcal{L}^* maps $C^\infty(\mathbb{R})$ into $C^\infty(\mathbb{R})$ as a continuous, translation invariant linear mapping. We note that the continuity is a consequence of the Closed Graph Theorem. So as observed earlier, there are a polynomial p and $\mu \in \text{ba}_c(\mathbb{R})$ such that

$$\mathcal{L}^* = p(-\frac{d}{dt})\sigma[\mu] .$$

We conclude that $\mathcal{L} = p(-\frac{d}{dt})\sigma[\mu]$ (and a fortiori that \mathcal{L} extends to a continuous linear operator on $C^\infty(\mathbb{R})$). \hfill \Box

Now let V be one of the Frechet spaces $L_{p,\text{loc}}(\mathbb{R})$, $1 \leq p < \infty$, and let \mathcal{L} from V into V be continuous, translation invariant and linear. Then in [E1] we proved that $C^\infty(\mathbb{R})$ is an invariant subspace of \mathcal{L} and $\mathcal{L}|_{C^\infty(\mathbb{R})}$ maps $C^\infty(\mathbb{R})$ into $C^\infty(\mathbb{R})$ continuously. (In fact, in the terminology of the mentioned paper, $L_{p,\text{loc}}^p(\mathbb{R})$ is a translatable Frechet space.) It follows from the observations at the beginning of this section that

$$\mathcal{L}f = p(-\frac{d}{dt})\sigma[\mu]f , \quad f \in C^\infty(\mathbb{R}) ,$$

for some $\mu \in \text{ba}_c(\mathbb{R})$ and polynomial p. This is something, but we can be a lot more precise. Denote by $W_{loc}^{1,p}(\mathbb{R})$ the subspace of $C(\mathbb{R})$ consisting of all $f \in C(\mathbb{R})$ for which there exists $g \in L_{loc}^p(\mathbb{R})$ such that

$$f(t) = f(0) + \int_0^t g(\tau)d\tau , \quad t \in \mathbb{R} .$$

Then $W_{loc}^{1,p}(\mathbb{R})$ is the domain of the infinitesimal generator $\delta_\sigma (\equiv \frac{d}{dt})$ of the c_0-group $(\sigma_t)_{t \in \mathbb{R}}$. So equipped with the graph topology induced by δ_σ, i.e. the topology generated by the seminorms

$$s_{p,n}(f) = s_{p,n}(f) + s_{p,n}(\delta_\sigma f) ,$$

$W_{loc}^{1,p}(\mathbb{R})$ is a Frechet space. Observe that $\delta_\sigma f = g$ in the above definition. The inclusions $W_{loc}^{1,p}(\mathbb{R}) \hookrightarrow C(\mathbb{R})$ and $C^1(\mathbb{R}) \hookrightarrow W_{loc}^{1,p}(\mathbb{R})$ are continuous. Here $C^1(\mathbb{R})$ is the space of all continuously differentiable functions on \mathbb{R} with natural Frechet topology.

Now if $\mathcal{L} : L_{loc}^p(\mathbb{R}) \to L_{loc}^p(\mathbb{R})$ is continuous, translation invariant and linear, $W_{loc}^{1,p}(\mathbb{R}) =$
dom(δₜ) is an invariant subspace of \mathcal{L} and $\mathcal{L}|_{W^{p,1}_{\text{loc}}(\mathbb{R})}$ is continuous on $W^{p,1}_{\text{loc}}(\mathbb{R})$, cf. [E1]. Consequently, the restriction $\mathcal{L}|_{C^1(\mathbb{R})}$ can be regarded as a translation invariant linear operator which maps $C^1(\mathbb{R})$ into $C(\mathbb{R})$ continuously. From the characterization proved in [So] we obtain that there exist constants a and b, and $\mu \in \mathcal{B}_c(\mathbb{R})$ such that

$$\mathcal{L} f = \sigma[\mu](a \frac{d}{dt} + b)f, \quad f \in C^1(\mathbb{R}).$$

Theorem 3. Let $1 \leq p < \infty$ and let $\mathcal{L} : L^p_{\text{loc}}(\mathbb{R}) \to L^p_{\text{loc}}(\mathbb{R})$ be a continuous linear operator. Then \mathcal{L} is translation invariant if and only if there exist constants a and b, and $\mu \in \mathcal{B}_c(\mathbb{R})$ such that

$$\mathcal{L} = (a\delta_\sigma + b)\sigma[\mu]$$

where, in case $a \neq 0$, μ satisfies the additional condition

$$\sigma[\mu](L^p_{\text{loc}}(\mathbb{R})) \subset W^{p,1}_{\text{loc}}(\mathbb{R}).$$

Proof. Under the condition on μ be given the operator

$$(*) \quad (a\delta_\sigma + b)\sigma[\mu]$$

is everywhere defined on $L^p_{\text{loc}}(\mathbb{R})$ and closed, whence continuity of $(*)$ follows from the Closed Graph Theorem. Translation invariance can be checked straightforwardly. The considerations which led to this theorem, show that any continuous translation invariant operator \mathcal{L} on $L^p_{\text{loc}}(\mathbb{R})$ agrees with an operator of the form $(*)$ on the dense subspace $C^1(\mathbb{R})$. \qed

Remark: In the next section we prove that for $p = 1$ in Theorem 3, the constant a can be taken equal to zero. So the convolution ring $\mathcal{B}_c(\mathbb{R})$ and the collection of all translation invariant operators on $L^1_{\text{loc}}(\mathbb{R})$ are ring isomorphic. For $1 < p < \infty$ the question whether $a = 0$ may be taken, is still open.

For $1 < q \leq \infty$, $L^q_{\text{loc}}(\mathbb{R})$ represents the dual of $L^p_{\text{comp}}(\mathbb{R})$ where $1 \leq p < \infty$. $1 + \frac{1}{q} = 1$. So if $\mathcal{K} : L^p_{\text{comp}}(\mathbb{R}) \to L^q_{\text{comp}}(\mathbb{R})$ is a continuous linear operator, then its dual \mathcal{K}' is an everywhere defined closed linear operator on $L^q_{\text{loc}}(\mathbb{R})$ whence \mathcal{K}' is continuous by the Closed Graph Theorem. If \mathcal{K} is translation invariant, then \mathcal{K}' also. Using these observations in combination with Theorem 3 we have

Theorem 4. Let $1 < p < \infty$ and let $\mathcal{L} : L^p_{\text{comp}}(\mathbb{R}) \to L^p_{\text{comp}}(\mathbb{R})$ be a continuous linear operator. Then \mathcal{L} is translation invariant if and only if there exist constants a and b, and $\mu \in \mathcal{B}_c(\mathbb{R})$ such that

$$\mathcal{L} = (a\delta_\sigma + b)\sigma[\mu]$$

where, in case $a \neq 0$, μ satisfies the additional condition

$$\sigma[\mu](L^p_{\text{comp}}(\mathbb{R})) \subset W^{p,1}_{\text{comp}}(\mathbb{R}).$$ \qed
Remark. \(W^1_{\text{comp}}(\mathbb{R}) \) is the subspace of \(C_c(\mathbb{R}) \) consisting of all \(f \in C_c(\mathbb{R}) \) for which there exists \(g \in L^p_{\text{comp}}(\mathbb{R}) \) such that

\[
f(t) = \int_{-\infty}^{t} g(\tau) d\tau , \quad t \in \mathbb{R}.
\]

3 Special cases: \(L^1_{\text{loc}}(\mathbb{R}) \) and \(L^1_{\text{comp}}(\mathbb{R}) \)

In this section we shall prove that the operators \(\sigma[\mu] \) for \(\mu \in \text{ba}_c(\mathbb{R}) \) establish all continuous translation invariant operators on \(L^1_{\text{loc}}(\mathbb{R}) \) and \(L^1_{\text{comp}}(\mathbb{R}) \), respectively. Therefore some auxiliary results are required.

We observed already that the translation group \((\sigma_t)_{t \in \mathbb{R}} \) is not a \(c_o \)-group on \(L^\infty_{\text{loc}}(\mathbb{R}) \) nor on \(L^\infty_{\text{comp}}(\mathbb{R}) \). So we cannot apply the theory developed in [E2] and we cannot introduce the operators \(\sigma[\mu], \mu \in \text{ba}_c(\mathbb{R}) \), by the Riemann–Stieltjes integral

\[
\int_{\mathbb{R}} \sigma_t f \, d\mu(t)
\]

at least according to this theory. Instead we define the operators \(\sigma[\mu] \) on \(L^1_{\text{loc}}(\mathbb{R}) \) and \(L^\infty_{\text{comp}}(\mathbb{R}) \) by duality: So

\[
(3.1) \quad \sigma[\mu] = (\sigma[\mu])' \quad \text{in the sense of the duality between } L^1_{\text{comp}}(\mathbb{R}) \text{ and } L^\infty_{\text{loc}}(\mathbb{R}) \text{ and } L^1_{\text{loc}}(\mathbb{R}) \text{ and } L^\infty_{\text{comp}}(\mathbb{R}).
\]

The Closed Graph Theorem for Frechet spaces and for strict LB- spaces guarantees that \(\sigma[\mu] \) on \(L^1_{\text{loc}}(\mathbb{R}) \) and \(L^\infty_{\text{comp}}(\mathbb{R}) \), thus defined, is continuous.

For \(f \in L^\infty_{\text{loc}}(\mathbb{R}) \) we define its trace \(\sigma f : \mathbb{R} \to L^\infty_{\text{loc}}(\mathbb{R}) \) by

\[
(\sigma f)(t) = \sigma_t f , \quad t \in \mathbb{R}.
\]

Since \((\sigma_t)_{t \in \mathbb{R}} \) is a strongly continuous group on \(C(\mathbb{R}) \) and \(C(\mathbb{R}) \) is closed on \(L^\infty_{\text{loc}}(\mathbb{R}) \), for each \(f \in C(\mathbb{R}) \) its trace \(\sigma f \) is a continuous function from \(\mathbb{R} \) into \(L^\infty_{\text{loc}}(\mathbb{R}) \). The reverse is true also.

Lemma 5. Let \(f \in L^\infty_{\text{loc}}(\mathbb{R}) \). Then its trace \(\sigma f \) is continuous as a function from \(\mathbb{R} \) into \(L^\infty_{\text{loc}}(\mathbb{R}) \) if and only if \(f \in C(\mathbb{R}) \).

Proof. Sufficiency of the condition is clear, we prove its necessity. Let \(\sigma f \) be continuous from into \(L^\infty_{\text{loc}}(\mathbb{R}) \). Then for each \(\varphi \in C^\infty_c(\mathbb{R}) \), the \(L^\infty_{\text{loc}}(\mathbb{R}) \)-valued Riemann–Stieltjes integral

\[
\gamma[\varphi] f = \int \varphi(\tau) \sigma f \, d\tau
\]

exists in \(L^\infty_{\text{loc}}(\mathbb{R}) \). Because of (3.1) we have
\[\gamma[\varphi]f = \sigma[J\varphi]f \]

and

\[(\gamma[\varphi]f)(t) = \int_{-\infty}^{\infty} \varphi(\tau - t)f(\tau)d\tau. \]

We conclude that \(\gamma[\varphi]f \in C^\infty(\mathbb{R}) \). Now let \((\varphi_k)_{k \in \mathbb{N}} \) be an approximate identity in \(C_c^\infty(\mathbb{R}) \). Then the continuity of \(\sigma f \) guarantees that

\[\lim_{k \to \infty} \gamma[\varphi_k]f = f \]

where the limit is taken in \(L^\infty_{\text{loc}}(\mathbb{R}) \). So \(f \) is the \(L^\infty_{\text{loc}}(\mathbb{R}) \)-limit of a sequence in \(C^\infty(\mathbb{R}) \) and therefore \(f \in C(\mathbb{R}) \). \(\square \)

The next result can be proved similarly.

Lemma 6. Let \(f \in L^\infty_{\text{comp}}(\mathbb{R}) \). Then its trace \(\sigma f \) is continuous from \(\mathbb{R} \) into \(L^\infty_{\text{comp}}(\mathbb{R}) \) if and only if \(f \in C(\mathbb{R}) \). \(\square \)

Remark. Of course Lemma 5+6 can be proved in a number of different ways, but our proof fits in the framework of this paper.

Consider a translation invariant continuous linear operator \(K \) on \(L^\infty_{\text{loc}}(\mathbb{R}) \). Then for \(f \in C(\mathbb{R}) \) the function

\[t \mapsto K \sigma_t f, \quad t \in \mathbb{R} \]

is continuous from \(\mathbb{R} \) in \(L^\infty_{\text{loc}}(\mathbb{R}) \), because \(K \) is continuous. Since \(K \) is translation invariant \((\sigma K f)(t) = \sigma_t K f = K \sigma_t f \) and so the trace of \(K f \) is continuous. By Lemma 5 we obtain \(K f \in C(\mathbb{R}) \). So \(C(\mathbb{R}) \) is an invariant subspace of \(K \). Due to the characterization of the translation invariant operators from \(C(\mathbb{R}) \) into \(C(\mathbb{R}) \), there is \(\mu \in \text{ba}_c(\mathbb{R}) \) such that \(K f = \sigma[\mu]f \) for all \(f \in C(\mathbb{R}) \). Further, for all \(g \in L^1_{\text{comp}}(\mathbb{R}) \) and \(f \in C(\mathbb{R}) \)

\[\langle K f, g \rangle_\infty = \langle f, \sigma[\mu]g \rangle_\infty \]

because of the strong convergence of the \(L^1_{\text{comp}} \)-valued integral

\[\int_{\mathbb{R}} \sigma_{-\tau} g \ d\mu(\tau). \]

We summarize in the following theorem.

Theorem 7. Let \(K : L^\infty_{\text{loc}}(\mathbb{R}) \to L^\infty_{\text{loc}}(\mathbb{R}) \) be a continuous, translation invariant linear operator. Then there is \(\mu \in \text{ba}_c(\mathbb{R}) \) such that \(K|_{C(\mathbb{R})} = \sigma[\mu] \). Moreover, if \(K'(L^1_{\text{comp}}(\mathbb{R})) \subseteq \]
Then $\mathcal{K} = \sigma[\mu]$ and $\mathcal{K}'|_{L^1_{\text{comp}}(\mathbb{R})} = \sigma[\hat{\mu}]$.
(Here \mathcal{K}' is the dual of \mathcal{K} and we identify $L^1_{\text{comp}}(\mathbb{R})$ as a closed subspace of $(L^\infty_{\text{loc}}(\mathbb{R}))'$.)

Corollary 8. Let $\mathcal{K} : L^\infty_{\text{loc}}(\mathbb{R}) \to L^\infty_{\text{loc}}(\mathbb{R})$ be a continuous, translation invariant linear operator. Suppose $\mathcal{K}'(C^\infty_c(\mathbb{R})) \subset C^\infty_c(\mathbb{R})$. Then $\mathcal{K} = \sigma[\mu]$ for some $\mu \in \text{ba}_c(\mathbb{R})$.

Proof. There is $\mu \in \text{ba}_c(\mathbb{R})$ such that $\mathcal{K}|_{C(\mathbb{R})} = \sigma[\mu]$. So for all $\varphi \in C^\infty_c(\mathbb{R})$ and $f \in C(\mathbb{R})$

$$(f, \mathcal{K}'\varphi) = (\mathcal{K}f, \varphi) = (f, \sigma[\hat{\mu}]\varphi).$$

Hence $\mathcal{K}'\varphi = \sigma[\hat{\mu}]\varphi$. Since $C^\infty_c(\mathbb{R})$ is dense in $L^1_{\text{comp}}(\mathbb{R})$ it follows that

$$\mathcal{K}'|_{L^1_{\text{comp}}(\mathbb{R})} = \sigma[\hat{\mu}]$$

and so the result.

The above theorem yields the characterization of the translation invariant operators on $L^1_{\text{comp}}(\mathbb{R})$.

Theorem 9. Let $\mathcal{L} : L^1_{\text{comp}}(\mathbb{R}) \to L^1_{\text{comp}}(\mathbb{R})$ be a continuous translation invariant linear operator. Then there is $\mu \in \text{ba}_c(\mathbb{R})$ such that $\mathcal{L} = \sigma[\mu]$.

Proof. Apply the preceding theorem to $\mathcal{K} = \mathcal{L}'$, the dual operator of \mathcal{L}.

For each $\mu \in \text{ba}_c(\mathbb{R})$ the operator $\sigma[\mu]$ on $L^\infty_{\text{loc}}(\mathbb{R})$ has been defined using the duality of $L^1_{\text{comp}}(\mathbb{R})$ and $L^\infty_{\text{loc}}(\mathbb{R})$. From Theorem 5 we cannot conclude that the collection $\{\sigma[\mu] | \mu \in \text{ba}_c(\mathbb{R})\}$ consists of precisely all continuous translation invariant linear operators on $L^\infty_{\text{loc}}(\mathbb{R})$.

Indeed the following question remains

- Does there exist a continuous translation invariant linear operator from $L^\infty_{\text{loc}}(\mathbb{R})$ into $L^\infty_{\text{loc}}(\mathbb{R})$ such that $\mathcal{K}f = 0$ for all $f \in C(\mathbb{R})$?

For the dual pair $L^\infty_{\text{comp}}(\mathbb{R}) \times L^\infty_{\text{loc}}(\mathbb{R})$ the discussion is similar. Indeed, for $f \in L^\infty_{\text{comp}}(\mathbb{R})$ the trace σf is continuous if and only if $f \in C_c(\mathbb{R})$ according to Lemma 6. So if $\mathcal{K} : L^\infty_{\text{comp}}(\mathbb{R}) \to L^\infty_{\text{comp}}(\mathbb{R})$ is continuous from \mathbb{R} into $L^\infty_{\text{comp}}(\mathbb{R})$ for all $f \in C_c(\mathbb{R})$, whence $\mathcal{K}(C_c(\mathbb{R})) \subset C_c(\mathbb{R})$.

Applying Theorem 1, this yields

Theorem 10. Let $\mathcal{K} : L^\infty_{\text{comp}}(\mathbb{R}) \to L^\infty_{\text{comp}}(\mathbb{R})$ be a continuous translation invariant linear operator. Then there exists $\mu \in \text{ba}_c(\mathbb{R})$ such that $\mathcal{K}|_{C_c(\mathbb{R})} = \sigma[\mu]$.

If $\mathcal{K}'(L^\infty_{\text{loc}}(\mathbb{R})) \subset L^1_{\text{loc}}(\mathbb{R})$, then $\mathcal{K} = \sigma[\mu]$ and $\mathcal{K}'|_{L^1_{\text{loc}}(\mathbb{R})} = \sigma[\hat{\mu}]$.

Corollary 11. Let $\mathcal{K} : L^\infty_{\text{comp}}(\mathbb{R}) \to L^\infty_{\text{comp}}(\mathbb{R})$ be a continuous translation invariant linear operator. Suppose $\mathcal{K}'(C^\infty(\mathbb{R})) \subset C^\infty(\mathbb{R})$. Then $\mathcal{K} = \sigma[\mu]$ for some $\mu \in \text{ba}_c(\mathbb{R})$.

Last but not least

Theorem 12. Let $\mathcal{L} : L^1_{\text{loc}}(\mathbb{R}) \to L^1_{\text{loc}}(\mathbb{R})$ be a continuous linear operator. Then \mathcal{L} is translation invariant if and only if there is $\mu \in \text{ba}_c(\mathbb{R})$ such that $\mathcal{L} = \sigma[\mu]$.
References

