A nonexistence proof for 3-error-correcting codes

Reuvers, H.F.H.

Published: 01/01/1974

Citation for published version (APA):
EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

Memorandum no. 1974-13
Issued October 30, 1974

A NONEXISTENCE PROOF FOR 3-ERROR-CORRECTING CODES

by

H. Reuvers
A nonexistence proof for 3-error-correcting codes

H. Reuvers

1. Definitions

Let S be a set of q symbols and $V := S^n$. For $x \in V$, $y \in V$ define the Hamming distance $d(x,y)$ to be the number of coordinates in which x and y differ. Let

$$S_e(x) := \{ z \in V \mid d(z,x) \leq e \}. $$

A perfect e-error-correcting code is a subset $C \subset V$ such that the $S_e(x)$ $(x \in C)$ form a partition of V.

2. Conditions

Necessary conditions for the existence of perfect codes are:

a) the sphere packing condition:

$$\left(1 + n(q - 1) + \binom{n}{2}(q - 1)^2 + \ldots + \binom{n}{e}(q - 1)^e \right) q^n$$

b) the polynomial condition (see [3], [4]):

$$p_e(x) = \sum_{i=0}^{e} (-1)^i \binom{n-x}{e-i} (x-1)^{e-i} \left(q - 1 \right)^{e-i}$$

has e different integer zeros among $1, 2, 3, \ldots, n$.

In this paper we only use the polynomial condition.

3. Previous results

A. Tietavainen proved that there are no perfect codes with $e > 1$, $q = p^m$, p prime, except for trivial codes and the two Golay codes (see [2]). We use a method employed by J.H. van Lint in [1] to prove that there are not perfect codes if $e = 3$, and q is not a prime power. Therefore the binary Golay code is the only nontrivial 3-error-correcting perfect code over any alphabet. From now on we assume that q is not a prime power.
4. **Lemma 1.** Let \(t := n(q - 1) \), \(\theta := qx - t \). By \(\theta \) and \(t \) the Lloyd polynomial \(P_3(x) \) is transformed into:

\[
P_3(x) = F(\theta) = \theta^3 + 3(q - 3)\theta^2 + (2q^2 - 9q + 18)\theta - 6 - t(3\theta + 2q - 7).
\]

There must be a zero \(\theta_0 = qx_0 - t \) (with \(x_0 \in \mathbb{Z} \)) of \(F(\theta) \) if a perfect code with \(e = 3 \) exists, such that \(- (q - 3) < \theta_0 < 1\).

Proof.

\[
F(3 - q) = (q - 1)(q - 2)(n - 3) > 0
\]

\[
F(1) = 2(q - 1)(q - 2)(1 - n) < 0.
\]

The lemma now follows from the polynomial condition.

5. **Proposition 1.** There is no perfect code with \(e = 3 \) if \(3 \mid q \).

Proof.

i) For the roots \(x_1, x_2, x_3 \) of the Lloyd polynomial \(P_3(x) \) we have (if a perfect code exists with \(e = 3, 3 \nmid q \))

\[
x_1 + x_2 + x_3 = \frac{3(n - 3)}{q}(q - 1) + 6
\]

so \(q \mid 3(n - 3) \), so if \(3 \nmid q \) we have \(n = 3 + qv \).

ii) Since \(q > 2 \) we have:

\[
n - v - 1 < n - v - 2/q < n - v.
\]

Hence there is no integer \(x_0 \) such that

\[
qn - qv - 3 + 3 - q < qx_0 < qn - qv - 2,
\]

i.e.

\[
t + 3 - q < qx_0 < t + 1.
\]

iii) Now remark that ii) contradicts lemma 1 if we assume the existence of a perfect code with \(e = 3, 3 \nmid q \).

6. **Proposition 2.** There is no perfect code with \(e = 3 \) if \(q = 3p \), where \(p \in \mathbb{N} \), \(p \neq 2 \).
Proof.
i) For the roots x_1, x_2, x_3 of the Lloyd polynomial $P_3(x)$ we have (if a perfect code exists with $e = 3$, $q = 3p$)

$$x_1 + x_2 + x_3 = \frac{3(n - 3)}{q} (q - 1) + 6,$$

so $q \mid 3(n - 3)$, so $n = 3 + pv$.

ii) Since $p > 2$ we have:

$$n - v - 1 < n - v - 2/p < n - v.$$

Hence there is no integer z_0 such that

$$pn - pv - 3 + 3 - p < pz_0 < pn - pv - 2,$$

i.e.

$$pn - n + 3 - p < pz_0 < pn - n + 1.$$

By the substitution $y_0 := z_0 + 2n$ we find that there is no integer y_0 such that

$$t + 3 - p < py_0 < t + 1.$$

Now assume there is a $x_0 \in \mathcal{E}$ such that

$$t + 3 - q < qx_0 < t + 1.$$

Then for $y_0 = 3x_0$ we have:

$$t + 3 - q < py_0 < t + 1.$$

But since there is no integer y_0 such that

$$t + 3 - p < py_0 < t + 1$$

and hence no integer y_0 such that

$$t + 3 - 2p < py_0 < t + 1 - p$$

or

$$t + 3 - q < py_0 < t + 1 - 2p$$

We conclude that $py_0 = qx_0$ must have one of the values:
Now, since \(t \equiv n(q - 1) \equiv -n \equiv -3 \pmod{p} \) and \(p \neq 2 \), we can only have \(qx_0 - t = 3 - p \) or \(qx_0 - t = 3 - 2p \).

iii) According to lemma 1, we must have \(F(3 - p)F(3 - 2p) = 0 \) if a perfect code exists with \(e = 3 \), \(q = 3p \).

\[
F(3 - p) = -10p^3 + 27p^2 + 9p + 48 - t(3p + 2) < 0
\]
since \(t = n(q - 1) > 3p \) and \(p \geq 5 \),

\[
F(3 - 2p) = -8p^3 + 18p + 48 - 2t < 0
\]
since \(t = n(q - 1) > 3p \) and \(p \geq 5 \).

So we find a contradiction to lemma 1 and therefore we have proved proposition 2.

7. Proposition 3. There is no perfect code with \(e = 3 \) and \(q = 6 \).

Proof. Assume there is such a code. Then, according to lemma 1, we must have

\[
F(-2)F(-1)F(0) = 0
\]

But \(F(-2) = -50 + 5n \neq 0 \) unless \(n = 10 \),

\[
F(0) = -6 - 25n < 0
\]

\[
F(-1) = -34 - 10n < 0
\]

so we must have \(n = 10 \).

Then we have \(n = 10 \), \(q = 6 \), \(e = 3 \) and

\[
x_1 + x_2 + x_3 = \frac{5(10 - 3)}{2} + 6 = \frac{47}{2} \notin \mathbb{Z}
\]

a contradiction.

8. Theorem. There is no perfect code with \(e = 3 \), \(q \) not a power of a prime.

Proof. This is proved by combining propositions 1, 2 and 3.
9. References

