A construction of disjoint Steiner Triple systems

Beenker, G.J.M.; Gerards, A.M.H.; Penning, P.

Published: 01/01/1978

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 10. Oct. 2018
A construction of disjoint Steiner Triple Systems

by

G.F.M. Beenker, A.M.H. Gerards, P. Penning

T.H.-Report 78-WSK-01

April 1978
Abstract

We show that there are at least $4t + 2$ mutually disjoint, isomorphic Steiner triple systems on $6t + 3$ points, if $t \geq 4$.

AMS Subject Classification: 05B05
1. Introduction

Given a finite, non-empty set S of v elements, a Steiner triple system of order v on S is a collection S of three-element subsets of S (called triples) such that each pair of distinct elements of S belongs to exactly one triple of S.

It is well known that there exists a Steiner triple system of order v if and only if $v \equiv 1$ or $3 \mod 6$.

Let S_1 and S_2 be two Steiner triple systems on the same set S; S_1 and S_2 are called disjoint if $S_1 \cap S_2 = \emptyset$, i.e. if they have no triple in common.

A Steiner triple system of order v is sometimes denoted simply by STS(v).

Let $D(v)$ denote the maximum number of pairwise disjoint STS(v) that can be constructed on a set S of v points. Furthermore denote by $D^*(v)$ the maximum number of pairwise disjoint, isomorphic STS(v) that can be constructed on the set S.

Since for every $3 \leq i \leq v$, the triple $\{1,2,i\}$ occurs in at most one of the pairwise disjoint STS(v), it follows that $1 \leq D^*(v) \leq D(v) \leq v-2$ for $v \geq 3$, $v \equiv 1$ or $3 \mod 6$.

2. A lower bound for $D^*(6t+3)$

In [1] J. Doyen proved that for every nonnegative integer t

$$D^*(6t+3) \geq 4t+1 \text{ if } 2t+1 \not\equiv 0 \mod 3$$

and

$$D^*(6t+3) \geq 4t-1 \text{ if } 2t+1 \equiv 0 \mod 3.$$

We shall give a construction which shows that

$$D^*(6t+3) \geq 4t+2 \text{ for } t \geq 4.$$

Let t be fixed, $t \geq 4$. Let G be the ring ($\mathbb{Z} \mod 2t+1,+,\cdot$) and let S be the set $\{A_0 \ldots A_{2t}, B_0 \ldots B_{2t}, C_0 \ldots C_{2t}\}$. Note that, since $\gcd(2t+1,2) = \gcd(2t+1,4) = \gcd(2t+1,8) = 1$, $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{8}$ are well defined elements of G.

For every $a \in G$ we denote by $S_1^j(a)$ the set consisting of

i) all subsets $\{A_{\ell} A_k B_{a+(\ell+k)}\};\{B_{\ell} B_k C_{2a+(\ell+k)}\};\{C_{\ell} C_k A_{-a+1(\ell+k)}\}$ of S with $\ell, k \in G$, $\ell \neq k$.

ii) all subsets $\{A_{\ell} B_{a+2k} C_{4a+4\ell}\}$ of S with $\ell \in G$.

For every $\beta \in G$ we denote by $S_2^j(\beta)$ the set consisting of

i) all subsets $\{A_{\ell} A_k C_{4\beta+2(\ell+k)}\};\{C_{\ell} C_k B_{-(\beta+1)+\frac{1}{2}(\ell+k)}\};\{B_{\ell} B_k A_{\frac{1}{2}(1-\beta)+\frac{1}{2}(\ell+k)}\}$ of S with $\ell, k \in G$, $\ell \neq k$.
Lemma I. The sets $S^1(0), S^1(1), \ldots, S^1(2t), S^2(0), S^2(1), \ldots, S^2(2t)$, obtained in this way, are isomorphic under permutations of S.

Proof. Let φ be the permutation of S defined as follows:

$$
\varphi(A_k) := A_{k}', \varphi(B_k) := B_{k+1}', \varphi(C_k) := C_{k+4} \quad \text{for all } k \in G.
$$

It is easy to see that φ is a one-to-one mapping of the triples of $S^1(a)$ onto the triples of $S^1(a+1)$, for any $a \in G$.

So we have proved that the sets $S^1(0), S^1(1), \ldots, S^1(2t)$ are isomorphic.

Let $a \in G$ and let ψ_a be the mapping of S into S defined by:

$$
\psi_a(A_k) := A_{k}', \psi_a(B_k) := B_{2k+2a}, \psi_a(C_k) := C_{k+1-a} \quad \text{for all } k \in G.
$$

Since $\gcd(2, 2t+1) = \gcd(1, 2t+1) = 1$, ψ_a is a permutation of S.

Let furthermore φ_i be the transposition of S, which interchanges B_i and C_i for any $i \in G$.

With the help of the above mentioned permutations, we can define the permutation χ_a of S by

$$
\chi_a := \varphi_0 \circ \varphi_1 \circ \ldots \circ \varphi_{2t} \circ \psi_a.
$$

Obviously χ_a is a one-to-one mapping of $S^1(a)$ into $S^2(a)$, because

$$
\{A_k, A_{k}', B_{a+(l+k)}\} \xrightarrow{\chi_a} \{A_k, A_{k}', C_{4a+2(l+k)}\},
$$

$$
\{B_k, B_{k}', C_{2a+(l+k)}\} \xrightarrow{\chi_a} \{C_{2k+2a}, C_{2k+2a}, B_k(2l+2k+4a)-(1+a)\},
$$

$$
\{C_k, C_k', A_{a+1}(l+k)\} \xrightarrow{\chi_a} \{B_{a+1-a}, B_{2k-1-a}, A_k(5k+2k-2-2a)+2(1-a)\},
$$

$$
\{A_k, B_{a+2k}, C_{4a+4\ell}\} \xrightarrow{\chi_a} \{A_k, C_{4a+4\ell}, B_{a+2\ell-1}\}.
$$

Since $\gcd(2, 2t+1) = \gcd(1, 2t+1) = 1$, one knows that

$$(2k+2a), (5k+2k-2-2a) \text{ and } (a+2k-1) \text{ run through } G \text{ if } k \text{ runs through } G.
$$

So we can conclude that χ_a is a one-to-one mapping of $S^1(a)$ onto $S^2(a)$. Thus $S^1(a)$ and $S^2(a)$ are isomorphic for any $a \in G$.

Conclusion: The sets $S^1(0), S^1(1), S^2(0), S^2(1), \ldots, S^2(2t)$ are isomorphic.

Lemma II. $S^1(0)$ is a $STS(6t+3)$, and hence each of the sets $S^1(0), S^1(2t), S^2(0), S^2(2t)$ is a $STS(6t+3)$.

\[\square \]
Proof.

i) The number of triples in $S^1(0)$ is:

$$3 \left(\frac{2t+1}{2} \right) + 2t + 1 = \frac{1}{6} (6t+3)(6t+2)$$

and this equals the number of triples in a STS$(6t+3)$.

ii) We shall show that each pair of elements of S belongs to at least one triple of $S^1(0)$.

Trivially the pairs $\{A_k, A_k\}, \{B_k, B_k\}, \{C_k, C_k\}$ ($k \in G, k \neq k$) occur once.

The pair $\{A_i, B_j\}$ belongs to at least one triple of $S^1(0)$, since:

a) if $j = 2i$ then $\{A_i, B_j\} = \{A_i, B_{2i}\} \subset \{A_i, B_{2i}, C_{4i}\}$,

b) if $j \neq 2i$ then $\{A_i, B_j\} \subset \{A_i, A_{j-1}, B_{i+j-1}\}$.

Also the pair $\{A_i, C_j\}$ occurs at least once, since:

a) if $j = 4i$ then $\{A_i, C_j\} = \{A_i, C_{4i}\} \subset \{A_i, B_{2i}, C_{4i}\}$,

b) if $j \neq 4i$ then $\{A_i, C_j\} \subset \{C_{j+8i-j}, A_{j+8i-j}\}$.

And finally the pair $\{B_i, C_j\}$ belongs to at least one triple of $S^1(0)$, since:

a) if $j = 2i$ then $\{B_i, C_j\} = \{B_i, C_{2i}\} \subset \{A_i, B_{i+2i}, C_{4i+2i}\}$,

b) if $j \neq 2i$ then $\{B_i, C_j\} \subset \{B_i, B_{j-1}, C_{i+j-1}\}$.

The combination of i) and ii) shows us, that each pair of distinct elements of S is contained in exactly one triple of $S^1(0)$, and hence $S^1(0)$ is a STS$(6t+3)$.

Theorem. $D^*(6t+3) \geq 4t+2$, for $t \geq 4$.

Proof. Because of the lemmas I and II, it suffices to show that the $4t+2$ STS$(6t+3)$, $S^1(\alpha), i = 1, 2, j \in G$, are pairwise disjoint.

1) Suppose that $S^1(\alpha) \cap S^2(\beta) \neq \emptyset$.

The only triples which $S^1(\alpha)$ and $S^2(\beta)$ can have in common are the triples $\{A_i, B_j, C_k\}$. Let $\{A_i, B_j, C_k\}$ be such a triple. Then there exist elements ℓ_1 and ℓ_2 in G such that $\{A_\ell, B_\ell, C_\ell\} = \{A_{\ell_1}, B_{\ell_2}, C_{4\ell+4\ell_1}\}$ and $\{A_\ell, B_\ell, C_\ell\} = \{A_{\ell_1}, B_{\ell_2}, C_{4\ell_1}+\ell_2\}$.

So we can conclude:

i) $\ell_1 = \ell_2$, i.e. $\ell_1 = \ell_2$,

ii) $C_{4\ell_1+\ell_2} = C_{4\ell_2+\ell}$, so $4\ell_1 = 4\beta$, which implies that $\alpha = \beta$ (since $\gcd(4, 2t+1) = 1$),

iii) $B_{\alpha+2\ell_1} = B_{2\ell_2+\beta-1}$, so $0 = 1$, contradiction.
Conclusion: $S^1(\alpha) \cap S^2(\beta) = \emptyset$ for any $\alpha, \beta \in G$.

2) Suppose now that $S^1(\alpha_1) \cap S^2(\alpha_2) \neq \emptyset$, $i = 1, 2$, $\alpha_1, \alpha_2 \in G$.

Let $(X_1, X_2, Y_1) \in S^1(\alpha_1) \cap S^2(\alpha_2)$, $X, Y \in \{A, B, C\}$, $X \neq Y$.

Then there exist i_1, i_2, i_3, i_4, a, b and c in G such that

$$\{X_j, X_k, Y_j\} = \{X_{i_1}, X_{i_2}, Y_{a_1+b(i_1+i_2)+c}\}$$

and

$$\{X_j, X_k, Y_j\} = \{X_{i_3}, X_{i_4}, Y_{a_2+b(i_3+i_4)+c}\}.$$

Now we can conclude that $i_1 = i_3$ and $i_2 = i_4$ (or $i_1 = i_4$ and $i_2 = i_3$, but that gives the same result) and thus $a\alpha_1 + b(i_1 + i_2) + c = a\alpha_2 + b(i_1 + i_2) + c$, which implies that $a\alpha_1 = a\alpha_2$.

As $a \in \{1, 2, -1, 4, -4\}$ and thus $gcd(a, 2t+1) = 1$, we can conclude that $a_1 = a_2$.

Finally assume that

$$(A_{\ell_1}, B_{\ell_1}, C_{4\alpha_1+4\ell_1}) = (A_{\ell_2}, B_{\ell_2}, C_{4\alpha_2+4\ell_2})$$

then $\ell_1 = \ell_2$ and so again $\alpha_1 = \alpha_2$.

The combination of 1) and 2) shows us that $S^1(\alpha) \cap S^3(\beta) \neq \emptyset$ if and only if $i = j$ and $\alpha = \beta$. ∎

Reference