A construction of disjoint Steiner Triple Systems

by

G.F.M. Beenker, A.M.H. Gerards, P. Penning

T.H.-Report 78-WSK-01

April 1978
Abstract

We show that there are at least $4t+2$ mutually disjoint, isomorphic Steiner triple systems on $6t+3$ points, if $t \geq 4$.

AMS Subject Classification: 05B05
1. Introduction

Given a finite, non-empty set \(S \) of \(v \) elements, a Steiner triple system of order \(v \) on \(S \) is a collection \(S \) of three-element subsets of \(S \) (called triples) such that each pair of distinct elements of \(S \) belongs to exactly one triple of \(S \).

It is well known that there exists a Steiner triple system of order \(v \) if and only if \(v \equiv 1 \) or \(3 \mod 6 \).

Let \(S_1 \) and \(S_2 \) be two Steiner triple systems on the same set \(S \); \(S_1 \) and \(S_2 \) are called disjoint if \(S_1 \cap S_2 = \emptyset \), i.e. if they have no triple in common.

A Steiner triple system of order \(v \) is sometimes denoted simply by \(\text{STS}(v) \).

Let \(D(v) \) denote the maximum number of pairwise disjoint \(\text{STS}(v) \) that can be constructed on a set \(S \) of \(v \) points. Furthermore denote by \(D^*(v) \) the maximum number of pairwise disjoint, isomorphic \(\text{STS}(v) \) that can be constructed on the set \(S \).

Since for every \(3 \leq i \leq v \), the triple \([1,2,i]\) occurs in at most one of the pairwise disjoint \(\text{STS}(v) \), it follows that \(1 \leq D^*(v) \leq D(v) \leq v-2 \) for \(v \geq 3 \), \(v \equiv 1 \) or \(3 \mod 6 \).

2. A lower bound for \(D^*(6t+3) \)

In [1] J. Doyen proved that for every nonnegative integer \(t \)

\[
D^*(6t+3) \geq 4t+1 \quad \text{if} \quad 2t+1 \not\equiv 0 \mod 3
\]

and

\[
D^*(6t+3) \geq 4t+1 \quad \text{if} \quad 2t+1 \equiv 0 \mod 3.
\]

We shall give a construction which shows that

\[
D^*(6t+3) \geq 4t+2 \quad \text{for} \quad t \geq 4.
\]

Let \(t \) be fixed, \(t \geq 4 \). Let \(G \) be the ring \((\mathbb{Z} \mod 2t+1,+, \cdot) \) and let \(S \) be the set \(\{A_0, A_2, A_4, \ldots, A_{2t}, B_0, B_2, B_4, \ldots, B_{2t}, C_0, C_2, C_4, \ldots, C_{2t}\} \). Note that, since \(\gcd(2t+2,2) = \gcd(2t+2,4) = \gcd(2t+2,8) = 1 \), \(\frac{1}{2}, \frac{1}{4} \) and \(\frac{1}{8} \) are well defined elements of \(G \).

For every \(a \in G \) we denote by \(S^1(a) \) the set consisting of

i) all subsets \(\{A_{\ell}, A_k, B_{a+(\ell+k)}\}; \{C_{\ell}, C_k, B_{-a+(\ell+k)}\} \) of \(S \) with \(\ell, k \in G \), \(\ell \neq k \).

ii) all subsets \(\{A_{\ell}, B_{a+2\ell}, C_{4a+4\ell}\} \) of \(S \) with \(\ell \in G \).

For every \(b \in G \) we denote by \(S^2(b) \) the set consisting of

i) all subsets \(\{A_{\ell}, A_k, C_{4\beta+2(\ell+k)}\}; \{C_{\ell}, C_k, B_{-(\beta+1)+1(\ell+k)}\}; \{B_{\ell}, B_k, A_{2(1-\beta)+1(\ell+k)}\} \) of \(S \) with \(\ell, k \in G \), \(\ell \neq k \).
Lemma I. The sets $S^1(0), S^1(1), \ldots, S^1(2t), S^2(0), S^2(1), \ldots, S^2(2t)$, obtained in this way, are isomorphic under permutations of S.

Proof. Let φ be the permutation of S defined as follows:

$$
\varphi(A_\ell) := A_\ell, \quad \varphi(B_\ell) := B_{\ell+1}, \quad \varphi(C_\ell) := C_{\ell+4}
$$

for all $\ell \in G$.

It is easy to see that φ is a one-to-one mapping of the triples of $S^1(a)$ onto the triples of $S^1(a+1)$, for any $a \in G$.

So we have proved that the sets $S^1(0), S^1(1), \ldots, S^1(2t)$ are isomorphic.

Let $a \in G$ and let ψ_a be the mapping of S into S defined by:

$$
\psi_a(A_\ell) := A_\ell, \quad \psi_a(B_\ell) := B_{2\ell+2a}, \quad \psi_a(C_\ell) := C_{2\ell-(1+a)}
$$

for all $\ell \in G$.

Since $\gcd(2, 2t+1) = \gcd(2, 2t+1) = 1$, ψ_a is a permutation of S.

Let furthermore φ_i be the transposition of S, which interchanges B_i and C_i for any $i \in G$.

With the help of the above mentioned permutations, we can define the permutation χ_a of S by

$$
\chi_a := \varphi_0 \circ \varphi_1 \circ \ldots \circ \varphi_{2t} \circ \psi_a.
$$

Obviously χ_a is a one-to-one mapping of $S^1(a)$ into $S^2(a)$, because

$$
\begin{align*}
&\{A_\ell, A_{\ell+k}, B_{\ell+k}\} \xrightarrow{\chi_a} \{A_\ell, A_{\ell+k}, C_{4\ell+2(\ell+k)}\}, \\
&\{B_\ell, B_{\ell+k}, C_{2\ell+2a}\} \xrightarrow{\chi_a} \{C_{2\ell+2a}, C_{2\ell+2a}, B_{2(\ell+2k+4a)-(1+a)}\}, \\
&\{C_\ell, C_{\ell+k}, A_{\ell+1}\} \xrightarrow{\chi_a} \{B_{2\ell-1-a}, B_{2\ell-1-a}, A_{2(\ell+2k-2a)+5(1-a)}\}, \\
&\{A_\ell, B_{\alpha+2\ell}, C_{4\ell+4k}\} \xrightarrow{\chi_a} \{A_\ell, C_{4\ell+4\ell}, B_{\alpha+2\ell-1}\}.
\end{align*}
$$

Since $\gcd(2, 2t+1) = \gcd(2, 2t+1) = 1$, one knows that $(2\ell + 2a)$, $(2\ell - 1 - a)$ and $(a + 2\ell - 1)$ run through G if ℓ runs through G.

So we can conclude that χ_a is a one-to-one mapping of $S^1(a)$ onto $S^2(a)$.

Thus $S^1(a)$ and $S^2(a)$ are isomorphic for any $a \in G$.

Conclusion: The sets $S^1(0), \ldots, S^1(2t), S^2(0), \ldots, S^2(2t)$ are isomorphic.

Lemma II. $S^1(0)$ is a $STS(6t+3)$, and hence each of the sets $S^1(0), \ldots, S^1(2t), \ S^2(0), \ldots, S^2(2t)$ is a $STS(6t+3)$.

Proof.
i) The number of triples in $S^1(0)$ is:

$$3 \binom{2t+1}{2} + 2t + 1 = \frac{1}{6}(6t+3)(6t+2)$$

and this equals the number of triples in a STS$(6t+3)$.

ii) We shall show that each pair of elements of S belongs to at least one triple of $S^1(0)$.

Trivially the pairs $\{A^r_k, B^r_k\}, \{C^r_k, C_k\} (r, k \in G, r \neq k)$ occur once.

The pair $\{A^r_i, B^r_j\}$ belongs to at least one triple of $S^1(0)$, since:

a) if $j = 2i$ then $\{A^r_i, B^r_j\} = \{A^r_i, B^r_{2i}\} \subset \{A^r_i, B^r_{2i}, C^r_{4i}\}$,

b) if $j \neq 2i$ then $\{A^r_i, B^r_j\} \subset \{A^r_i, A_{j-i}, B_{i+j-1}\}$.

Also the pair $\{A^r_i, C^r_j\}$ occurs at least once, since:

a) if $j = 4i$ then $\{A^r_i, C^r_j\} = \{A^r_i, C^r_{4i}\} \subset \{A^r_i, B^r_{2i}, C^r_{4i}\}$,

b) if $j \neq 4i$ then $\{A^r_i, C^r_j\} \subset \{C^r_{j, 8i-j}, A^r_{4i}(j+8i-j)\}$.

And finally the pair $\{B^r_i, C^r_j\}$ belongs to at least one triple of $S^1(0)$, since:

a) if $j = 2i$ then $\{B^r_i, C^r_j\} = \{B^r_i, C^r_{2i}\} \subset \{A^r_i, B^r_{2i}, C^r_{4i}\}$,

b) if $j \neq 2i$ then $\{B^r_i, C^r_j\} \subset \{B^r_i, B_{j-1}, C_{i+j-1}\}$.

The combination of i) and ii) shows us, that each pair of distinct elements of S is contained in exactly one triple of $S^1(0)$, and hence $S^1(0)$ is a STS$(6t+3)$.

Theorem. $D^*(6t+3) \geq 4t+2$, for $t \geq 4$.

Proof. Because of the lemmas I and II, it suffices to show that the $4t+2$ STS$(6t+3)$, $S^i(\alpha)$, $i = 1, 2$, $\alpha \in G$, are pairwise disjoint.

1) Suppose that $S^1(\alpha) \cap S^2(\beta) \neq \emptyset$.

The only triples which $S^1(\alpha)$ and $S^2(\beta)$ can have in common are the triples $\{A^r_i, B^r_j, C^r_k\}$. Let $\{A^r_i, B^r_j, C^r_k\}$ be such a triple. Then there exist elements ℓ_1 and ℓ_2 in G such that $\{A^r_i, B^r_j, C^r_k\} = \{A^r_i, B^r_{\alpha+2\ell_1}, C^r_{\alpha+2\ell_2}\}$ and $\{A^r_i, B^r_j, C^r_k\} = \{A^r_{\ell_2}, B^r_{2\ell_2+\beta-1}, C^r_{\beta+4\ell_2}\}$.

So we can conclude:

i) $A^r_{\ell_1} = A^r_{\ell_2}$, i.e. $\ell_1 = \ell_2$,

ii) $C^r_{\alpha+2\ell_1} = C^r_{\beta+\ell_2}$, so $4\alpha = 4\beta$, which implies that $\alpha = \beta$ (since $\gcd(4, 2t+1) = 1$),

iii) $B^r_{\alpha+2\ell_1} = B^r_{2\ell_2+\beta-1}$, so $0 = 1$, contradiction.
Conclusion: $S^1(a) \cap S^2(\beta) = \emptyset$ for any $a, \beta \in G$.

2) Suppose now that $S^i(a_1) \cap S^i(a_2) \neq \emptyset$, $i = 1, 2$, $a_1, a_2 \in G$.
Let $(X_j, X_k, Y_j) \in S^i(a_1) \cap S^i(a_2)$, $X, Y \in \{A, B, C\}$, $X \neq Y$.
Then there exist i_1, i_2, i_3, i_4, a, b and c in G such that

$$\{X_j, X_k, Y_j\} = \{X_{i_1}, X_{i_2}, Y_{a_1+b(i_1+i_2)+c}\}$$
and

$$\{X_j, X_k, Y_j\} = \{X_{i_3}, X_{i_4}, Y_{a_2+b(i_3+i_4)+c}\}.$$

Now we can conclude that $i_1 = i_3$ and $i_2 = i_4$ (or $i_1 = i_4$ and $i_2 = i_3$, but that gives the same result) and thus $a_{i_1} + b(i_1 + i_2) + c = a_{i_2} + b(i_1 + i_2) + c$, which implies that $a_{i_1} = a_{i_2}$.
As $a \in \{1, 2, -1, 4, 4\}$ and thus $\gcd(a, 2t+1) = 1$, we can conclude that $a_1 = a_2$.

Finally assume that

$$\{A_{i_1}, B_{i_1}, C_{4i_1+4}\} = \{A_{i_2}, B_{i_2}, C_{4i_2+4}\}$$

then $i_1 = i_2$ and so again $a_1 = a_2$.

The combination of 1) and 2) shows us that $S^i(a) \cap S^j(\beta) \neq \emptyset$ if and only if $i = j$ and $a = \beta$.

Reference