An asymptotic problem on iterated functions

de Bruijn, N.G.

Published: 01/01/1977

Citation for published version (APA):
An asymptotic problem on iterated functions

by

N.G. de Bruijn.

University of Technology
Department of Mathematics
P.O.Box 513, Eindhoven.
The Netherlands.
An asymptotic problem on iterated functions.

by

N.G. de Bruijn.

1. Introduction. Recently A. Odlyzko studied the function F defined by the functional equation

$$F(x) = x + F(x^2 + x^3). \quad (1.1)$$

He conjectured that its power series coefficients t_n satisfy $t_n \sim a n^{-1} \phi^n v(\log n)$, where a is a constant, $\phi = \frac{1}{2} (1 + \sqrt{5})$, and v is a positive periodic function with period $\log (3 - \phi^{-1})$.

A related problem was treated in [1], viz. the asymptotic behaviour of the power series coefficients of the function

$$H(x) = \log \sum_{k=0}^{\infty} (1 - x^r)^{-1}, \quad (1.2)$$

which satisfies

$$H(x) = -\log (1-x) + H(x^r) \quad (1.3)$$

(r is an integer > 1). This was achieved by studying the asymptotic behaviour of (1.2) when x approaches the singularity at the point 1, and deriving the behaviour of the coefficients from what is essentially Cauchy's coefficient formula. Some years later W.B. Pennington [3] gave a shorter derivation by means of a Tauberian theorem of Ingham.

The asymptotic formula for (1.2) follows from the following exact formula

$$H(x) = \frac{(\log \log x^{-1})^2}{2 \log r} - \frac{1}{2} \log \log (x^{-1}) + W(\log \log x^{-1}) + \sum_{n=1}^{\infty} B_n (\log x^{-1})^n / (n! n!(r^n - 1)), \quad (1.4)$$

where the B_n are Bernoulli numbers, and W is periodic with period $\log r$:

$$W(y) = \sum_{k=-\infty}^{\infty} a_k \exp(2\pi i k y / \log r), \quad (1.5)$$

with
In the present note we study the more general problem of the behaviour of sums of the type

\[g(x) + g(\theta(x)) + g(\theta(\theta(x))) + \ldots \]

and this will still contain a periodic function like the above \(W \). Our main result will be (4.4).

If \(\theta(x) = x^2 + x^3 \), \(g(x) = x \) we get the F of (1.1), if \(\theta(x) = x^r \), \(g(x) = -\log(1-x) \), we get the H of (1.3). (It is not necessary that \(r \) is an integer, and that was not assumed in [1]. Only, if \(r \) is not an integer, the notion "coefficient of the power series" has to be slightly revised).

2. Conditions on \(\theta \) and \(g \). Let \(b \) be a positive real, and let \(\theta(x) \) be defined for \(0 \leq x \leq b \), with

(i) \(\theta \) is real-valued, continuous and strictly monotonically increasing,
(ii) \(\theta(0) = 0 \),
(iii) \(\theta(b) = b \),
(iv) \(0 < \theta(x) < x \quad (0 < x < b) \),
(v) there is a constant \(c \) with \(0 < c < 1 \) such that \(\theta(x) < cx \) for \(0 < x < \frac{1}{2}b \),
(vi) \(\theta \) is differentiable at \(b \), with \(\theta'(b) > 1 \), and \(\theta(x)-b-(x-b)\theta'(b) = O(x-b)^2 \) \((x < b, x \to b) \).

On account of (i),(ii),(iii), there is an inverse function and there is a doubly infinite sequence \(\{\theta_n\}_{n \in \mathbb{Z}} \) with \(\theta_0 = \theta \), \(\theta_{n+1}(x) = \theta(\theta_n(x)) \) for all \(n \in \mathbb{Z} \). So \(\theta_{-1} \) is the inverse of \(\theta \), \(\theta_0 \) is the identity, and if \(n > 0 \) then \(\theta_n \) is the \(n \)-th iterate of \(\theta \).

If \(0 \leq x < b \), and \(x \) is fixed, then \(\theta_n(x) \) decreases exponentially if \(x \) is fixed and \(n \to \infty \). Actually we have \(\theta_n(x) = O(c^n) \) (see (v)). Similarly, \(b-\theta_n(x) \) decreases exponentially if \(n \to -\infty \), since \(\theta'(b) > 1 \). (For a general discussion on these iteration questions we refer to [2], ch. 8).

The function \(g \) will be assumed to be real-valued and continuous on the interval \(0 \leq x < b \), with \(g(0) = 0 \), and such that \(g(x)/x \) is bounded on \(0 < x < \frac{1}{2}b \).

We shall also use on \(0 \leq x < b \) an auxiliary function \(Z \) which has to have the following property : if \(h \) is defined by

\[h(x) = g(x) - Z(x) + Z(\theta(x)) \]

(2.1)
3. Convergence for every x in $0 < x < b$, and uniformly in every interval $a_1 < x < b$ with $0 < a_1 < b$ (note that it suffices to require uniformity in an interval $\theta(x_0) \leq x \leq x_0$ with some $x_0 \in (0, b)$).

We quote two examples. First, if $g(x) = x$ for all x, then we can take

$$Z(x) = -b \log(b-x)/\log(\theta'(b)).$$

(2.3)

It easily follows from (vi) that $h(x) = O(x-b)$, and that guarantees the convergence of (2.2).

Secondly, if $b=1$, $g(x) = -\log(1-x)$ then we can use

$$Z(x) = \frac{\left(\log(1-x)\right)^2}{2 \log \theta'(1)} - \frac{1}{2} \log(1-x),$$

(2.4)

which again leads to $h(x) = O(x-b)$.

In general, the existence of Z (such that (2.1) and (2.2) hold) is no problem (we can prescribe $Z(x)$ arbitrarily on some interval $\theta(x_0) < x \leq x_0$ and continue it such that (2.1) holds with $h(x) = 0$ for all $x \geq x_0$; cf. the discussion on (3.1) in section 3). But what we want, of course, is a function Z that is easy to handle, at least asymptotically.

3. Two related functional equations. We consider the functional equations

$$L(\theta(x)) = L(x)$$

(3.1)

$$M(\theta(x)) = \theta'(b) M(x).$$

(3.2)

It is easy to construct all solutions of (3.1) on $0 < x < b$. We take an arbitrary x_0 in that interval and prescribe $L(x)$ arbitrarily for $\theta(x_0) < x \leq x_0$. Since $\theta_n(x_0) \to 0$ if $n \to +\infty$ and $\theta_{-n}(x_0) \to b$ if $n \to -\infty$, this function can be extended to a solution of (3.1) for $0 < x < b$: for every $x \in (0, b)$ there is a unique $n \in \mathbb{Z}$ with $\theta_n(x) \in (\theta(x_0), x_0]$.

As to (3.2) it suffices to produce a single positive solution on $(0, b)$, since every other solution is the product of that positive solution and a solution of (3.1).

Equation (3.2) is directly related to the Schröder equation: if we define ω, a_1, f by $\omega(x) = M(b-x), f(x) = b - \theta_1(b-x), a_1 = (\theta'(b))^{-1}$, we get the Schröder equation $\omega(f(x)) = a_1 \omega(x)$ for which an infinite product solution was described in [2, section 8.3]. In our present notation it amounts to the following. If n is defined by
\[
\eta(x) = \theta'(b) \frac{b - \theta_{-1}(x)}{b - x} \quad (0 < x < b)
\]
we have \(\eta(x) = 1 + \mathcal{O}(b-x)\) by (vi, section 2). It follows that we can define a function \(M_0\) by

\[
M_0(x) = (b-x) \prod_{n=0}^{\infty} \eta(\theta_{-n}(x))
\]
(3.3)

(note that \(b - \theta_{-n}(x)\) tends exponentially to zero). It is easy to verify that \(M_0\) satisfies (3.1).

If \(L\) satisfies (3.1) then there obviously exists a periodic function \(v\) with period 1 such that

\[
L(x) = v \left(\frac{\log M_0(x)}{\log \theta'(b)} \right),
\]
(3.4)

As \(M_0(x) \sim b-x\) if \(x < b\), \(x \sim b\), it requires only light smoothness conditions on \(L\) in order to get from (3.4) to

\[
L(x) = v \left(\frac{b - x}{\log \theta'(b)} \right) + o(1) \quad (x < b, x \to b).
\]
(3.5)

It suffices to assume that \(L\) is continuously differentiable on \([\theta(x_0), x_0]\).

4. The sum \(F_g\). Let \(\theta\) and \(g\) satisfy the conditions of section 2. We define

\[
F_g(x) = \sum_{n=0}^{\infty} g(\theta_n(x)) \quad (0 \leq x < b).
\]
(4.1)

The series converges rapidly since \(\theta_n(x)\) tends exponentially to zero, and \(g(x) = \mathcal{O}(x)\). Obviously

\[
F_g(x) = g(x) + \sum_{n=1}^{\infty} h(\theta_{-n}(x)) \quad (0 \leq x < b).
\]
(4.2)

We want the behaviour of \(F_g(x)\) for \(x > b\). Let us assume we have a function \(Z\) as described in section 2, i.e. with uniform convergence of (2.2) for every interval \(a < x < b\) (if \(0 < a < b\)). For \(0 < x < b\), we now define \(L(x)\) by

\[
L(x) = \lim_{n \to +\infty} \left(\sum_{k=-n}^{\infty} g(\theta_k(x)) - Z(\theta_{-n}(x)) \right).
\]
(4.3)

The existence of the limit follows from the convergence of (2.2), and we can write

\[
L(x) = F_g(x) - Z(x) + \sum_{n=1}^{\infty} h(\theta_{-n}(x)).
\]
(4.4)

By (4.2) and (2.1) we obtain
\[L(x) = L(\theta(x)) \quad (0 < x < b), \]
i.e. \(L \) satisfies (3.1), and has the form (3.4).

Because of the uniform convergence of (2.2) we have

\[\sum_{n=1}^{\infty} h(\theta_{-n}(x)) \to 0 \quad (x < b, x + b), \]
since \(\sum_{n=m}^{\infty} h(\theta_{-n}(y)) = \sum_{n=1}^{\infty} h(\theta_{-n}(x)) \) if \(y = \theta_m(x) \), and \(y \in (a, b) \) as soon as \(x \in (\theta_{-m}(a), b) \). Thus we have obtained, as our main result,

\[\lim_{x < b, x \to b} (F(x) - Z(x) - L(x)) = 0. \quad (4.5) \]

Formula (4.4) presents a quite useful representation of \(L(x) \). In the special case where \(g(x) = x \) \((0 \leq x \leq b)\) we can also use the function \(M_0 \) of section 3. We define \(Z \) by (2.3), whence

\[Z(\theta_{-n}(x)) \sim \frac{-b}{\log \theta'(b)} \log \left(\frac{M_0(x)}{(\theta'(b))^n} \right), \]
and now (4.3) gives

\[L(x) = F \frac{g}{g'}(x) - \sum_{k=1}^{n} (b - \theta_{-k}(x)) + \frac{b}{\log \theta'(b)} \log M_0(x). \quad (4.6) \]

Note that the two series, as well as the product expansion of \(M_0(x) \), are rapidly convergent. This can be used to show the following: if \(\theta \) is continuously differentiable for \(0 < x < b \), then \(L \) is continuously differentiable, and thus we have (3.5).

5. Applications. (i) First we take the function \(F \) defined by (1.1). According to (4.2) this equals \(F \), where \(g(x) = x \), and \(\theta(x) = x^2 + x^3 \), if we take \(b = \frac{1}{2}(1 + \sqrt{5}) \), i.e. the positive root of \(x = x^2 + x^3 \). We have \(\theta'(h) = \frac{1}{2}(7 - \sqrt{5}) \).

By (4.5) we have

\[F(x) = -\frac{b}{\log \theta'(b)} \log (b-x) + L(x) + o(1) \]
if \(x < b, x + b \). The term \(o(1) \) can be replaced by

\[-\sum_{n=1}^{\infty} h(\theta_{-n}(x)). \]

(ii) Next we take a look at \(H(x) \) of (1.2). We take \(b = 1, \theta(x) = x^r \) \((r \text{ is a real number } > 1)\), \(g(x) = -\log(1-x) \), and \(Z(x) \) as in (2.4). By (4.2) we have \(F = H \). Now (4.5) gives

\[H(x) = \frac{(\log(1-x))^2}{2 \log r} - \frac{1}{2} \log(1-x) + L(x) + o(1), \]
and this is in accordance with (1.4). Note that if \(W(\log \log x^{-1}) \) is abbreviated as \(U(x) \), then \(U(x) = U(x^r) \) (since \(W \) is periodic with period \(\log r \)).

(iii) Let us take the simpler case where still \(b=1, \theta(x) = x^r \), but now \(g(x) = x^c \) with some positive constant \(c \). This means that \(F_g(x) = F(x;c) \), where \(F(x;c) \) is defined by

\[
F(x;c) = x^c + x^{cr} + x^{cr^2} + \ldots
\]

We take \(b=1 \), and \(Z \) as in (2.3) (this works for every \(g \) with \(g(x) = 1 + O(x^{-1}) \)), and now (4.5) gives

\[
F(x;c) = -\frac{\log(1-x)}{\log r} + L(x) + o(1) \quad (x \to 1)
\]

with \(L(x) = L(x^r) \). Actually, by the method of [1] an explicit formula for \(F(x;c) \) can be produced; it is just a bit simpler than the one for (1.2). It is

\[
F(x;c) = -\frac{\log \log x^{-1}}{\log r} - \gamma + \log c + \frac{1}{\log r} + \sum_{k=-\infty}^{\infty} a_k \exp\left(2\pi i k \frac{\log \log x^{-1}}{\log r}\right) + \sum_{n=1}^{\infty} \beta_n (\log x^{-1} - 1),
\]

where

\[
a_k = \Gamma(2\pi i k/\log r) (\log r)^{-1} c^{2\pi i k/\log r},
\]

\[
\beta_k = c^n (-1)^{n-1}/(n!(r^n-1))
\]

and \(\gamma \) is Euler's constant. We mention that it is easy to verify, as a check, that \(F(x;c) = x^c + F(x;cr) \).

References.

