A combinatorial proof of Schur's 1926 partition theorem

Post, K.A.

Published: 01/01/1978

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

[Link to publication](#)

Citation for published version (APA):
EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics

Memorandum 1978-15
December 1978

A combinatorial proof of Schur's 1926 partition theorem

by

K.A. Post
A combinatorial proof of Schur's 1926 partition theorem

by

K.A. Post

Schur's theorem

Given positive integers \(r \) and \(m \) such that \(r < \frac{m}{2} \), let \(C_{r,m}(n) \) denote the number of partitions of \(n \) into distinct parts congruent to \(\pm r \) (mod \(m \)) and let \(D_{r,m}(n) \) denote the number of partitions of \(n \) into distinct parts congruent to 0, \(\pm r \) (mod \(m \)) with minimal difference \(m \), and minimal difference \(2m \) between multiples of \(m \). Then \(C_{r,m}(n) = D_{r,m}(n) \) for all \(n \).

Let \(m \) and \(r \) be positive integers, \(m > 2r \). Let

\[
 a_1 < a_2 < a_3 < \ldots < a_N
\]

be a partition of the positive integer \(n \) into positive parts, that are congruent to \(\pm r \) (mod \(m \)).

We subdivide the sequence \((a_i) \) from left to right into blocks of size 2 (preferably) and 1 such that no two elements with difference \(\geq m \) ever belong to the same block. This subdivision is obviously unique.

Example. \(m = 5 \), \(r = 1 \). The sequence

\[
 (a_i) = (4, 11, 14, 16, 21, 26, 29, 36, 39, 41)
\]

is a partition of \(n = 237 \) and is subdivided into

\[
 4|11,14|16|21|26,29|36,39|41 .
\]

For all \(j \) let \(b_j \) denote the sum of the elements in block \(j \), and let \(c_j \) be defined as

\[
 c_j := b_j - (j - 1)m .
\]

In our example we have therefore

\[
 (c_j) = (4, 20, 6, 6, 35, 50, 11) .
\]

The sequence \((c_j) \), obtained in this way has the following properties:

Property 1. For all \(j \) we have \(c_j \equiv 0, r \) or \(-r \) (mod \(m \)).
Property 2. For all \(j \) we have:

i) \(c_j \equiv r \pmod{m} \Rightarrow (c_j \text{ originates from a block of size 1 containing the element } c_j + (j-1)m) \).

ii) \(c_j \equiv 0 \pmod{m} \Rightarrow (c_j \text{ originates from a block of size 2 containing the elements } \left\lfloor \frac{c_j + (j-1)m}{2} \right\rfloor_r \text{ and } \left\lfloor \frac{c_j + (j-1)m}{2} \right\rfloor_r) \).

In this assertion we use the notation \(\left\lfloor g \right\rfloor_r \) and \(\left\lceil g \right\rceil_r \) to denote \(\text{Max}\{g \in M \mid x > g\} \) and \(\text{Min}\{x \in M \mid x < g\} \) respectively, where \(M := \{x \in \mathbb{N} \mid x \equiv \pm r \pmod{m}\} \).

Property 3. For all \(j \) we have

i) \(c_j \equiv 0 \pmod{m} \) \(\Rightarrow c_{j+1} \geq c_j + m \)

ii) \(c_j \equiv r \pmod{m} \) \(\Rightarrow c_{j+1} \geq c_j \)

iii) \(c_j \equiv 0 \pmod{m} \) \(\Rightarrow \left\lfloor \frac{c_j + (j-1)m}{2} \right\rfloor_r + m \leq c_{j+1} + jm \)

iv) \(c_j \equiv r \pmod{m} \) \(\Rightarrow c_j + jm \leq \left\lceil \frac{c_{j+1} + jm}{2} \right\rceil_r \).

Property 4.

i) The subsequence of those \(c_j \) which are \(\equiv r \pmod{m} \) is a non-decreasing sequence.

ii) The subsequence of those \(c_j \) that are \(\equiv 0 \pmod{m} \) is increasing (with differences \(\equiv m \)).

Property 5. For all \(j' > j \) we have

i) \(c_t \equiv 0 \pmod{m} \ (j \leq t < j') \) \(\Rightarrow \left\lfloor \frac{c_j - (j-1)m}{2} \right\rfloor_r \leq c_{j'} \)

ii) \(c_t \equiv r \pmod{m} \ (j \leq t < j') \) \(\Rightarrow c_j \leq \left\lfloor \frac{c_{j'} - (j'-1)m}{2} \right\rceil_r \).

The proof of these properties is straightforward. Moreover, any sequence \((c_j) \) of positive integers, having property 1 and 3 originates from a unique sequence \((a_j) \) by the construction given above.

Now let \((d_j) \) be the non-decreasing rearrangement of \((c_j) \), and for all \(j \) let finally \(e_j \) be given as

\[e_j := d_j + (j-1)m. \]

Then \((e_j) \) has the following property (*).
\((e_j)\) is an increasing sequence of positive numbers congruent to 0, \(+r\) or \(-r\) (mod \(m\)) with differences \(\geq m\), and differences between multiples of \(m\) being at least 2\(m\). Moreover, \((e_j)\) is a partition of \(n\).

In our example we obtain

\[
(e_j) = (4, 11, 16, 26, 40, 60, 80)
\]

Now we shall show that the construction of \((e_j)\) from \((a_j)\) is reversible, i.e. given any sequence \((e_j)\) satisfying (*) there exists a (unique) partition \((a_j)\) of \(n\) into distinct positive parts congruent to \(\pm r\) (mod \(m\)) that yields \((e_j)\) by the construction. All steps are immediate except how to obtain the sequence \((c_j)\) from the sequence \((d_j)\) by interlacing the subsequences of terms \(\equiv 0\) (mod \(m\)) and of terms \(\equiv \pm r\) (mod \(m\)) in the latter.

Let \(\tilde{d}_1 < \tilde{d}_2 < \ldots\) be the subsequence of those \(d_j\) which are congruent to 0 (mod \(m\)), and let \(\tilde{\tau}_1 \leq \tilde{\tau}_2 \leq \ldots\) be the subsequence of those \(d_j\) that are congruent to \(\pm r\) (mod \(m\)). Now property 5 will be the guide to interlace \((\tilde{d}_k)\) and \((\tilde{\tau}_k)\).

For \(c_1\) there are two candidates, \(\tilde{d}_1\) and \(\tilde{\tau}_1\). According to property 5 we must decide in favour of \(\tilde{\tau}_1\), if \(\left[\frac{\tilde{d}_1 - \text{pm}}{2}\right]_r \leq \tilde{\tau}_1\), and in favour of \(\tilde{d}_1\) in the case where \(\tilde{d}_1 \leq \left[\frac{\tilde{d}_1 - \text{pm}}{2}\right]_r\) for some positive integer \(p\) (hence if we observe that \(\tilde{d}_1 \leq \left[\frac{\tilde{d}_1 - m}{2}\right]_r\)). These two criteria turn out to be exactly complementary.

Hence, \(c_1\) is uniquely determined. Now we proceed by induction: Let \(\tilde{d}_1, \ldots, \tilde{d}_{s-1}\) and \(\tilde{\tau}_1, \ldots, \tilde{\tau}_{t-1}\) be chosen in the sequence \((c_j)\) to form the elements \(c_1, c_2, \ldots, c_{j-1}\). For \(c_j\) there are two candidates, \(\tilde{d}_s\) and \(\tilde{\tau}_t\). According to property 5 we must decide in favour of \(\tilde{\tau}_t\), if \(\left[\frac{\tilde{d}_s - (j-1)m}{2}\right]_r \leq \tilde{\tau}_t\) and in favour of \(\tilde{d}_s\) if \(\tilde{d}_t \leq \left[\frac{\tilde{d}_s - \text{pm}}{2}\right]_r\) for some \(p \geq j\) (hence if we see that \(\tilde{d}_t \leq \left[\frac{\tilde{d}_s - jm}{2}\right]_r\)).

Again, these conditions are exactly complementary, so that \(c_j\) is uniquely determined. The properties 3(i+iv) are now also valid for \((c_j)\) so that the basic construction is uniquely inverted.

References
