Vertical InP/InGaAsP tapers for low-loss optical fibre-waveguide coupling
Brenner, T.; Hunziker, W.; Smit, M.K.; Bachmann, M.; Guekos, G.; Melchior, H.

Published in:
Electronics Letters

Published: 01/01/1992

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Acknowledgments: This work was done with the financial support of the French Ministere de la Recherche et de l’Espace in collaboration with Thomson LCR. This study corresponds to a part of the research programs of GDR III-V and GDR Ondes Optique Guides.

7th September 1992

A. Barthélémy, F. Loursdorff and V.Couderc (Institut de Recherche et Communications Optiques et Microondes, UA no. 356 du CNRS, 123 av. A. Thomas, 87060 Limoges Cedex, France)

References


VERTICAL InP/InGaAsP TAPERS FOR LOW-LOSS OPTICAL FIBRE-WAVEGUIDE COUPLING

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guetkos and H. Melchior

Indexing terms: Integrated optics, Fiber waveguide coupling, Waveguide tapers

We have realised vertically tapered and antireflection-coated waveguides in InP/InGaAsP with 1.7 dB coupling loss and relaxed alignment tolerances to lensed single-mode fibres with spot diameters of 3.8 μm. The waveguide tapers are fabricated by a dip-etch process that is well suited for integration with optical waveguide circuits.

Introduction: Modern communication systems require efficient coupling from integrated-optic semiconductor waveguide devices to single-mode fibres. The elliptically shaped optical modes of typical optical waveguide switches and modulators on semiconductors have to be matched to the larger and circular modes guided by the fibres. Several authors have reported spot-size transformations for low-loss coupling to cleaved fibres: Koch et al. [1] applied quasiadiabatic vertically tapered laser structures fabricated using ultrathin stop-etch layers to obtain coupling losses as low as 4.2 dB. Mueller et al. [2] used a vertically tapered waveguide with a 10-μm-high stack of layers realised by a shadow mask technique to achieve fibre chip coupling losses of 4.9 dB. Zengerle et al. [3] realised waveguides with tapers in the vertical and horizontal direction by using a structure in which the main waveguide is located on top of a very thin waveguiding layer. They achieved coupling losses as low as 2.1 dB.

In this Letter we report on antireflection-coated vertical waveguide tapers having coupling losses of 1.7 dB and relaxed alignment tolerances to lensed fibres with spot diameters of 3.8 μm (tapers). Using these tapers the waveguide devices, optimised for switches and modulators, are affected only near the facets for coupling improvement. Conventional process techniques can be applied for the fabrication.

Taper concept and design: To increase the coupling efficiency between optical waveguide devices and single-mode fibres we propose vertical taper ridge-type waveguide structures (see Fig. 1). To realise such adiabatic waveguide tapers, the waveguide structures of optical switches and modulators [4-5] were slightly modified by including a 20 nm InP stop-etch layer that divides the 600 nm InGaAsP waveguide core into a thick 530 nm and a thin 70 nm layer. This modification of the waveguide structure has only a minimal effect on the optimised operation of the waveguide switches and modulators. In the taper section, however, this structure allows the thick waveguide layer to be removed gradually by a dip-etch technique while keeping the thinner waveguide layer for coupling to the fibres. The adiabatic transformation from the conventional waveguide modes in the device section with elliptic mode shape to the modes with almost circular shape in the thin waveguide is achieved with vertical tapers. Optical shapes of the adiabatic tapers were determined by means of beam propagation analysis [6]. This analysis predicts that vertical tapers longer than 400 μm should exhibit conversion losses of less than 0.3 dB. The coupling from the thin waveguides with cores of 70 μm to lensed fibres with spot diameters of 3.8 μm is from overlapping the mode profiles, predicted to as low as 0.75 dB for TE polarization and 0.65 dB for TM polarization, respectively. The almost circular modes of the waveguide structures also relax vertical alignment tolerances.

Fig. 1 Longitudinal cross-section of integrated optical waveguide chip with central device section, adiabatically tapered waveguide section and coupling section.

Taper section adapts waveguides which are optimised for device operation to waveguides which are optimised for fibre coupling. Intensity profiles of guided modes are indicated qualitatively.

Taper fabrication: To demonstrate the above taper concept the following structure (Fig. 1) was grown in a first growth step on to an n-type InP substrate with MOVPE (metal-organic vapour phase epitaxy): a 1.3 μm InGaAsP buffer layer, a thin 70 nm InGaAsP (a = 1.3 μm) waveguiding layer, a 20 nm InP stop-etch layer, a thick 530 nm InGaAsP (a = 1.3 μm) waveguiding layer and a 20 nm InP top cladding layer. After covering the device section with photosresist, the tapers were etched by dipping the chip into a sulphuric acid solution. The dipping speed was chosen so as to taper the 530 nm InGaAsP layer linearly to zero within 400 μm. Similar tapers were formed at both ends of the chip. Then the photosresist was removed and the entire structure overgrown with an upper cladding of 1.5 μm InP. From this point on the wafers can be processed in regular fashion to form optically active or passive guided-wave components. To evaluate the coupling losses we fabricated waveguide devices consisting of ribs with widths varying from 2 μm to 4 μm. After etching and cleaving the chips, antireflection coatings were deposited on both waveguide facets.

Experimental results: Fig. 2 shows fibre-chip power transmission measurements against ridge width. Laser light with a wavelength 1.35 μm was coupled from a lensed fibre with 3.8 μm spot diameter through the entire waveguide taper and device structure to a second identical fibre which was con-
Optical coupling losses as low as 1.7 dB were obtained for the coupling of tapered waveguides with ridge widths of 4 μm. The difference in coupling loss of 1 dB as compared to the predicted 0.65 dB (TE polarization) and 0.75 dB (TM polarization) is believed to be caused by imperfections in the fibre facets, which result in scattering losses in the taper section.

The tapered waveguides show a 2 dB improvement in coupling efficiency over the nontapered waveguides. When a conventional cleaved fibre with 10 μm spot diameter is used the tapered waveguide structure improves the coupling efficiency by about 3 dB. Finally, we measured the alignment tolerances that occur below 0.5 dB. Polarisation sensitivity is below 0.5 dB. The taper waveguide structure shows nearly identical tolerances for both the horizontal and the vertical misalignments. This indicates circular symmetry of the mode. This is in contrast to the conventional waveguide structures which are, because of their ellipticity, much more sensitive to vertical misalignments.

Conclusion: We have demonstrated a vertically tapered coupling in InP/InGaAsP with coupling losses to lensed fibres with 3.8 μm spot diameter as low as 1.7 dB and relaxed alignment tolerances. The dipetch fabrication process for the tapered waveguides is rather tolerant to variations. Changes in etching speed or etch rate of the sulphuric acid solution will only result in changes of the tapers which have little effect for tapers longer than 400 μm. The structure is suitable for integration with optoelectronic waveguide devices.

Acknowledgment: The authors would like to acknowledge the support by the Federal Office for Education and Science (COST 2040 project) and the Swiss PTT.

7th September 1992
T. Brenner, W. Hunziak, M. Smilj* M. Bachmann, G. Guekos and H. Metzdorff (Institute of Quantum Electronics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland)

* On leave from Delft University of Technology

References
4. BACHMANN, M., GILI, F., and MELCHIOR, H.: "Polarisation insensitive waveguide modulator using InGaAsP/InP Mach-Zehnder interferometer", Accepted for presentation at 18th European Conference on Optical Communication (ECOC '92), Berlin, 27th September-1st October 1992

OPTICAL GAIN IN PROTON-EXCHANGED Cr : LiNbO3 WAVEGUIDES
F. Zhou, R. M. De La Rue, C. N. Ironside, T. P. J. Han, B. Henderson and A. I. Ferguson

Indexing terms: Integrated optics, Optical waveguides

We report on a study of optical gain in chromium-doped LiNbO3 waveguides formed by the proton-exchange process. Optical gain in proton-exchanged Cr : LiNbO3 channel waveguides has been measured for the first time. These waveguides show potential for diode-laser pumping of an integrated, broadband tunable laser in the 750-1150 nm spectral range.

Introduction: The recent demonstration of CW diode-laser-pumped laser action in Cr-doped materials (see, for example, Reference 1) has renewed interest in Cr-doped vibronic solid-state lasers as candidates for the applications requiring compact and efficient tunable lasers. Since the electro-optic, acousto-optic and nonlinear optical properties of LiNbO3 crystals doped with laser ions offer interesting possibilities in various laser applications, the investigation of waveguides in Cr : LiNbO3 is of interest for integrated optical applications, in particular for applications requiring a wavelength agile laser. By creating single-mode waveguides within doped laser crystals it is possible to obtain a very high gain and low laser threshold, as has already been shown in Nd : MgO : LiNbO3 waveguide lasers and amplifiers at 1.064 μm [2], as well as in Er-doped LiNbO3 waveguide lasers at 1.532 μm [3]. In this Letter we report the observation of broad-bandwidth optical