Vertical InP/InGaAsP tapers for low-loss optical fibre-waveguide coupling

Citation for published version (APA):

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
ACKNOWLEDGMENTS: This work was done with the financial support of the French Ministère de la Recherche et de l’Espace in collaboration with Thomson LCR. This study corresponds to a part of the research programs of GDR III-V and GDR Ondes Optique Guidées.

7th September 1992
A. Barthélémy, F. Lourdoueix and V. Couderc (Institut de Recherche et Communications Optiques et Microondes, U.A. no. 356 du CNRS, 13 av. A. Thomas, 87060 Limoges Cedex, France)

References

INDEXING TERMS: Integrated optics; Fibre-waveguide coupling; Waveguide tapers

VERTICAL InP/lnGaAsP TAPERS FOR LOW-LOSS OPTICAL FIBRE-WAVEGUIDE COUPLING

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos and H. Melchior

We have realised vertically tapered and antireflection-coated waveguides in InP/lnGaAsP with 1.7 dB coupling loss and relaxed alignment tolerances to lensed single-mode fibres with spot diameters of 1.8 μm. The waveguide tapers are fabricated by a dip-etch process that is well suited for integration with optical waveguide circuits.

Introduction: Modern communication systems require efficient coupling from integrated-optic semiconductor waveguide devices to single-mode fibres. The elliptically shaped optical modes of typical optical waveguide switches and modulators on semiconductors have to be matched to the larger and circular modes guided by the fibres. Several authors have reported spot-size transformations for low-loss coupling to cleaved fibres: Koch et al. [1] applied quasisiadiatic vertically tapered laser structures fabricated using ultrathin stop-etch layers to obtain coupling losses as low as 4.2 dB. Mueller et al. [2] used a vertically tapered waveguide with a 10 μm-high stack of layers realised by a shadow mask technique to achieve fibre chip coupling losses of 4.9 dB. Zengerle et al. [3] realised waveguides with tapers in the vertical and horizontal direction by using a structure in which the main waveguide is located on top of a very thin waveguiding layer. They achieved coupling losses as low as 2.7 dB. In this Letter we report on antireflection-coated vertical waveguide tapers having coupling losses of 1.7 dB and relaxed alignment tolerances to lensed fibres with spot diameters of 3.8 μm (1.5 μm). Using these tapers the waveguide devices, optimised for switches and modulators, are affected only near the facets for coupling improvement. Conventional process techniques can be applied for the fabrication.

Taper concept and design: To increase the coupling efficiency between optical waveguide devices and single-mode fibres we propose vertical taper ridge-type waveguide structures (see Fig. 1). To realise such adiabatic waveguide tapers, the waveguide structures of optical switches and modulators [4, 5] were slightly modified by including a 20 nm InP stop-etch layer that divides the 600 nm InGaAsP waveguide core into a thick 530 nm and a thin 70 nm layer. This modification of the waveguide structure has only a minor effect on the optimised operation of the waveguide switches and modulators. In the taper section, however, this structure allows the thick waveguide layer to be removed gradually by a dip-etch technique while keeping the thinner waveguide layer for coupling to the fibres. The adiabatic transformation from the conventional waveguide modes in the device section with elliptic mode shape to the modes with almost circular shape in the thin waveguide is achieved with vertical tapers. Optical shapes of the adiabatic tapers were determined by means of beam propagation analysis [6]. This analysis predicts that vertical tapers longer than 400 μm should exhibit conversion losses of less than 0.3 dB. The coupling from the thin waveguides with cores of 70 nm to lensed fibres with spot diameters of 3.8 μm is from overlapping the mode profiles, predicted to as low as 0.75 dB for TE polarisation and 0.65 dB for TM polarisation, respectively. The almost circular modes of the waveguide structures also relax vertical alignment tolerances.

Fig. 1 Longitudinal cross-section of integrated optical waveguide chip with central device section, adiabatically tapered waveguide section and coupling section. Taper section adapts waveguides which are optimised for device operation to waveguides which are optimised for fibre coupling. Intensity profiles of guided modes are indicated qualitatively.

Taper fabrication: To demonstrate the above taper concept the following structure (Fig. 1) was grown in a first growth step on to an n-type InP substrate with MOVPE (metal-organic vapour phase epitaxy): a 1 μm InP buffer layer, a thin 70 nm InGaAsP (α = 1.3 μm) waveguide layer, a 20 nm InP stop-etch layer, a thick 530 nm InGaAsP (α = 1.3 μm) waveguide layer and a 20 nm InP top cladding layer. After covering the device section with photore sist, the tapers were etched by dipping the chip into a sulphuric acid solution. The dipping speed was chosen so as to taper the 530 nm InGaAsP layer linearly to zero within 400 μm. Similar tapers were formed at both ends of the chip. Then the photore sist was removed and the entire structure overgrown with an upper cladding of 1.5 μm InP. From this point on the wafers can be processed in regular fashion to form optically active or passive guided-wave components. To evaluate the coupling losses we fabricated waveguide devices consisting of ribts with widths varying from 2 μm to 4 μm. After etching and cleaving the chips, antireflection coatings were deposited on both waveguide facets.

Experimental results: Fig. 2 shows fibre-chip power transmission measurements against ridge width. Laser light with a wavelength 1.53 μm was coupled from a lensed fibre with 3.8 μm spot diameter through the entire waveguide taper and device structure to a second identical fibre which was con-
Devices to fibre coupling measured coupling combinations between cleaved or lensed fibres on one side and conventional or tapered waveguides on the other side. From these measurements the waveguide devices to fibre coupling loss was deduced.

Optical coupling losses as low as 1 dB were obtained for the coupling of tapered waveguides with ridge widths of 4 μm. The difference in coupling loss of 1 dB as compared to the predicted 0.65 dB (TE polarization) and 0.75 dB (TM-polarization) is believed to be caused by imperfections in the fibre lenses, rest reflections at the fibre and chip facets, as well as by scattering losses in the taper section.

The tapered waveguides show a 2 dB improvement in coupling over the nontapered waveguides. When a conventional cleaved fibre with 10 μm spot diameter is used the tapered waveguide structure improves the coupling efficiency by about 3 dB over a conventional waveguide structure.

The difference between tapered and nontapered waveguide structures indicates scattering losses in the taper sections to be below 0.5 dB. Polarization sensitivity is below 0.1 dB. Finally, we have measured the alignment tolerances that occur between the fibres and both the tapered and nontapered waveguides. The results are depicted in Fig. 3. The tapered waveguide structure shows nearly identical tolerances for both the horizontal and the vertical misalignments. This indicates circular symmetry of the mode. This is in contrast to the conventional waveguide structures which are, because of their ellipticity, much more sensitive to vertical misalignments.

Fig. 2: Measured fibre-chip coupling efficiency against width of ridge waveguide
- Tapered waveguides to lensed fibres
- Tapered waveguides to cleaved fibres
- Conventional waveguides to lensed fibres
- Conventional waveguides to cleaved fibres

Optical coupling losses as low as 1 dB were obtained for the coupling of tapered waveguides with ridge widths of 4 μm. The difference in coupling loss of 1 dB as compared to the predicted 0.65 dB (TE polarization) and 0.75 dB (TM polarization) is believed to be caused by imperfections in the fibre lenses, rest reflections at the fibre and chip facets, as well as by scattering losses in the taper section.

The tapered waveguides show a 2 dB improvement in coupling over the nontapered waveguides. When a conventional cleaved fibre with 10 μm spot diameter is used the tapered waveguide structure improves the coupling efficiency by about 3 dB over a conventional waveguide structure.

The difference between tapered and nontapered waveguide structures indicates scattering losses in the taper sections to be below 0.5 dB. Polarization sensitivity is below 0.1 dB. Finally, we have measured the alignment tolerances that occur between the fibres and both the tapered and nontapered waveguides. The results are depicted in Fig. 3. The tapered waveguide structure shows nearly identical tolerances for both the horizontal and the vertical misalignments. This indicates circular symmetry of the mode. This is in contrast to the conventional waveguide structures which are, because of their ellipticity, much more sensitive to vertical misalignments.

Fig. 3: Measured alignment tolerances of waveguides to lensed fibres
- Horizontal alignment
- Vertical alignment

Conclusion: We have demonstrated a vertically tapered coupling in InP/InGaAsP with coupling losses to lensed fibres with 3.8 μm spot diameter as low as 1.7 dB and relaxed alignment tolerances. The dip-etch fabrication process for the tapered waveguides is rather tolerant to variations. Changes in dipping speed or etch rate of the sulphuric acid solution will only result in changes of the tapers which have little effect for tapers longer than 400 μm. The structure is suitable for integration with optoelectronic waveguide devices.

Acknowledgement: The authors would like to acknowledge the support by the Federal Office for Education and Science (COST 240 project) and the Swiss PTT.

7th September 1992
T. Brenner, W. Hunziker, M. Smid, M. Bächmann, G. Guekos and H. Metzker (Institute of Quantum Electronics, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland)

* On leave from Delft University of Technology

References
4. BACHMANN, M., GUSE, T., and METZKER, H.: 'Polarization insensitive waveguide modulator using InGaAsP/InP Mach-Zehnder interferometer'. Accepted for presentation at 18th European Conference on Optical Communication (ECOC '92), Berlin, 27th September-1st October 1992

OPTICAL GAIN IN PROTON-EXCHANGED Cr : LiNbO₃ WAVEGUIDES

F. Zhou, R. M. De La Rue, C. N. Ironside, T. P. J. Han, B. Henderson and A. I. Ferguson

Indexing terms: Integrated optics, Optical waveguides

We report on a study of optical gain in chromium-doped LiNbO₃ waveguides formed by the proton-exchange process. Optical gain in proton-exchanged Cr : LiNbO₃ channel waveguides has been measured for the first time. These waveguides show potential for diode-laser pumping of an integrated, broadband tunable laser in the 750-1150 nm spectral range.

Introduction: The recent demonstration of CW diode-laser pumped laser action in Cr-doped materials (see, for example, Reference 1) has renewed interest in Cr-doped vibronic solid-state lasers as candidates for the applications requiring compact and efficient tunable lasers. Since the electro-optic, acousto-optic and nonlinear optical properties of LiNbO₃ crystals doped with laser ions offer interesting possibilities in various laser applications, the investigation of waveguides in Cr : LiNbO₃ is of interest for integrated optical applications, in particular for applications requiring a wavelength agile laser. By creating single-mode waveguides within doped laser crystals it is possible to obtain a very high gain and low laser threshold, as has already been shown in Nd : MgO : LiNbO₃ waveguide lasers and amplifiers at 1.064 μm [2], as well as in Er-doped LiNbO₃ waveguide lasers at 1.532 μm [3]. In this Letter we report the observation of broad-bandwidth optical