Upper bound for the length of the norm of an expression in lambda-typed lambda calculus

de Bruijn, N.G.

Published: 01/01/1985

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2018
1. For all notations used in this note we refer to [1]. Nevertheless it should be noted that for the material of the present note there is no substantial difference between the system $\Lambda\Lambda$ of [1] and the system Δ of [2].

2. The length of a lambda tree or of a subtree of a lambda tree is just the number of end-points. So in particular, expressed in terms of character strings,

$$\text{length}(x) = 1, \quad \text{length}(\mathcal{C}) = 1.$$
$$\text{length}(\langle U,V \rangle) = \text{length}(U) + \text{length}(V),$$
$$\text{length}([x:U]V) = \text{length}(U) + \text{length}(V).$$

3. If V is a lambda tree, its norm (as defined in [1], sections 5.9 and 5.10) is denoted by $\text{norm}(V)$. The length of that norm, $\text{length}(\text{norm}(V))$, will be abbreviated to $\text{ln}(V)$.

Upper bound for the length of the norm of an expression in lambda-typed lambda calculus

by N.G. de Bruijn

Department of Mathematics and Computing Science
Eindhoven University of Technology
PO Box 513, 5600MB Eindhoven, The Netherlands
4. Theorem. If V is a lambda tree then

\[\text{length}(V) - 1 \leq 2 \]

5. Sketch of a proof. We introduce the subdivided lambda trees (R,W,B) and (R,W,Y,B) as in [1], section 5.9. For these we have the norms \(\text{norm}(R,W,B) \) and \(\text{norm}(R,W,Y,B) \), which can be considered as the norms of of the subtrees WB and WYB, taken with typing of free variables by means of the abstractors in R.

As above, we shall abbreviate \(\text{length}(\text{norm}(R,W,B)) \) to \(\text{ln}(R,W,B) \) and \(\text{length}(\text{norm}(R,W,Y,B)) \) to \(\text{ln}(R,W,Y,B) \).

We consider all the dummies \(x \) for which \((R,\xi,x) \in \text{Slam}3 \). In other words, these \(x \)'s are the dummies attached to the abstractors in the main line of R. (We recall that R can be written as a sequence of applicator-abstractor pairs \(<P>[y:Q] \) and loose abstractors \([z:U] \)). For each one of these we consider \(\text{ln}(R,\xi,x) \), and the largest one of these numbers will be denoted by \(\text{mxln}(R) \). In case R is empty, we agree that \(\text{mxln}(R) = 1 \).

We are now in a position to announce

\[\text{ln}(R,W,B) \leq f(R,B), \quad \text{ln}(R,W,Y,B) \leq f(R,B), \quad (1) \]

where

\[f(R,B) = \frac{\text{length}(B) - 1}{2} \text{mxln}(R) \]
The inequalities (1) can be proved by recursion, if we just follow the list of clauses of [1], section 5.9. In the cases (i) and (vi) we have \(\ln(R, \xi, \varpi) = 1 \), \(\ln(R, \xi, \xi, \varpi) = 1 \), and \(\ln(R, \varpi) = \max \ln(R) \geq 1 \). We shall explain what has to be done in the other cases: as a typical case we take case (iv).

In case (iv) it is stated what the norm is of \((R, \xi, [x:U]B)\), under the assumption that we know the norms of \((R, \xi, U)\) and \((R[x:U], \xi, B)\). Accordingly we have to prove (1) for \((R, \xi, [x:U]B)\), under the assumption that we know it for \((R, \xi, U)\) as well as for \((R[x:U], \xi, B)\).

We shall not carry out all this here. The work is of a simple nature. During the course of this work, however, we need a few auxiliary results which have to be proved separately by recursion. As one of these we mention \(\ln(R, W, B) \leq \ln(R, \xi, B) \).

Once we have (1) for all cases, we have the theorem of section 4, just since the norm of the full lambda tree \(V \) was defined as \(\text{norm}(\xi, \xi, V) \), and \(\max \ln(\varepsilon) \) was defined as 1.

6. The estimate in the theorem is best possible. The examples for which the upper bound are reached are given by

\[
\begin{align*}
E_1 &= \xi, \\
E_2 &= [x_1:E_1]x_1, \\
E_3 &= [x_2:E_2]x_2, \\
E_4 &= [x_3:E_3]x_3, \\
&\cdots\cdots \\
E_n &= [x_{n-1:En}]x_{n-1},
\end{align*}
\]

We have \(\text{length}(E_n) = n \), \(\ln(E_n) = 2 \).
REFERENCES
