On the number of partition patterns of a set

de Bruijn, N.G.

Published: 01/01/1974

Citation for published version (APA):
ON THE NUMBER OF PARTITION PATTERNS OF A SET

by

N.G. de Bruijn
On the number of partition patterns of a set.
by N.G. de Bruijn

1. Introduction. Let D be a finite non-empty set, and let G be a group of permutations of D. Two partitions of D are called equivalent if the one is taken into the other by means of an element of G. An equivalence class is called a partition pattern. We shall present a formula for the number of these patterns.

The treatment in this note is essentially the same as in Examples 5.25 and 5.26 of [1]. Nevertheless, there are reasons to come back to this matter: (i) There is a need for a more thorough discussion of the various identifications that play a rôle in the argument. (ii) In the Examples 5.25 and 5.26 partitions into a given number of parts were studied, and, accordingly the result of Theorem 2 (section 4 of this note) was not obtained.

Let us be a bit more formal. As usual, if X is a set, then $P(X)$ is the set of subsets of X. Now a partition of D is an element p of $P(P(X))$ with the following properties

(i) $\emptyset \notin p$.

(ii) If $d \in D$ then there is exactly one $A \in p$ with $d \in A$.

In order to get to the patterns, we first give some definitions.

If $g \in G$, $d \in D$ then $g(d)$ is the image of d under the permutation g.

If $g \in G$, $A \in P(D)$, we denote by $\pi_g(A)$ the set

$$\pi_g(A) = \{g(d) \mid d \in A\}$$

If $g \in G$, $p \in P(P(D))$ we denote by $\tau_g(p)$ the set

$$\tau_g(p) = \{\pi_g(A) \mid A \in p\}.$$

If p is a partition, then so is $\tau_g(p)$.
Two partitions \(p, q \) are called equivalent if \(\tau_g(p) = q \). Equivalence classes are called partition patterns, or, to be more precise, partition patterns mod \(G \) in \(D \). The number of these patterns will be denoted by \(M(D,G) \).

2. Special cases.

(i) If \(G \) consists of the identity permutation only, then the partition patterns correspond one-to-one to the partitions of \(D \). (If \(p \) is a partition, then the singleton \(\{p\} \) is a pattern).

(ii) If \(G \) is the group \(S_D \) of all permutations of \(D \), then the partitions can be characterized by frequency functions \(f_p \). If \(p \) is a partition and \(k \) is an integer, then \(f_p(k) \) is the number of \(a \in p \) with \(|a| = k \). The partitions \(p \) and \(q \) are equivalent with respect to \(S_D \) if and only if \(f_p = f_q \). The common \(f \) for all \(p \)'s in a pattern can be called the frequency function of the pattern. The patterns can now be brought in one-to-one correspondence with the partitions of the integer \(|D| \). A partition of the integer \(n \) is a way to write \(n \) as the sum of a sequence of positive integers, where two ways are identified if they have the same frequency function \(f \) (now frequency function means: \(f(1) \) is the number of 1's in the sum, \(f(2) \) the number of 2's, etc.). Example: the partitions of 5 are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. One might also say: a partition of \(n \) is a multiset of positive integers with sum \(n \).

(iii) If we take for \(G \) the alternating group of \(D \) (consisting of all even permutations), then we get the same patterns as under (ii). Note that if a partition \(p_1 \) can be transformed into \(p_2 \) by means of a permutation, then it can be done by means of an even permutation.

3. Partitions as mapping patterns. Let \(R \) be a finite set, and let \(S_R \) be the group of all permutations of \(R \). We assume that \(|R| \geq |D| \).
We consider the set \mathbb{R}^D of all mappings of D into \mathbb{R}. Two such mappings f_1, f_2 will be called equivalent if $h \in S_R$ exists such that $hf_1 = f_2$. The equivalence classes will be called S_D-classes.

Every $f \in \mathbb{R}^D$ determines a partition p_f of D; this p_f partitions D into the maximal sets on which f is constant:

$$p_f = \{f^+(\{r\}) \mid r \in R\} \setminus \{\emptyset\}$$

($f^+(\{r\})$ denotes the set of all $d \in D$ with $f(d) = r$).

The functions f_1 and f_2 are equivalent if and only if $p_{f_1} = p_{f_2}$. Moreover, to every partition p we can find an $f \in \mathbb{R}^D$ such that $p = p_f$ (it is only here that we use $|R| \geq |D|$). It follows that there is a one-to-one correspondence between the set of S_D-classes and the set of all partitions of D.

In \mathbb{R}^D we can also consider the following equivalence: f_1, f_2 are called (G, S_R)-equivalent if $g \in G$, $h \in S_R$ exist such that $hf_1 = f_2g$. Every (G, S_R)-equivalence class is the union of a set of disjoint S_R-classes.

The partitions p and q are equivalent if and only if the S_R-classes that correspond to them, fall in the same (G, S_R)-class. For if $g \in G$, and $f \in \mathbb{R}^D$ is such that $p_f = p$, then we have $r_g(p) = q$ if and only if $p_{f^{-1}g} = q$. We thus have arrived at

Theorem 1. If $|R| \geq |D|$, then the number of partition patterns mod G in D is equal to the number of (G, S_R)-equivalence classes in \mathbb{R}^D.

4. The number of partition patterns. If we use Theorem 1 we can determine the number $M(D, G)$ of partition patterns mod G in D by means of Theorem 5.4 of [1], which leads to

$$M(D, G) = p_G \left(\frac{1}{z_1}, \frac{1}{z_2}, \ldots \right) p_{S_R} \left[e^{z_1+z_2} + \ldots, e^{2(z_2+z_4)} + \ldots, e^{3(z_3+z_6)} + \ldots \right],$$
evaluated at $z_1 = z_2 = \ldots = 0$. Here P_G and P_{S_R} are the cycle indices of G and S_R, respectively. The cycle index $P_{S_R}(x_1, x_2, x_3, \ldots)$ is the coefficient of $y^{|R|}$ in the power series development of

$$\exp(yx_1 + y^2 \frac{x_2}{2} + y^3 \frac{x_3}{3} + \ldots).$$

(see [11, example 5.5). Thus we get

$$M(D, G) = \text{coefficient of } y^{|R|} \text{ in } (1-y)^{-1} W(y),$$

where

$$W(y) = P_G(\frac{\partial}{\partial z_1}, \frac{\partial}{\partial z_2}, \ldots) \exp(y(e^{z_1+z_2+\ldots} - 1) + \frac{y^2}{2} (e^{2(z_2+z_4+\ldots)} - 1) + \ldots),$$

evaluated at $z_1 = z_2 = \ldots = 0$.

In any monomial $y^h z_1^{k_1} z_2^{k_2} \ldots$ we shall refer to h as to the y-degree, and to $k_1 + 2k_2 + \ldots$ as the z-weight. In the development of $y^m(e^{m(z_m+z_{2m}+\ldots)} - 1)$ the z-weight of any term is at least its y-degree. Hence the same can be said for the whole expression on which the operator $P_G(\frac{\partial}{\partial z_1}, \frac{\partial}{\partial z_2}, \ldots)$ is acting. That operator, applied at $z_1 = z_2 = \ldots = 0$, leads to zero if it acts on a term with z-weight $\neq |D|$ (note that $P_G(x_1, x_2, \ldots)$ consists of terms $x_1^{b_1} x_2^{b_2} \ldots$ with $b_1 + 2b_2 + \ldots = |D|$). It follows that $W(y)$ is a polynomial of degree $\leq |D|$.

A direct consequence of this is that the coefficients of $y^{|D|}, y^{|D|+1}, \ldots$ in $(1-y)^{-1} W(y)$ are all equal to the value $W(1)$ (the fact that they are equal already follows from the fact that in Theorem 1 $|R|$ has to satisfy no other condition than $|R| \geq |D|$). The following theorem is now obvious.

Theorem 2. The number $M(D, G)$ of partition patterns mod G in D equals the value of
\[P_G(\frac{\partial}{\partial z_1}, \frac{\partial}{\partial z_2}, \ldots) \exp(\sum_{m=1}^{\infty} \frac{m-1}{m} \exp(\sum_{j=1}^{\infty} z_{jm}) - 1) \]

at \(z_1 = z_2 = \ldots = 0 \).

5. Examples. We consider the special cases (i) and (ii) of section 2.

(i) \(G \) consists of the identity permutation only. Now \(P_G(x_1, x_2, \ldots) = x_1^{|D|} \), and the differential operator in Theorem 2 becomes \(\left(\frac{\partial}{\partial z_1} \right)^{|D|} \). We can omit all terms \(z_2, z_3, \ldots \), and we get the well-known formula

\[\left(\left(\frac{\partial}{\partial z} \right)^m \exp(e^z - 1) \right)_{z=0} \]

for the total number of partitions of \(|D|\). (For this and for further material we refer to [2], vol. 2, Chapter 5).

(ii) \(G \) equals the symmetric group \(S_D \). In this case the differential operator \(P_G(\frac{\partial}{\partial z_1}, \frac{\partial}{\partial z_2}, \ldots) \) equals the coefficient of \(y^{|D|} \) in

\[\exp(y \frac{\partial}{\partial z_1} + iy^2 \frac{\partial}{\partial z_2} + \ldots) \].

If we apply this to a power series \(P(z_1, z_2, \ldots) \) at \(z_1 = z_2 = \ldots = 0 \), we get, by Taylor's formula, \(P(y, iy^2, iy^3, \ldots) \). Hence the number of partition patterns equals the coefficient of \(y^{|D|} \) in

\[\exp \left(\sum_{m=1}^{\infty} \frac{m-1}{m} \{ \exp(m \sum_{j=1}^{\infty} (jm)^{-1} y^{jm}) - 1 \} \right) , \]

and this equals

\[(1-y)^{-1} (1-y^2)^{-1} (1-y^3)^{-1} \ldots , \]

which is Euler's well-known generating function for the partitions of integers. (See [2], vol. 1, Chapter 2).
References
