Gebruik van een hittedraad anemometer bij meting van de wandschuifspanning

Citation for published version (APA):

Document status and date:
Gepubliceerd: 01/01/1995

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. May. 2024
Gebruik van een hittedraad anemometer bij meting van de wandschuifspanning

Marijen Veth

WFV rapport 95.133
Inhoud
Symbolenlijst ... 4
Samenvatting ... 5
Inleiding .. 6

1. Theorie ... 7
 1.1 Theorie over de stationaire laminaire stroming 7
 1.1.1 Poiseuille stroming 7
 1.1.2 Volontwikkkelde stroming door een rechthoekige doorsnede .. 9
 1.2 Theorie over oscillerende stroming tussen twee platen 10

2. Meetmethoden en experimenten 12
 2.1 Werking van de anemometer 12
 2.1.1 Werking bij stationaire stroming 12
 2.1.1a De constante grenslaag oplossing 13
 2.1.2 Werking bij instationaire sinusvormige stroming 14
 2.2. De meetopstelling .. 16
 2.2.1. De meetopstelling voor stationaire stroming 16
 2.2.2 Meetopstelling voor richtingsbepaling bij oscillerende stroming 18

3. Resultaten .. 19

4. Discussie .. 20
 4.1 Het gemeten verband tussen spanning en wandschuifspanning ... 20
 4.2 Andere methoden om instationaire stroming te meten 21
 4.2.1. Twee componenten hitte-film probe 21
 4.2.2. De ladder probe ... 22
 4.2.3. De sandwich probe 23
 4.2.4 De thermische transiente anemometer 23

5. Conclusie .. 25

6. Aanbevelingen .. 26

Literatuurlijst ... 27

BIJLAGEN ... 29

Bijlage 1. Het stromingsprofiel door een rechthoekige doorsnede. 30

Bijlage 2. De wandschuifspanning in een rechthoekige doorsnede. 31

Bijlage 3 Tabel 1 Verband tussen de gemeten flow en de gemeten spanning
Bijlage 4. Verband tussen gemeten spanning en volumestroom. 33
Bijlage 5. Verband tussen gemeten spanning en volumestroom. 34
Bijlage 6. Verband tussen gemeten spanning en de wandschuifspanning. 35
Bijlage 7. Verband tussen gemeten spanning en wandschuifspanning in 3D. 36
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_0</td>
<td>wandschuifspanning</td>
<td>[V]</td>
</tr>
<tr>
<td>A</td>
<td>constante</td>
<td>[-]</td>
</tr>
<tr>
<td>E</td>
<td>spanning, wheat-stonebrug-spanning</td>
<td>[V]</td>
</tr>
<tr>
<td>B</td>
<td>constante</td>
<td>[-]</td>
</tr>
<tr>
<td>t</td>
<td>tijd</td>
<td>[sec]</td>
</tr>
<tr>
<td>T</td>
<td>temperatuur</td>
<td>[°C]</td>
</tr>
<tr>
<td>τ_w</td>
<td>wandschuifspanning</td>
<td>[V]</td>
</tr>
<tr>
<td>μ</td>
<td>dynamische viscositeit</td>
<td>[Ns/m²]</td>
</tr>
<tr>
<td>Q</td>
<td>debiet</td>
<td>[m²/s]</td>
</tr>
<tr>
<td>x</td>
<td>coördinaat, afstand</td>
<td>[m]</td>
</tr>
<tr>
<td>y</td>
<td>coördinaat</td>
<td>[-]</td>
</tr>
<tr>
<td>z</td>
<td>coördinaat, hoogte</td>
<td>[m]</td>
</tr>
<tr>
<td>a</td>
<td>breedte</td>
<td>[m]</td>
</tr>
<tr>
<td>b</td>
<td>hoogte</td>
<td>[m]</td>
</tr>
<tr>
<td>p</td>
<td>druk</td>
<td>[N]</td>
</tr>
<tr>
<td>u</td>
<td>snelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>ρ</td>
<td>dichtheid</td>
<td>[kg/m³]</td>
</tr>
<tr>
<td>ω</td>
<td>hoeksnellheid</td>
<td>[rad/s]</td>
</tr>
<tr>
<td>u_0</td>
<td>constante snelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>η</td>
<td>viscositeit</td>
<td>[Ns/m²]</td>
</tr>
<tr>
<td>f</td>
<td>frictie-factor</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>oppervlak</td>
<td>[m²]</td>
</tr>
<tr>
<td>i</td>
<td>imaginair getal</td>
<td>[-]</td>
</tr>
<tr>
<td>v</td>
<td>snelheid in y-richting</td>
<td>[m/s]</td>
</tr>
<tr>
<td>w</td>
<td>snelheid in z-richting</td>
<td>[m/s]</td>
</tr>
<tr>
<td>θ</td>
<td>dimensieloze temperatuur</td>
<td>[-]</td>
</tr>
<tr>
<td>c_0</td>
<td>constante</td>
<td>[-]</td>
</tr>
<tr>
<td>Γ</td>
<td>gebied</td>
<td></td>
</tr>
<tr>
<td>Γ^2</td>
<td>getal van Pécout</td>
<td>[-]</td>
</tr>
<tr>
<td>C_p</td>
<td>specifieke warmtecoëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>ω</td>
<td>constante, hoeksnellheid</td>
<td>[-], [rad/s]</td>
</tr>
<tr>
<td>R</td>
<td>weerstand</td>
<td>[OMEGA]</td>
</tr>
<tr>
<td>V</td>
<td>snelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>n</td>
<td>exponent</td>
<td>[-]</td>
</tr>
<tr>
<td>t_s</td>
<td>temperatuur van de sensor</td>
<td>[°C]</td>
</tr>
<tr>
<td>t_e</td>
<td>temperatuur van de omgeving</td>
<td>[°C]</td>
</tr>
<tr>
<td>S</td>
<td>gemeten spanning</td>
<td>[V]</td>
</tr>
</tbody>
</table>
Samenvatting

In het kader van het onderzoek naar de meting van wandschuifspanningen in bloedvaten worden verschillende meetmethoden getest. Eén daarvan is het meten met behulp van een hittedraad anemometer. De vraag bij dit onderzoek was:

Is de anemometer een geschikt meetinstrument om de wandschuifspanning te bepalen bij een stationaire en instationaire laminaire stroming door een rechthoekig kanaal en wat is het verband tussen de gemeten grootheid, warmteafgifte van de hittedraad en de wand-schuifspanning?

Nadat met de hittedraadanemometer een aantal metingen zijn verricht bij stationaire laminaire stroming, is theoretisch het verband bepaald tussen de wandschuifspanning en de gemeten elektrische spanning over de hittedraad.

Uit de onderzoeksresultaten volgt dat voor stationaire stromingen het verband tussen de gemeten spanning en de schuifspanning τ_w wordt gegeven door:

$$S = \alpha_0 \tau_w - \alpha_1 \quad (1)$$

Dit verband is maar geldig in een klein gebied van τ_w en alleen van toepassing bij laminaire stroming zoals die in bovengenoemde metingen gebruikt is.

Voor instationaire stromingen is de manier van meten zoals gebruikt in de stationaire stroming niet geschikt, ten eerste omdat de amplitude dusdanig klein moet zijn dat de wandschuifspanning binnen het gebied van geldigheid van bovenstaande formule blijft. Ten tweede omdat de frequentie zo laag moet zijn dat de warmteafgifte van de hittedraad quasi-statisch mag worden verondersteld.

Verder is er uit literatuuronderzoek naar voren gekomen dat er veel meer mogelijkheden zijn om met een anemometer te meten en bovenstaande beperkingen te voorkomen. Het wordt dan ook sterk aanbevolen om een aantal van deze meetmethoden uit te proberen om de wandschuifspanning te kunnen meten bij oscillerende stromingen.
Inleiding

In het kader van het onderzoek naar de meting van wandschuifspanningen in bloedvaten worden verschillende meetmethoden getest. Eén daarvan is het meten met behulp van een hittedraad anemometer. Om te kijken of deze methode geschikt is voor de meting van de wandschuifspanning is begonnen met het meten van de wandschuifspanning in een rechthoekig kanaal bij een laminaire stroming. Als de resultaten hierbij nauwkeurig genoeg zijn kan er over gedacht worden de anemometer ook te gebruiken bij instationaire stromingen en stromingen door cyclinders en later eventueel bij nagebootste bloedvaten.

De vraag bij dit onderzoek is dan ook:
Is de anemometer een geschikt meetinstrument om de wandschuifspanning te bepalen bij een stationaire en instationaire laminaire stroming door een rechthoekige kanaal en wat is het verband tussen de gemeten grootheid en de wandschuifspanning?

Om hier een antwoord op te geven is eerst uitgaande van de theorie over stationaire en instationaire laminaire stromingen het verband tussen het debiet en de wandschuifspanning bepaald. Vervolgens worden de meetmethode en de werking van de anemometer besproken en worden de meetresultaten vergeleken met de theorie, na een discussie over deze resultaten wordt aandacht besteed aan andere methoden om met een anemometer de wandschuifspanning in een oscillerende stroming te kunnen meten. Hieruit worden conclusies getrokken en volgen ook een aantal aanbevelingen over de te volgen weg in de toekomst.
1. Theorie

1.1 Theorie over de stationaire laminaire stroming

1.1.1 Poiseuille stroming

Allereerst leiden we het verband af tussen het debiet en de wandschuifspanning bij een twee dimensionale stationaire laminaire stroming tussen twee platen, dit gaat als volgt:

In een vloeistof stromend in de x-richting van een 2-dimensionaal kanaal geldt voor de schuifspanning:

\[\tau = \mu \frac{\partial u}{\partial y} \]

(2)

Bij stationaire stroming tussen twee platen met een onderlinge afstand 2b geldt voor de Poiseuille stroming:

\[u = -\frac{y}{2\mu} \frac{\partial p}{\partial x} \left(b - \frac{y}{2}\right) \]

(3)

en voor de schuifspanning geldt dan:

\[\tau = \mu \frac{\partial u}{\partial y} \left(b - y\right) \frac{\partial p}{\partial x} \]

(4)

Waarbij aan de wand dus geldt:

\[\tau = b \frac{\partial p}{\partial x} \]

(5)

Het constant zijn van de drukgradient en de lineariteit van de schuifspanningdistributie zijn algemene resultaten voor een volledig ontwikkelde buisstroming, ook als de stroming turbulent is.

Bij een Poiseuille stroming bestaat een lineair verband tussen de drukgradient en de volumestroom volgens de volgende formule:

\[Q = \int_{-b}^{b} \frac{1}{\mu} \frac{\partial p}{\partial x} \left(b - \frac{y}{2} \right) dy = \frac{2}{3 \mu} \frac{\partial p}{\partial x} b^2 \]

(6)
Waaruit volgt voor het verband tussen volumestroom en wandschuijspeling:

\[\tau_w = \frac{3}{2} \frac{\mu}{D^2} \Omega (D - y) \]

Hieruit blijkt dat het verband tussen schuijspeling en volumestroom lineair is. Door de volumestroom te meten van een volledig ontwikkelde stationaire stroming tussen twee vlakke platen is het dus mogelijk de hittedraad anemometer te ijken.
1.1.2 Volontwikkelde stroming door een rechthoekige doorsnede

Om te kijken of het noodzakelijk is een drie-dimensionale benadering te nemen voor de wandschuifspanning is het belangrijk te weten wat deze is en wat het verschil is met de twee-dimensionale benadering. Bij de drie-dimensionale benadering gaat de afleiding als volgt:

Voor de frictie-factor [Ward-Smith, 1980, pg 137] geldt hierbij:

\[
\frac{1}{2} \rho \frac{1}{F} \int \tau_w dP = \frac{1}{2} \rho U^2
\]

(8)

met \(P \) de omringende lengte van het kanaal. Hierbij stelt \(\tau_w \) de lokale wandschuifspanning voor. Voor incompressibele vloeistoffen geldt:

\[
\int \tau_w dP = - \frac{\partial P}{\partial x} A
\]

(9)

met \(A \) het oppervlak van de doorsnede. Hiermee volgt vervolgens voor de drukgradient:

\[
- \frac{\partial P}{\partial x} = f \frac{P}{A} \frac{1}{2} \rho U^2
\]

(10)

De definitie van de equivalente diameter is: \(D_v = 4A/P \).

Er is in dit geval sprake van laminaire stroming, deze wordt volledig gespecificeerd door het behoud van impuls in de axiale richting:

\[
\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{\mu} \frac{\partial P}{\partial x}
\]

(11)

Voor elke niet-circulaire vorm kan de relatie tussen de frictiefactor en het Reynoldsgetal gegeven worden door:

\[f = \frac{16}{Re} \text{ of } f = c_1 \text{ of } c_s \]

Waarbij \(c_1 \) een functie is van de geometrie.

\(c_s \) is de frictiefactor voor stroming door een cirkelvormige pijp met hetzelfde Reynoldsgetal \(U_D/v \). Zie voor waarden van \(c_1 \) de tabel op pagina 180 [Ward-Smith, 1980, pg 180].

Voor een rechthoekige pijp geldt met \(-b<y<b\), \(-a<z<a\):

\[
u = - \frac{1}{2\mu} \frac{\partial P}{\partial x} [b^2 - y^2 - 4 \sum \frac{(-1)^n \cosh N_n z}{N_n^2 \cosh N_n a}] \]

(12)

Zie voor het stromingsprofiel bijlage 1.
Voor het debiet hierbij geldt:

\[Q = 4abU = -\frac{1}{\mu} \frac{\partial p}{\partial x} \left[\frac{4}{3} ab^3 - \frac{8}{b} \sum \frac{\tanh N_n a}{N_n^5} \right] \]

waarbij:

\[N_n = \frac{(2n+1)\pi}{2b} \]

Alleen bij de opstelling die gebruikt wordt was wel het debiet bekend maar niet de drukgradient dus uit de formule voor het debiet wordt er één voor de drukgradient afgeleid:

\[\frac{\partial p}{\partial x} = \mu Q \left[\frac{2}{3} ab^3 - \frac{4}{b} \sum \frac{\tanh N_n a}{N_n^5} \right]^{-1} \]

Als we vervolgens weer uitgaan van hetzelfde verband tussen de schuifspanning en de druk \(\tau_w = \mu \frac{du}{dy} \) (zie 1-1) krijgen we voor het verband tussen de wandschuifspanning en de volumestroom de volgende vergelijking:

\[\tau_w = \mu Q \left[\frac{2}{3} ab^3 - \frac{4}{b} \sum \frac{\tanh N_n a}{N_n^5} \right]^{-1} \cdot \left[-2y + \frac{4}{b} \sum \frac{(-1)^n \cosh N_n z \cdot N_n \sin N_n y}{N_n^3 \cosh N_n a} \right] \]

Op bodemwand (\(z = -b \)) in het midden van de breedte (\(y = 0 \)), "hetzelfde punt" als bij de 2-dimensionale theorie, geldt vervolgens:

\[\tau_0 = \mu Q \left[\frac{2}{3} ab^3 - \frac{8}{b} \sum \frac{\tanh N_n a}{N_n^5} \right]^{-1} \cdot \frac{4}{b} \sum \frac{(-1)^n \cosh N_n b}{N_n^3 \cosh N_n a} \]

Voor het wandschuifspanningsprofiel zie bijlage 2.

Het tweede deel van formule 16 is in grove benadering verwaarloosbaar ten opzichte van het eerste stuk. In de uiteindelijke uitkomsten wordt dan een verschil van 18% ontdekt. De gehele formule geeft een verband dat 1,21 keer groter is dan de benadering waarbij alleen het eerste deel bekeken wordt.

1.2 Theorie over oscillerende stroming tussen twee platen

De exacte oplossing van een oscillerende parabolische volontwikkelde stroming kan afgeleid worden op dezelfde manier als bij een stroming door een cirkelvormige cilinder. Er wordt uitgegaan van de Navier Stokes vergelijking voor de volledig ontwikkelde stroming tussen twee vlakke platen:

\[\rho \frac{\partial u}{\partial t} = -\frac{\partial p}{\partial x} + \eta \frac{\partial^2 u}{\partial y^2} \]

\[\rho \frac{\partial u}{\partial t} = -\frac{\partial p}{\partial x} + \eta \frac{\partial^2 u}{\partial y^2} \]
Hierin geldt dat dp/dx alleen van de tijd afhankt en niet van x. Uitgaande van een oscillerend parabolisch snelheidsprofiel schrijven we voor u:

$$u = u_0 e^{i\omega t}$$ \hspace{1cm} (19)

Dit geeft na invullen in formule 18:

$$\rho i \omega u_0(y) = -\frac{\partial p}{\partial x} + \eta \frac{\partial^2 u_0(y)}{\partial y^2}$$ \hspace{1cm} (20)

wat alleen nog een functie is in y. Deze valt op te lossen en heeft als uitkomst voor u:

$$u = \text{Re}[Q_0 \left(\frac{1 - K(\alpha,y)}{1 - M(\alpha)} \right) e^{i\omega t}]$$ \hspace{1cm} (21)

$$\frac{\partial p}{\partial x} = \text{Re}\left[-i\omega Q_0 \left(\frac{1}{1 - M(\alpha)} \right) e^{i\omega t} \right]$$ \hspace{1cm} (22)

met voor K, M, α:

$$K(\alpha,y) = \frac{e^{\alpha/1 -} + e^{-\alpha/1 -}}{e^{\alpha/1 -} + e^{-\alpha/1 -}}$$ \hspace{1cm} (23)

$$M(\alpha) = \frac{1}{\alpha\sqrt{1}} \frac{e^{\alpha/1 -} - e^{-\alpha/1 -}}{e^{\alpha/1 -} + e^{-\alpha/1 -}}$$ \hspace{1cm} (24)

$$\alpha = \frac{\omega}{\sqrt{\nu}}$$ \hspace{1cm} (25)

Hieruit volgt vervolgens voor de schuifspanning:

$$\tau_w = \mu \frac{\partial u}{\partial y} \bigg|_{y=b}$$ \hspace{1cm} (26)

$$\tau_w = -\mu Q_0 \frac{e^{i\omega t}}{1 - M(\alpha)} \frac{\partial K}{\partial y} \bigg|_{y=b}$$ \hspace{1cm} (27)

$$\tau_w = -\mu Q_0 \frac{e^{i\omega t}}{1 - M(\alpha)} \frac{\alpha}{2} \sqrt{\frac{1}{ib} e^{\alpha/1 -} - \alpha \frac{1}{2} \sqrt{\frac{1}{ib} e^{-\alpha/1 -}}}$$ \hspace{1cm} (28)
2. Meetmethoden en experimenten

In deze paragraaf wordt allereerst vermeld hoe een anemometer bepaald wat de schuifs- spanning op een bepaalde plaats is naar aanleiding van de gegevens die hij met meten verkrijgt. Vervolgens worden de meetopstelling en de meetmethode behandeld.

2.1 Werking van de anemometer

2.1.1 Werking bij stationaire stroming

Een constante temperatuur hittedraad anemometer (snelheidsmeter) bestaat uit een dunne metallisch glad gemaakte (goud)film met als oppervlak de eigenschappen van een geïsoleerde solide probe, die vervolgens in de vloeistof wordt gebracht waarvan de snelheid gemeten moet worden. De temperatuur van de film T_f wordt behouden door middel van een elektronische schakeling. Deze temperatuur is iets hoger dan die van de vloeistof T_0 die verder ook constant wordt verondersteld. Het vermogen om deze temperatuur te behouden is een maat voor de snelheid warmte wordt verloren aan de vloeistof, wat weer een maat is voor de snelheid waarmee de vloeistof langs de probe stroomt. Er wordt hierbij aangenomen dat het warmteverlies door het substraat verwaarloosbaar is.

In stationaire stroming is de relatie tussen warmteverlies en stroomsnelheid vastgesteld door calibratie in bekende stromingen. Om de probe te gebruiken in stationaire stromingen is het nodig dat dezelfde relatie tussen warmteverlies en stroomsnelheid ten alle tijden gehandhaafd blijft, het gedrag moet dus quasi-stationair zijn.

Het doel van de theoretische analyse is het voorspellen van het warmtetransport naar de omgevende vloeistof. Het temperatuurveld in de buurt van de film wordt verwacht een balans te zijn tussen advectie en diffusie, er van uitgaande dat de vrije convectie verwaarloosbaar is. Er worden eerst een aantal aannames gedaan:

- Het enige onderdeel van het stromingsveld dat het warmtetransport beïnvloed is de afschuifsnelheid op de film S, dit houdt in dat het lokale snelheidsprofiel lineair is, de normaalcomponent van de snelheid verwaarloosbaar is en dat het snelheidsveld gegeven wordt door $u=Sy$ en $v=w=0$.
- De afschuifsnelheid S is onafhankelijk van x over de film.
- De stroming over de probe is gelijk aan die over een eindige vlakke plaat, er is geen longitudinale drukgradient en het effect van de transversale vorm van de probe is verwaarloosbaar.

![Afbeelding 3.](image_url)
Hiermee kunnen we een mathematische formulering van het probleem creëren. Een vloeistof met een constante thermische diffusiecoëfficient k bezet de regio $y>0$ en stroomt in de x-richting met een snelheid gegeven door $u=Sy$, waarbij de afschuifsnelheid S een functie van de tijd, t, is. De temperatuur ver van de wand is T_0, de regio's $x<0$ en $x>l$ van de wand bestaan uit isolerend materiaal terwijl de regio $0\leq x\leq l$ op temperatuur T_1 gehouden wordt. Als $T(x,y,t)$ de vloeistoftemperatuur is dan kan deze bepaald worden uit de volgende vergelijking en bijbehorende randvoorwaarden:

$$\rho C_p \frac{\partial T}{\partial t} + \mu \nabla T = k \nabla^2 T$$

Waaruit volgt:

$$T_1 + S(t)y T_x = k(T_{xx} + T_{yy})$$

Met:

- T gaat naar T_0 als $[x^2+y^2]$ gaat naar oneindig
- $T=T_1$ op $y=0$, $0\leq x\leq l$
- $T_y=0$ op $y=0$, $x<0$ en $x>l$

Het onderwerp van de theorie is om de snelheid van warmteafgifte van de film per eenheid lengte in z-richting te berekenen. Deze is gelijk aan:

$$Q(t) = -\rho C_p k \int_0^1 T_y|_{y=0} \, dx$$

met ρ de dichtheid en C_p de specifieke warmtecoëfficiënt bij een constante druk van de vloeistof (Pedley, 1980, pg 375).

2.1.1a De constante grenslaag oplossing

De flow is stationair, dus S is constant en de eerste term van formule 29 is afwezig en de film is lang genoeg voor de grenslaagbenadering zodat T_{xx} verwaarloosbaar is t.o.v. T_{yy}. Dit betekent dat de vergelijking parabolisch in x wordt en de oplossing bij een gegeven waarde van x alleen afhangt van de condities bij lagere waarden. De film wordt dus beschouwd als semi-oneindig. Balancering van de advectie en diffusietermen laat zien dat de laterale lengte-schaal voor de temperatuurvariatie proportioneel is met $(\kappa/S)^{1/2}$. Dus de grenslaag-benadering zal gevalideerd zijn over de film als het getal van Péclet, Pe^2, groot is, met: $1^2/S^2/\kappa$, hierbij geldt dat 1^2 moet groter dan 400 zijn voor een nauwkeurige voorspelling van de warmteuitwisseling. We introduceren als dimensieloze variabelen:

$$\theta = \frac{T-T_0}{T_1-T_0}, \quad x = x(S)^{1/2}, \quad y = y(S)^{1/2}$$

en de grenslaagvergelijking wordt:

$$y \theta_x = \theta_{yy}$$

met als randvoorwaarden: $\theta=1$ op $y=0$
De oplossing voor dit probleem, als eerste gevonden door Lévêque (1928) (Pedley, 1980, pg 376), luidt:

\[\theta = \theta_0(\eta) = 1 - \frac{c_0}{4} \int_0^\infty e^{-\gamma} d\eta \]

(34)

met:

\[c_0 = \frac{1}{4} \int_0^\infty e^{-\gamma} d\eta \]

(35)

\[\eta = y(9x)^{-\frac{1}{2}} \]

(36)

Als:

\[q(x) = -\theta_y |_{y=a} = c_0(9x)^{-\frac{1}{2}} \]

(37)

dan is de dimensieloze warmteafgifte van de film:

\[Q = \frac{Q}{\rho C_p(T_1 - T_0) \kappa} = \int_0^1 q(x) \partial x = \frac{1}{2} \frac{1}{3} c_0 \frac{1}{2} \]

(38)

Voor een gegeven hittefilm is \(\Omega \) evenredig met \(S^\frac{1}{2} \), zie het getal van Péclet, dus de output van de anemometer is evenredig met de waarde van de lokale wandschuijspanssage tot de macht één derde.

2.1.2 Werking bij instationaire sinusvormige stroming

We behouden de grenslaag-benadering maar laten het toe dat de wandschuijspanssage varieert in de tijd al moet hij wel positief blijven, zodat \(x = 0 \) het begin van de hittefilm zal blijven. Dus de film zal effectief semi-oneindig zijn en de oplossing onafhankelijk van 1. De wandschuijspanssage varieert in de tijd volgens \(S(t) = S_0 S(\Omega t) \) met \(S_0 \) als dimensieschaal-factor en \(\Omega \) als typische frequentie van de tijdvariatie.

We introduceren de dimensieloze grootte \(t = \Omega t \) waardoor de grenslaagvergelijking wordt:

\[\omega \theta_t + S(t) \theta_x = \theta_{xy} \]

(39)

Er gelden weer dezelfde randvoorwaarden als bij de stationaire stroming. Er blijkt dat als \(x \) of \(\omega \) klein genoeg is en de andere constant dat het temperatuurveld quasi-stationair zal zijn. Terwijl als één van de twee groot is dan zullen de oscillatie en de gemiddelde componenten ontkoppeld worden.

De relevante combinatie voor \(x \) en \(\omega \) blijkt te zijn (Pedley, 1980, pg 378):
Bij echte oscillerende stroming geldt er voor de totale warmteoverdracht $Q(t)$:

$$Q(t) = \int_0^1 S(t)[c_0 - x_1 \beta(t) \theta''(0) - x_1 [\beta^2(t) \theta''(0) + \beta(t) S^{-2} \theta''(0)]]$$ \hspace{1cm} (41)

De quasi-stationaire oplossing is nauwkeurig zolang geldt dat:

$$\lambda = x_1 \beta(t) = \frac{\frac{1}{3} S^2 \frac{\partial S}{\partial t} < 1}{\kappa^2 S^3(t)}$$ \hspace{1cm} (42)

en het liefst zelfs kleiner dan 0,1.

In de meeste gevallen is meten met deze anemometer niet echt geschikt. Alleen bij oscillerende waarden in de schuifspanning waarbij het gemiddelde ongelijk aan nul en positief is kan er gemeten worden als de quasi-stationaire benadering gebruikt wordt. De anemometer kan bij meting van bloedstroming dan ook niet in de buurt van het omkeerpunt van positieve naar negatieve stroming gebruikt worden, maar alleen in de perioden en op de plaatsen waar een laminaire stroming zo veel mogelijk benaderd wordt.

Een voorbeeld van Pedley (1972) (Pedley, 1980, pg 380) is een numerieke simulatie met als functie voor de wandschuiPspanning:

$$S(t) = 1 + \alpha_s \sin t$$ \hspace{1cm} (43)

waarbij geldt dat de eerste twee termen van vergelijking 41 nauwkeurig genoeg zijn als $\lambda < 0.5$ en dat de quasi-stationaire oplossing goed genoeg is als $\lambda < 0.1$. In onderstaand plaatje (Pedley, 1980, pg 381) is de maximale waarde voor λ gebruikt, $\lambda = 0.49$. Te zien is de grootte $(9x)^{1/2}$ uitgezet tegen de tijd over een complete cyclus met $x_1 = 2$ en $\alpha_s = 0.5$. De drie curves geven achtereenvolgens de eerste, tweede en derde term van vergelijking 41 weer.

Afbeelding 4.
2.2. De meetopstelling

2.2.1. De meetopstelling voor stationaire stroming

De meetopstelling die gebruikt wordt om de wandschuifspanning aan de wand van een kanaal te bepalen bij een stationaire stroming ziet er als volgt uit:

Hierin onderscheiden we de volgende onderdelen:
1. Het kanaal, dit bestaat uit een opslaggedeelte voor het water met vervolgens een vernauwing waarna een kanaal komt. Dit kanaal is lang genoeg om een laminaire volontwikkelde stroming te kunnen garanderen mits het Reynoldsgetal niet te groot is. Na dit kanaal komt een opvanggedeelte voor het water waarna het weer teruggeleid wordt naar het begin.
2. De pomp, dit is een variabele pomp die alle Reynoldsgetallen van 0 tot 1200 kan beslaan en waarmee dus verschillende volumestromen gegenereerd kunnen worden.
3. De flowmeter, deze meet de volumestroom zodat we later de metingen van de anemometer kunnen koppelen aan de volumestroom.
4. De hittedraad, dit is het eigenlijke meetpunt.
5. De anemometer, hiermee wordt de spanning gemeten die nodig is om een constante stroom door de hittedraad te laten lopen op elk moment. Hieronder wordt nog iets meer over de anemometer verteld.
De transducer die gebruikt wordt bij deze anemometers is een klein weerstandselementje dat wordt verhit en dan gecontroleerd wordt op de bereikte temperatuur. De hoeveelheid elektrische energie die gedissipeerd wordt in de sensor is een maat voor het afkoelend effect van de vloeistof die langs de verhitte sensor stroomt. Dit afkoelend effect van de vloeistof die over de sensor stroomt is afhankelijk van de volumestroom en het temperatuurverschil tussen de sensor en de vloeistof. De relatie tussen het de gemeten spanning en de volumestroom is:

$$\frac{E^2R}{(R+R_2)^2} = \frac{1}{[A+B(pV)^n](t_s-t_v)}$$

Hierin is E de brugspanning over de wheatstonebrug, R de weerstand van de hittedraad, R₂ de weerstand die hiermee in serie is geschakeld, V is de stroomsnelheid en A en B zijn constanten die afhangen van de vloeistof en de sensor (TSI Incorporated, 1994).

Formule 44 laat zien dat het brugvoltage-signal niet lineair is met de massa-flow of de snelheid. Bij dit type anemometer, de 1054B (TSI Incorporated, 1994) zit een lineariserend gedeelte met een systeem dat eerst een constante van het signaal af trekt en dan een functie genereert die het brugvoltage-signal converteert in een signaal dat lineair is met de volumestroom. Dit kan alleen nauwkeurig als de temperatuur vrijwel constant is of als hiervoor gecompenseerd wordt.

De basisvariabele die door de hittefilm gemeten wordt is de snelheid van warmtewisseling van de film naar de vloeistof, maar aangezien dit meestal niet de variabele is die we willen weten zal de gemeten spanning gecalibreerd moeten worden naar de snelheid of de volumestroom.

De curve die uit calibratie zal verschijnen geeft de relatie tussen de signaaloutput en de snelheid of de volumestroom. Deze relatie is niet-lineair, maar een derdemachts polynoom. De gevoeligheid is het grootst bij lage stroomsnelheden.

Als de druk varieert met de snelheid is het beter om de volumestroom te plotten dan de snelheid.

De basis spanning is groter dan nul als er geen flow is (bijv. 3 volt) omdat de sensor een hoge temperatuur heeft en wordt gekoeld door vrije convectie en conductie. Als een bewegende stroom zorgt voor verdere koeling zal de spanning verder toenemen: het feedback systeem moet de spanning laten toenemen om de sensor op z'n temperatuur te houden. Dit niet-lineaire output-signal kan naar een oscilloscoop of een digitale voltmeter geleid worden. Als het basis signaal wordt gebruikt voor metingen dan wordt eerst een calibratiecurve van flow tegen de gemeten spanning geplot.

In vloeistoffen wordt de maximale sensortemperatuur gelimiteerd door het kookpunt van de vloeistof. Temperatuurveranderingen zullen hier de metingen meer beïnvloeden omdat het verschil in temperatuur tussen vloeistof en sensor kleiner is dan bij gassen.
2.2.2 Meetopstelling voor richtingsbepaling bij oscillerende stroming

Het verschil tussen de meetopstelling voor metingen in stationaire stroming en in oscillerende stromingen is alleen het verschil in de gebruikte probe. Om in instationaire stromingen de wandschuifspanning te kunnen meten is het ook noodzakelijk te weten welke richting het water op stroomt. Om dit te kunnen meten heb je dus minstens twee hittedraden nodig die vlak achter elkaar geplaatst zijn. Hierbij is verder een signaal selector nodig om de grootste van de twee signalen die gemeten worden door te geven. De achterste van de twee zal namelijk een kleiner signaal afgeven omdat hij minder warmte zal afstaan.

Het probleem is echter dat deze methode alleen werkt bij relatief lage snelheden waarbij de stroming laminair blijft en de anemometer de tijd heeft om te meten welke kant het water op stroomt. Bij een te hoge oscillatie frequentie ontstaan er ook problemen.
3. Resultaten

Nadat de anemometer was aangesloten en ingesteld volgens de handleiding bleek dat het lineaire nulpunt niet te zetten was aangezien het apparaat vrij onnauwkeurig te calibreren is. Vervolgens is er een curve gemaakt via oscilloscoop en extra voltmeter. De waarden die gemeten zijn staan in tabel 1 in bijlage 3.

De bijbehorende grafiek (zie bijlage 4) en de uitkomst voor het verband tussen de volumestroom en de gemeten spanning zijn:

\[S = (-9.56Q^2 + 0.0016Q) \times 10^7 \]

Maar aangezien het verband eigenlijk een derdemachts wortel is tussen de gemeten spanning en de volumestroom volgt de volgende grafiek (zie bijlage 5), en het volgende bijbehorende verband:

\[S = 26.02Q^{3/2} - 0.346 \]

Met de theorie voor twee dimensionele laminaire stroming volgt hieruit voor het verband tussen de gemeten spanning en de wandschuifspanning (zie bijlage 6):

\[S = 25.267 \tau_w^{3/4} - 0.3254 \]

En met de theorie voor drie dimensionele laminaire stroming door een rechthoekige doorsnede volgt hieruit voor het verband tussen de spanning en de wandschuifspanning (zie bijlage 7):

\[S = 6.449 \tau_w^{3/4} - 0.3254 \]
4. Discussie

4.1 Het gemeten verband tussen spanning en wandschuifspanning

Er is te zien in de grafiek die het verband tussen spanning en wandschuifspanning weergeeft dat deze lijn niet precies door het nulpunt gaat. Dit komt doordat als er geen stroming van de vloeistof aanwezig is er nog steeds natuurlijke convectie en warmte diffusie optreedt waarbij de hittendraad toch een beetje afkoelt. De waarde van de spanning hierbij is 3,12 Volt wat een maat is voor de hoeveelheid warmte die afgeven wordt.

De metingen kunnen niet perfect uitgevoerd worden aangezien de schaalverdeling op de anemometer erg grof is en de wijzer erg veel blijft slingeren. Met behulp van een extra voltmetro kan iets preciezer gemeten worden, maar vooral bij zeer lage stroomsnelheden en zeer hoge stroomsnelheden wordt het meten steeds onnauwkeuriger. Het gebied waarbij de metingen steeds het nauwkeurigste zijn is van $8 \times 10^{-6} \text{ m}^3/\text{s}$ tot $6.4 \times 10^{-5} \text{ m}^3/\text{s}$. Dit komt overeen met het gebied $Re=130$ tot $Re=1060$.

Dit zal waarschijnlijk liggen aan het feit dat bij kleine stroomsnelheden de natuurlijke convectie nog een grote rol speelt en bij grote snelheden je kan gaan twijfelen of de stroming nog steeds mooi laminair is of door het toch vrij korte kanaal misschien al turbulentie begint te vertonen.

Ook treedt er een lichtelijke temperatuurafhankelijkheid op in de gemeten resultaten waarbij het water in de loop van de dag opwarmde van 21°C tot 22°C. Hierdoor week vooral de waarde bij geen vloeistofstroming af, waardoor de hele curve een klein beetje opschoof. Het verband tussen de spanning en de wandschuifspanning blijft verder gelijk, de afwijking was maximaal 3%.

Als we het verband tussen wandschuifspanning en volumestroom gebruiken met behulp van de theorie van stationaire stroming tussen twee vlakke platen en we vergelijken dit met het verband wat we gevonden hebben bij gebruik makende van de theorie voor een kanaal met rechthoekige doorsnede dan zit daar een factor 2,6 tussen. Dat deze factor zo groot is komt omdat bij de drie-dimensionale opvatting de constante een deling door b^3a weer geeft en dat geeft een zeer andere waarde dan een constante die een deling door b^2 weer geeft.

Het is verder zo dat bij instationaire stroming in eerste instantie goed gewerkt kan worden met de theorie voor stroming tussen twee vlakke platen. De theorie voor drie dimensionale instationaire stroming is erg ingewikkeld en met de onnauwkeurigheid van de anemometer zal deze geen betere resultaten zal opleveren. Zeker niet bij de manier waarop deze instationaire stroming gemeten zal worden. Het omkeerpunt tussen negatieve en positieve stroming is al bijna onmogelijk te bepalen. Voor instationaire metingen kan beter naar andere oplossingen gezocht worden. In het volgende subhoofdstuk zal hier meer aandacht aan besteed worden.
4.2 Andere methoden om instationaire stroming te meten

4.2.1. Twee componenten hitte-film probe

Er is een methode ontwikkeld die de momentane grootte van de wandschuifspanning en z'n richting kan meten in instationaire periodieke stromingen. De spanning die nodig is om het hittefilm element op een constante temperatuur te houden is gerelateerd aan de snelheidsgradient dicht bij de wand en dus ook aan de schuifspanning, volgens de volgende formule:

\[\frac{1}{\tau_0} = AE^2 + B \] \hspace{1cm} (49)

waarbij \(A \) en \(B \) constanten zijn en \(E \) de spanning is die nodig is om dezelfde temperatuur te houden. De spanning wordt gegeven door een constante temperatuur anemometer (CTA) die er voor zorgt dat de hittefilm z'n verschilratio met de temperatuur van het water behoudt, mits deze laatste constant blijft.

De twee-componenten probe heeft als basisidee twee hitte-film elementen die een hoek van 90° met elkaar maken. \(A \) en \(B \) hangen nu af van de stroomrichting \(\Theta \):

\[\tau_0(\Theta) = A_1(\Theta)E_1^2 + B_1(\Theta) \] \hspace{1cm} (50)

\[\tau_0(\Theta) = A_2(\Theta)E_2^2 + B_2(\Theta) \] \hspace{1cm} (51)

Hieruit volgt:

\[E_2^2 = \frac{A_1(\Theta)E_1^2 + B_1(\Theta) - B_2(\Theta)}{A_2(\Theta)/A_1(\Theta)} \] \hspace{1cm} (52)

De hitte film probe (zie afb.7 (Sumer B.M., 1993)) bestaat uit een glasvezel waar thermische elementen aan de uiteinden zitten. Deze hitte film probes worden gefabriceerd door DANTEC en zijn verkrijgbaar onder de naam Probe Type 55 R46 spec.
De volgorde van werken is: Eerst kijken of de wandschuijspansningsvector in positieve of negatieve richting ligt. Vervolgens bepalen door middel van een schatting en deze invullen in de vergelijking. Hieruit valt dan de wandschuijspansing te bepalen. Als nu bij het calibreren bekend is welke soort periodieke stroming aanwezig is is het mogelijk uit de metingen op een groot aantal tijdstippen vlak na elkaar te bekijken wat de wandschuijspansing doet in de tijd vergeleken met de stroming. De frequentie waarbij deze methode bruikbaar is loopt van 10-20 Hz tot 120 Hz.

4.2.2. De ladder probe

Er is een probe ontwikkeld die gevormd is als een ladder van hitte draden om snelheidsmetingen te kunnen verrichten in oscillere{de} stromingssituaties. Hierbij wordt ook het omkeerpunt bepaald.

Het gebruik van deze probe is voornamelijk bedoeld om de dikte van de terugstroomregio te meten (zie afb 8 (Sokolov M., 1992)). Omdat deze dikte fluctueert is het nodig om simultaan op meerdere plaatsen in die regio te meten. De ladder bestaat uit 16,5 μm dikke wolframhitte draden gesoldeerd in een vlak tussen 2,5 mm lange stompjes die 7 mm van elkaar geplaatst zijn (zie afb 8 (Sokolov M., 1992)). De draden liggen ongeveer 1 mm uit elkaar langs de zijkanten die gemaakt zijn van roestvrijstalen buisjes met een 1 mm externe diameter. De weerstand van de hitte draden is ongeveer 7 ohm. De ladder probe is alleen nauwkeurig genoeg voor situaties waarin v/u << 1, met v de verticale en u de horizontale snelheid.

Hitte afgifte van de draad is gevoelig voor alle snelheidscomponenten loodrecht erop, hierdoor kan bij hitte draad anemometrie geen onderscheid gemaakt worden tussen voorwaarts en achterwaartse stroming. En doordat er ook natuurlijke convectie optreedt is deze manier van meten ook ongeschikt voor metingen bij zeer lage snelheden. Van de terugstroom wordt steeds maar een fractie gemeten, het is dus niet zeker dat het omkeerpunt hierbij zit (zie afb 9 (Sokolov M., 1992)). Dit is ook weer een lastige bijkomstigheid, net als het feit dat bij turbulente stromingen de metingen veel te onnauwkeurig zijn.

Een directe calibratie van de ladderprobe voor de bepaling van y₀(t) is bij turbulente stroming onmogelijk en alleen bij laminaire stroming goed te realiseren. De meeste problemen ontstaan verder bij het interpreteren van de verkregen data.
4.2.3. De sandwich probe

De verandering in de wandschuifspanning in instationaire stromingen met grote amplitude, waarbij terugstroming kan optreden, kan gemeten worden met twee rechthoekige elektrodes in een sandwich arrangement. Een inverse massatransport methode is gebruikt om de instantane spanningsverandering te vinden uit het gemeten verschil in massatransport tussen de twee segmenten. De insulatie laag tussen de twee rechthoekige elektrodes kan niet verwaarloosbaar dun worden gemaakt. Belangrijk is dus ook het effect van deze laag op het gedrag van de sandwich probe. De twee elektrodes zijn kathodes in twee aparte electrochemische cellen (zie afb 10 (Mao Z., 1992)). De stromen \(I_1 \) en \(I_2 \) zijn rechtevenredig met de massaflux.

Een numerieke simulatie laat zien dat het verschil in massatransport snelheid tot de twee elektrodes in de sandwich probe niet kan worden gebruikt om de stroomrichting te bepalen als oscillaties met grote amplitude aanwezig zijn, omdat een verandering in stroomrichting niet direct vergezeld gaat door een verandering in het teken van het massatransport. De gevoeligheid en dynamische respons van de sandwichprobe worden slechter als de insulatie dikte groter wordt. De sandwichprobe kan gebruikt worden om de schuifspanningsverandering te meten in stromingen met oscillaties waarbij de amplitude groot genoeg is zodat tijdelijke terugstoming aan de wand optreedt. Dit kan doordat er gebruik gemaakt wordt van een hele dunne isolatielaag en de inverse massatransport analyse van Mao en Hanratty [Mao, Hanratty, 1992].

4.2.4 De thermische transiënt anemometer

Er is een thermokoppel ontwikkeld die de verandering in de temperatuur meet om hiermee de snelheid van de vloeistofstroming te bepalen. De sensor wordt periodiek verwarmd door een elektrische puls waarbij de snelheid van afkoelen tussen de pulsen is gerelateerd aan de lokale gemiddelde stroomsnelheid. De TTA-sensor is gebaseerd op het volgende thermische anemometer principe: De convectieve grenslaagcoëfficient van de probe wordt bepaald en dat wordt gecorreleerd aan de lokale vloeistofsnellheid. Het verschil met normaal is dat de meting van de elektrische stroomtoevoer naar de sensor vervangen is door tijdmetingen. Het grootste voordeel hierbij is dat bij TTA een standaard bekleed thermokoppel al effectief als sensor gebruikt kan worden (zie afb 11 (Bailey J.L.,1992)). De probe kan gemodelleerd worden als een oneindig lange homogene solide cilinder met een constante convectieve grenslaag.

Op tijd \(t_i \) wordt een relatief hoge spanning (5-15V) toegevoerd over de thermokoppeldraden voor een periode van \(t_0-t_i \), hierdoor wordt de thermokoppel temperatuur verhoogd boven de vloeistoftemperatuur door weerstands verwarming. De spanningspuls hoef t
precies gemeten te worden. Op tijd t_0 wordt de spanning uitgezet en de temperatuurdistributie in het thermokoppel begint aan z'n relaxatieperiode. Op tijd t_1 wordt een bepaalde temperatuur T_1 gemeten en op tijd t_2 een tweede temperatuur T_2. Uit de tussenliggende tijd en de twee temperaturen kan de corresponderende stroomsnelheid bepaald worden. Op tijd t_3 herhaalt de cyclus zich vervolgens weer.

Typische waarden voor de pulsfase t_0-t_1 zijn 0.25 tot 2 seconden. Waarden voor de fases t_0-t_1 en t_1-t_2 zijn 0.25 tot 0.5 seconden.

Er kan gemeten worden met 100-200 pulsen per seconde, dit is een gebruikelijke frequentie.

Afbeelding 11. De thermische transiënt anemometer.

Voordelen ten opzichte van de conventionele anemometers zijn:
- Een simpele, duurzame en sterke probe in plaats van een breekbaar elektrisch weerstandselement.
- Volumestroommetingen als functie van tijdsintervallen, wat makkelijker en nauwkeuriger te meten is dan de spanningsmetingen.
- Radiale warmteoverdracht is verwaarloosbaar, er is geen correctiefactor nodig.
- Minder elektriciteit nodig door gepulste metingen.
- Eenvoudig te verkrijgen beklede thermokoppels kunnen gebruikt worden als probesensor.
5. Conclusie

Het verband dat we gevonden hebben tussen de gemeten spanning en de schuifspanning is:

\[S = \frac{1}{\alpha_0} \tau_w \alpha_1 \]

Dit verband is maar geldig in een klein gebied van \(\tau_w \), bij Reynoldsgetallen lopend van \(\text{Re} = 130 \) tot \(\text{Re} = 1060 \) en alleen van toepassing bij laminaire stroming.

Het blijkt beter te zijn om een drie dimensionale benadering voor de schuifspanning te nemen dan een twee dimensionale, maar voor instationaire stroming zal dit in eerste instantie te ingewikkeld zijn.

Hieruit blijkt wel dat de anemometer eigenlijk alleen geschikt is voor globale metingen bij stationaire laminaire stromingen. Bij metingen aan instationaire stromingen is deze manier van meten niet echt de beste manier, ten eerste omdat de amplitude dusdanig moet zijn dat de wandschuifspanning binnen het gebied van geldigheid van bovenstaande formule blijft. Ten tweede omdat de frequentie zo laag moet zijn dat de warmteafgifte van de hittedraad quasi-stationaire mag worden verondersteld. Er zal dan ook uitgekeken moeten worden naar alternatieve meetmethoden zoals die beschreven in hoofdstuk 4.2.
6. Aanbevelingen

Om metingen aan instationaire stromingen te willen doen met een anemometer is het erg verstandig om alle keuze mogelijkheden die hier bij mogelijk zijn een keer goed na te lopen en na proefmetingen pas voor de meest nauwkeurige te kiezen. In hoofdstuk 4.2 zijn een aantal voorbeelden gegeven die vrij makkelijk te realiseren zijn.

Om er achter te komen of het meten van de wandschuifspanning met een anemometer wel de geschiktste manier is zouden er ook vergelijkingen gemaakt moeten worden met o.a. het berekenen van de wandschuifspanning uit gegevens van laser-Doppler snelheidsmetingen.
Literatuurlijst

Bailey, J.L., Vresk, J., Acharya, M.
Evaluation of the performance characteristics of a thermal transient anemometer.

Batchelor G.K.
An introduction to fluid dynamics
Cambridge university press, 1967

Beucken, F. vd
Het meten van wandschuifspanningen
T.U.Eindhoven, oktober 1986

Goldstein, Richard J.
Fluid mechanics measurement
Hemisphere Publishing Corporation, 1983

Mao, Z., Hanratty, T.J.
Measurement of wall shear rate in large amplitude unsteady reversing flows.

Pedley, T.J.
The mechanics of large blood vessels
Cambridge University Press. 235, 1980

Schoonen, J.F.M.
Experimental validation of a knee model
T.U.Eindhoven, juli 1993

Sokolov, M., Ginat, Z.
The alder probe: reverse flow measurements with a hot-wire rake.

Sumer B.M., Arnskov, M.M., Christiansen, N., Jorgensen, F.E.
Two component hot-film probe for measurements of wall shear stress.

Vosse, F.N. vd.
Numerical analysis of carotid artery flow
T.U.Eindhoven, 1987

Ward-Smith, A.J.
Internal fluid flow, the fluid dynamics of flow in pipes and ducts.
Oxford Clarendon, 1980
Symposium on measurement in unsteady flow
ASME Hydraulic division conference
Worcester, 1962
'Fundamentals of hot wire anemometry', pg 44-53
'Direction Sensitive hot wire anemometry for two dimensional study near a wall', pg 71-74

dictaat Fysische transportverschijnselen

TSI Incorporated
Series 1050 constant temperature anemometers
Okt. 1989-1994
part nr. 1990424 Revision C jan 1994.
Bijlage 1. Het stromingsprofiel door een rechthoekig doorsnede.
Bijlage 2. De wandschuifspanning in een rechthoekige doorsnede.
Bijlage 3 Tabel 1 Verband tussen de gemeten flow en de gemeten spanning door de anemometer

<table>
<thead>
<tr>
<th>meting</th>
<th>voltmeter 1 in V</th>
<th>flow in ml/sec</th>
<th>voltmeter 2 in V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.15</td>
<td>67.2</td>
<td>3.82</td>
</tr>
<tr>
<td>2</td>
<td>3.98</td>
<td>64.5</td>
<td>3.81</td>
</tr>
<tr>
<td>3</td>
<td>3.81</td>
<td>61.7</td>
<td>3.79</td>
</tr>
<tr>
<td>4</td>
<td>3.63</td>
<td>58.8</td>
<td>3.77</td>
</tr>
<tr>
<td>5</td>
<td>3.45</td>
<td>55.9</td>
<td>3.75</td>
</tr>
<tr>
<td>6</td>
<td>3.25</td>
<td>52.7</td>
<td>3.73</td>
</tr>
<tr>
<td>7</td>
<td>3.04</td>
<td>49.3</td>
<td>3.71</td>
</tr>
<tr>
<td>8</td>
<td>2.83</td>
<td>45.9</td>
<td>3.70</td>
</tr>
<tr>
<td>9</td>
<td>2.63</td>
<td>42.7</td>
<td>3.68</td>
</tr>
<tr>
<td>10</td>
<td>2.42</td>
<td>39.3</td>
<td>3.65</td>
</tr>
<tr>
<td>11</td>
<td>2.20</td>
<td>35.8</td>
<td>3.63</td>
</tr>
<tr>
<td>12</td>
<td>1.98</td>
<td>32.2</td>
<td>3.60</td>
</tr>
<tr>
<td>13</td>
<td>1.75</td>
<td>28.5</td>
<td>3.57</td>
</tr>
<tr>
<td>14</td>
<td>1.52</td>
<td>24.8</td>
<td>3.54</td>
</tr>
<tr>
<td>15</td>
<td>1.27</td>
<td>20.8</td>
<td>3.50</td>
</tr>
<tr>
<td>16</td>
<td>1.02</td>
<td>16.7</td>
<td>3.45</td>
</tr>
<tr>
<td>17</td>
<td>0.75</td>
<td>12.4</td>
<td>3.39</td>
</tr>
<tr>
<td>18</td>
<td>0.48</td>
<td>8.1</td>
<td>3.32</td>
</tr>
<tr>
<td>19</td>
<td>0.19</td>
<td>3.4</td>
<td>3.20</td>
</tr>
<tr>
<td>22</td>
<td>0.37</td>
<td>6.3</td>
<td>3.27</td>
</tr>
<tr>
<td>23</td>
<td>0.64</td>
<td>10.6</td>
<td>3.36</td>
</tr>
<tr>
<td>24</td>
<td>0.07</td>
<td>1.47</td>
<td>3.16</td>
</tr>
<tr>
<td>25</td>
<td>0.91</td>
<td>15.0</td>
<td>3.42</td>
</tr>
<tr>
<td>26</td>
<td>1.16</td>
<td>19.0</td>
<td>3.48</td>
</tr>
<tr>
<td>27</td>
<td>1.65</td>
<td>26.9</td>
<td>3.55</td>
</tr>
<tr>
<td>28</td>
<td>2.11</td>
<td>34.3</td>
<td>3.61</td>
</tr>
<tr>
<td>29</td>
<td>2.54</td>
<td>41.3</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Gemeten spanning als functie van de wandschuifspanning

Gemeten spanning in V

Wandschuifspanning in N/m²

x10⁻³
Bijlage 5. Verband tussen gemeten spanning en volumestroom.

Gemeten spanning als functie van de volumestroom

Gemeten spanning in V

Derdemachtswortel van de volumestroom in m³/s

Gemeten spanning als functie van de wandschuifspanning

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

Derdemachtswortel van de wandschuifspanning in N/m²
Bijlage 7. Verband tussen gemeten spanning en wandschuifspanning in 3D.

Gemeten spanning als functie van de wandschuifspanning in 3D

Gemeten spanning in V

Derde machtswortel uit de wandschuifspanning in N/m²