Can locations of cartilage damage initiation be explained by shear-strain induced tears of interfibrilar bonds?

Citation for published version (APA):

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at: openaccess@tue.nl
providing details and we will investigate your claim.
CAN LOCATIONS OF CARTILAGE DAMAGE INITIATION BE EXPLAINED BY SHEAR-STRAIN INDUCED TEARS OF INTERFIBRILAR BONDS?

+Eindhoven University of Technology, Eindhoven, The Netherlands
C.C.v.Donkelaar@tue.nl

Introduction
It is generally believed that mechanical overloading is one of the major causes for the onset of cartilage degeneration. The first goal of this study was to determine the influence of cartilage thickness on the prevalence and the location of collagen damage after mechanical overloading. The second goal of this study was to determine the cause and nature of this collagen damage. It was hypothesized that initial cartilage damage involves loosening of interfibrillar bonds between the collagen fibrils, while the fibrils themselves remain intact until severe degenerative changes are induced [1,2]. In this study both the maximal shear strains along the collagen fibrils and the fibril strains were tested as possible candidates for causing collagen damage during mechanical overloading.

Material and methods
Ten 8.5 mm osteochondral plugs were loaded 5 times with a spherical indenter (r=2 mm) with 25 N in 19.5 seconds. Coll II degradation was evaluated histologically using antibodies against denatured coll II (Col2-3/4M) [3]. The shear strains along the collagen fibrils and the fibril strains were computed with a fibril-reinforced poroviscoelastic swelling FEA-model, which includes a description of the arcade-like collagen network and the swelling behavior of cartilage [4]. Cartilage thickness was measured for each sample. FEA simulations were performed for cartilage of variable thickness. The distribution of the computed strains was compared to the experimentally determined locations of collagen damage.

Results
In the experimental data, the thinnest samples showed the most damage, located at the surface. Intermediate samples were damaged below the surface and the thickest samples were undamaged (Fig. 1, 2).

The combination of experimentally found damage, sample thickness and computed strains reveals that the cross-links between the collagen fibrils fail at approximately 30.9% strain and that the fibrils themselves start to rupture at a strain of approximately 27.5% (Fig. 3). Samples thicker than 1.3 mm remain undamaged, samples with a thickness 0.9<h<1.3 mm are damaged just below the articular surface, and samples thinner than 0.9 mm develop damage at and below the articular surface as a result of the applied mechanical overloading (Fig. 4).

Conclusions
Probability and location of collagen damage after mechanical overloading are highly dependent on cartilage thickness. The locations of damage predicted with the FEA model correspond well with experimental data. These findings strongly support the hypothesis that the earliest change in the collagen matrix integrity is loosening of the bonds between the large fibrils, and not rupture of the fibrils themselves.

Reference

** Orthopaedic Research Laboratory, University Medical Center Nijmegen, Nijmegen, The Netherlands