Summary of a study on the TM01 radiation pattern of corrugated conical horn antennas with small flare angle

Citation for published version (APA):

Document status and date:
Published: 01/01/1970

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 02. May. 2019
Summary of a study on the TM_{01} radiation pattern of corrugated conical horn antennas with small flare angle.

by

ir.Th. Scharten
Summary of a study on the TM_{01} radiation pattern of corrugated conical horn antennas with small flare angle

Th. Scharten

This summary is based on the technical reports Nr ETA-3-1969 and Nr ETA-30-1969 (Eindhoven University of Technology)

1. The configuration and its electromagnetic description
 1.1 Corrugated conical horn antenna

 Figure 1

 1.2 Electromagnetic model

 We assume a simple harmonic time dependence \(e^{-j\omega t} \). We suppose \(\ell_1 \ell_2 \ll \lambda_{guide} \) and \(R_o \approx a \gg \lambda_{guide} \). Furthermore we suppose the flare angle to be so small that if a TM_{0n} mode is excited in the horn, the aperture field can be approximated by the TM_{0n} mode field of a circular cylindrical, corrugated waveguide with inner radius \(a \), but now with a quadratic phase distribution in the radial aperture direction. For this case the longitudinal phase factor of the aperture field, \(e^{i\beta_n z} \), has to be replaced by the factor

 \[
e^{-j\beta_n (R_f - R_o)}
 \]

 where \(R_f = R_o \sqrt{1 + \frac{c^2}{R_o^2}} \approx R_o + \frac{c^2}{2R_o} \). So this factor reads

 \[
e^{i\beta_n \frac{c^2}{2R_o}}
 \]
2. Fields on the horn surfaces

2.1 Outer surface. On the outer surface we assume the wall currents to be zero; so we have

\[\vec{n} \times \vec{E} = 0 \]
\[\vec{n} \times \vec{H} = 0 \] on \(S_c \).

2.2 Inner surface. The surface impedance on the inner horn surface is determined by the relation

\[Z_r = \frac{jX_r}{\epsilon_0} = \frac{t_1Z_{\text{groove}} + t_2Z_{\text{dam}}}{t_1 + t_2} \]

\[= \frac{t_1}{t_1 + t_2} Z_{\text{groove}}, \quad \text{on } S_r \]

where

\[Z_{\text{groove}} = \frac{jX_{\text{groove}}}{\epsilon_0} = j\frac{\mu_0}{\epsilon_0} \frac{J_0(ka) \Gamma_0(ka + kd) - J_0(ka + kd)}{J_1(ka) \Gamma_0(ka + kd) - J_0(ka + kd) \Gamma_1(ka)}, \]

being the input impedance of a shortened radial waveguide, \(a < \phi < a + \delta \), propagating a TEM wave.

2.3 Aperture. The aperture fields are found by considering a circular cylindrical waveguide (radius \(a \)) having the reactance wall condition, given above, and propagating a TM\(_{0n} \) mode (exp\(\{+i\beta_n z\} \)). Taking into account the quadratic phase distribution we find

\[E_{\phi n} = -i\beta_n \lambda_n J_1(\lambda_n \rho) \exp \left(i\beta_n \rho^2 / 2\rho_0 \right) \]
\[H_{\phi n} = -i\omega \epsilon_0 \lambda_n J_0(\lambda_n \rho) \exp \left(i\beta_n \rho^2 / 2\rho_0 \right), \quad \text{on } S_A \]

where \(\lambda_n \) is the \(n \)th root of the TM\(_{0n} \) characteristic equation

\[\lambda J_0(\lambda a) - \omega \epsilon_0 \mu_0 \Gamma_0(\lambda a) = 0. \]

In our case \(ka \gg 1 \); so the surface reactance can be approximated by

\[X_r = \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{t_1}{t_1 + t_2} \tan kd. \]

It is shown that the characteristic equation has two imaginary solutions (surface wave solutions) if

\[k \tan kd > \frac{2(t_1 + t_2)}{t_1 \delta}, \]

and real, single valued solutions if

\[k \tan kd < \frac{2(t_1 + t_2)}{t_1 \delta}. \]
3. The radiation pattern

The energy-flow density can now be evaluated in the usual way, giving

\[S_\theta(R,\theta) = (k \cos \theta + \beta_n)^2 \left| \int_0^\infty J_1(\lambda_n \rho) J_1(\lambda \rho \sin \theta) e^{i \beta_n \rho^2 \rho d\rho} \right|^2 \]

4. Results

Horn dimensions

- \(a = 0.132 \) (m)
- \(d = 0.009 \) (m)
- \(t_1 = 2.5 \) (mm)
- \(t_2 = 4.0 \) (mm)
- \(R = 0.493 \) (m)
- \(\theta_0 = 15^\circ \)

dimensions of the 'equivalent' waveguide

Figure 3 Dispersion curves for the circular cylindrical, corrugated waveguide

Figure 4-10 Theoretical and experimental TM_{01} radiation patterns in the frequency range 8.5 - 11.5 GHz

Figure 11 Half beamwidth characteristics
TM_{01} radiation patterns

theoretical ---
experimental ----
frequency: 8.5 GHz
Figure 5

TM_{01} radiation patterns
theoretical ——
experimental ----
frequency: 9 GHz

relative power db

degrees
TM_{01} radiation patterns
theoretical ———
experimental ———
frequency: 9.5 GHz

Figure 6
Figure 7

TM_{01} radiation patterns
 theoretical ———
 experimental ———
 frequency: 10 GHz

[Graph showing theoretical and experimental radiation patterns over a range of degrees and frequency.]
Figure 8

TM\textsubscript{01} radiation patterns
theoretical
experimental
frequency: 10.5 GHz

degrees

relative power

db
TM$_{01}$ radiation patterns
theoretical ——
experimental ----
frequency: 11 GHz

Figure 9
TM_{01} radiation patterns

theoretical ———

experimental ———

frequency: 11.5 GHz

Figure 10
Half beamwidth at 0, 10, 20, 30 db level respectively, as a function of frequency.