Selected bibliography of fuses

Vermij, L.

Published: 01/01/1969

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
SELECTED BIBLIOGRAPHY
OF FUSES

Compiled by

L. Vermij
Selected Bibliography

of Fuses

Compiled by L. Vermij

September 1969

TH-Report 69-E-08
by error
see Preface last page
1. Books, reviews and general papers.

A 1.2 H.W. Baxter: Electric Fuses. E. Arnold - London 1950. Electrical behaviour of fuses under a large variety of circumstances. Design and construction of fuses. Requirements. In this book a large number of experimental data are given; the theoretical discussions are concise.

B 1.5 VEM-Handbuch-Schaltanlagen, Band I. VEB-Verlag Technik Berlin (1960), pp. 529-551. A general survey is given of the requirements on fuses as stated in the German specification of fuses (VDE).

Proc. Royal Soc. 36 (1884) 464-471.
Connection between minimum fusing current and diameter of fuse elements. Theoretically and experimentally. This paper is only important from a historical point of view.

C 2.2 G.J. Meyer: Beitrag zur Kenntnis der Abschmelzsicherungen.
Thesis Berlin 1906.
Calculation pre-arcing time. Temperature distribution along a fuse element. Experiments.
In some respects out of date.

C 2.3 J.A.M. van Liempt: Zur Theorie des Grenzstromes bei Schmelzsicherungen.
Calculation of minimum fusing current and experimental verification,

A 2.4 J.A.M. van Liempt and J.A. de Vriend: Die Schmelzzeit dünner Schmelzsicherungen.
I: Z. f. Physik 93 (1934) 100-110.
Experimental verification and range of validity of Meyer's equation (see 2.2). Experimental results of a number of wire materials.

Bull. SEV 18 (1927) 205-225.
Simple calculations, partly empirical treatment.

A 2.6 E. Wintergerst: Über die Schmelzzeit von Schmelzsicherungen.
Pre-arcing time of fuse wires stretched in air or in a solid matter (sand), taking into account radial and axial heat transfer to the surroundings of the wire. Investigation of different mechanisms of heat transfer. Problems regarding the pre-arcing time of cylindrical fuse elements are discussed in full.
B 2.7 J. Fischer: Die stationäre Temperatur stromdurchflossener,
mässig langer Drähte.
Theoretical investigation of temperature distribution, influence of
the properties of wire material. Analytical and numerical
solutions.

B 2.8 J. Fischer: Die stationäre Temperature stromdurchflossener,
langer Drähte.
Arch. f. Elektrotechnik 15 (1952) H.4, 262-274.
Theoretical. Influence convection and radiation, cross-section
of the wire and electrical current.

B 2.9 E.B. Carne: A mechanism for the Fuse Pre-Arcing Period.
Trans. AIEE 72 (1953), 593-599.
Calculations of the temperature distribution in the axial and
in the radial direction of a cylindrical fuse wire, taking into
account the heat transfer to the surroundings of the wire.
Pre-arcing time calculations.

B 2.10 A.E. Guile and E.B. Carne: An Analysis of an Analogue Solution
Applied to the Heat Conduction Problem in a Cartridge Fuse.
Approximate analytical solution and analogue solution of tempe-
ratue distribution along cylindrical fuse wires embedded in
sand.

B 2.11 A.E. Guile: The calculation of the complete Time / Current
Characteristics of Cartridge Fuses with Single Wire Element.
Trans. AIEE 74 (1955) 1108-1115.
An investigation of the heating processes during the pre-arcing
period.

B 2.12 C. Adamson and M. Viseshakul: An analytical Method for Predicting
the Performance of Semi-Enclosed Fuses.
Both publications 2.12 and 2.13 give an analytical and analogue solution of the temperature distribution and the pre-arcing time of non-homogeneous fuse-elements (notched ribbons, etc.).

Temperature distribution along short fuse elements (ribbons) having a discontinuity in its cross-section, stretched in oil or in air.
Minimum fusing current and pre-arcing time. Applicability for low-voltage current limiting fuses. Investigation of questions regarding the arc-voltage.

Approximate calculation and measurement of the stationary temperature distribution along a cylindrical fuse wire stretched in air or in sand.
Rapid heating of fuse elements. Pre-arcing time. Influence of the length of the fusing wire on the pre-arcing time.

Derivation of expressions for the temperature rise, minimum fusing current and pre-arcing time of time-lag fuses (lead wires) which are subject to an impuls current. Comparison with experimental results.

2.17 See also 4.5, 5.6 and 8.1.
3. **Physical processes relating to the pre-arcing time and the arcing time.**

B 3.1 E.F. Northrup: Some newly observed manifestations of forces in the interior of an electric conductor.
Calculations of the radial pressure distribution in a current carrying conductor. Experiments.

B 3.2 W. Kleen: Über den Durchgang der Elektrizität durch metallische Haardrähte.
Deformation of a liquid current carrying conductor under the influence of surface tension and magnetic pinch pressure.

C 3.3 W. Ende: Beitrag zur Kenntnis der Kurzschlussfunken.
Ann. der Physik, 5. Folge 17 (1933) 460-462.
High speed photographs showing the deformation process of a fusing wire of small cross-section.

B 3.4 K.A. Lohausen: Hochspannungssicherungen.
Explanation of the electrical behaviour of fuses from the assumption of fulgurite conduction. Survey of fuse designs (somewhat out of date).

VDE-Fachber. 6 (1934) 72-76.
A qualitative treatise of the processes during the arcing time and of questions connected with current limiting action. Discussion with K.A. Lohausen mentioned in this paper is of interest.

B 3.6 H. Läpple: Die Lichtbogenlöschung in körnigem Löschmittel bei Hochspannungssicherungen.
ETZ 58 (1937) H.14, 369-372
H.16, 426-428.
A qualitative treatise of the processes during the arcing time.
H. Weber: Vorgänge bei der Kurzschlussabschaltung durch Schmelzsicherungen.
VDE-Fachber. 9 (1937) 92-95.

Investigation of the multiple arcing process. Influence circuit induction and length of fuse wire on peak voltage. Small-over-current performance.

S. Bors: Beitrag zur Frage der Alterung von Schmelzsicherungen.
Investigation of ageing effects of fuse elements of different materials and under different physical circumstances. Diffusion of the low-melting-point material in the case of fuse elements with M-effect.

Elektrie 16 (1964) (1) 24-29.
Operation of a fuse explained from the electrical conductivity of the fulgurite. Influence of circuit parameters.

Temperature distribution. Multiple arcing effect and its influence on the interruption of the current.

TH-publ. no. 68-E-05, Technological University Eindhoven, 1968.
Derivation and experimental verification of an energy balance equation.

L. Vermij: Electrical Behaviour of Fuse Elements.
Clarification of the electrical behaviour of cylindrical fuse elements surrounded by air or by a solid matter. Investigation of physical processes. Interaction between fuse elements and the electrical circuit.
4. **Electrical phenomena associated with the arcing time.**

Calculation of cut-off-current, investigation of overvoltages, breaking capacity and design of fuses.

Electrical behaviour of current limiting fuses, influence on it of generated voltage, available current, fault starting angle, voltage angle at melting, frequency, power factor, number of phases.

This publication offers an elucidative treatise on an analytical basis of the influence of the arc voltage on the operation of a fuse. Also the influences mentioned under 4.2 are discussed in this paper. The two papers 4.2 and 4.3 together yield a clear insight in the electrical characteristics of current limiting fuses.

Investigation of current limiting action of high-voltage fuses.

Current-limiting action of fuses in DC-circuits (4.5) and AC-circuits (4.6). Calculation of the cut-off-current and the pre-arcing time.

A mainly qualitative treatise of the influence of the instant of fusing on the arc-energy. Discussion of subjects as peak voltage, fault starting angle, etc.

ETZ-B 12 (1960), 608-611.
Dependency of the arc energy on the fusing current. Critical fusing current. Experimental results obtained with high-voltage fuses manufactured by Siemens.

Experimental data regarding the arc energy as a function of the prospective current (AC and DC), inductive energy and cut-off current ratio.

A 4.10 J. Hennebert: Comportement des fusibles limiteurs au cours des essais de coupure.
Règles d'essais qui en résultent.
A critical treatise, mainly on an experimental basis, of the current interruption capacity of fuses, with special reference to the values of the current to be interrupted, the circuit voltage and the design of the fuse element (homogeneous versus non-homogeneous cross-section).

4.11 See also 2.14, 3.4, 3.5, 3.13 and 9.1.
5. **Fuse design in relation with fuse characteristics.**

B 5.1 H. Johann: Die Lenkung des Schaltvorganges in Hochspannungs-Sicherungen mit körnigem Löschmittel.
A qualitative investigation of the influence of the shape of the fuse element on the course of arc voltage and current.

Trans. AIEE 74 (1955) 635-643.
A treatise on hand of experimental data of the characteristics of fuses with rectangular-shaped fuse elements. Effect of notches and low-melting-point alloy.

B 5.3 H. Bitter: Einfluss der Bemessung der Steuerschmelzleiter auf die Grösse der Löscharbeit bei NH-Sicherungen.
Influence of the shape of the fuse element on the arc energy and on the peak voltage. Experimental results.

A 5.4 R.H. Dean: Recent Developments in Medium-Voltage H.B.C. Fuse Links.
Fuse design and fuse characteristics, tests and requirements.

B 5.5 H. Bitter: Hochspannungs-Hochleistungs Sicherungen mit optimalen Schmelzleiter.
This paper can be considered as a continuation of the paper mentioned under 5.3.

B 5.6 H.H. Johann: NH-Sicherungen für erhöhte Anforderungen (Probleme und Ergebnisse der Weiterentwicklung).
Siemens Z 34 (1960) 477-484.
Treatise of different fuse designs. Further a review is given on temperature distributions along fuse elements and calculation of pre-arcing times (only results are mentioned).
B 5.7 H. Bolleter: Konstruktionsprobleme und Einsatzmöglichkeiten von Apparaten-Schmelzeinsätzen.
Bull. SEV 52 (1962) 583-593.
Design and application of miniature fuses.

A 5.8 J. Mocsáry: Neuere Untersuchungen an Hochspannungs-Hochleistungs-Sicherungen mit sehr hohem Abschaltvermögen und niedrigen Schalt-Überspannungen.
The effect of the design of the fuse element on the peak voltage and the arcing voltage.

B 5.9 J. Mocsáry: Schmelzleiterkonstruktionen Strombegrenzender HH-Sicherungen und ihr Verhalten bei Unterbrechung kleiner Ströme.
Elektrie 19 (1965) 310-312.
The electrical behaviour of fuses with non-homogeneous round fuse elements at small currents.

B 5.10 H.W. Mikulecky: Current-Limiting Fuse with Full-Range Clearing Ability.
Trans IEEE, PAS-84 (1965) 1107-1116.
Investigation of the effect of a gas-evolving spider and of an auxiliary element and arc-electrodes on the fuse characteristics, especially in the low-current region.

Trans IEEE, PAS-87 (1968) 438-448.
Investigation of arc-voltage characteristics of fuses with uniform-area and non-uniform-area fuse elements. Effect of the arc-voltage on circuit components. Coordination of current-limiting fuses and lightning arresters.

5.12 See also 3.10, 4.1.
6. **Interaction between fuses and the electric circuit.**

A rather extensive investigation regarding the influence of the natural frequency of the circuit on fuses with non-uniform cross-sectional fuse elements.

The influence of a capacitance parallel to the fuse on the peak voltage, etc.

6.4 See also 3.8, 3.13, 4.2, 4.3, 4.7, 4.10, 9.1 and 9.2.
7. Discrimination.

Discrimination between fuses in series.

Rather extensive treatise of fuses used as back-up protection in combination with circuit breakers, mainly with regard to low-voltage distribution systems.

B 8.1 B. Novotný: Der Schutz von Halbleiterdioden mittels Sicherungen.
Calculation of the temperature rise of short fuse elements. Pre-arcing time. Qualitative treatise of the requirements on fuses for the protection of semi-conductor rectifiers.

A 8.2 J. Mocsáry: Überflinke strombegrenzende NH-Sicherungen Typ NOGe und NOSi für Halbleitergleichrichter.
Elektrie 18 (1964) 208-209.
Requirements on fuses for the protection of semi-conductor devices. Treatise of designs.

A 8.3 R.G. Dale and M. Smith: New Fuse Developments and Diode Ratings Yield Compatibility.
Gives a survey how diodes could be destroyed and how they could be protected by means of fuses.

B 8.4 J. Bekink: Protection des éléments semi-conducteurs en cas de court-circuit interne dans un redresseur de grande puissance.
Protection with fuses of semi-conductor elements fitted to high-capacity rectifiers. Requirements and test procedures.

A 8.5 A. Stahn: Die Auswahl überflinke Sicherungen zum Schutz von Thyristoren.
The most important problems relating to the choice of super-quick-acting fuses for the protection of thyristors.
9. **Fuse tests.**

Elektrie **18** (1964) 389-393.

Arc energy as a function of the ratio between the short circuit current and the nominal current. Critical current. Overvoltages. The influence of the natural frequency of the test circuit. In this paper a large number of experimental data are given.

Elektrie **22** (1968) 200-203.

Comparison of test circumstances and the circumstances in a three-phase low-voltage distribution system. Critical discussion on the subject of test requirements.

Treats the effect of standards on the user of low-voltage fuses.

9.6 See also 4.10, 5.4 and 8.4.
10. Exploding wires.

Some publications on exploding wire phenomena which are of particular interest for the study of the behaviour of fuses are listed below:

10.3 S.V. Lebedev: Explosion of a Metal by an Electric Current. Soviet Physics JETP 5 (1957) 243-252. Investigation of energies and of the course of the voltage across the wire and the resistance of the wire, especially during the pre-arcing period.

10.6 F.D. Bennett: High-Temperature Cores in Exploding Wires.
Refers to previous publications of Bennett which are also of
interest.

10.7 L. Vermij: Interaction between Exploding Wires and the Elec­
trical Circuit.
Investigation of fusing wires in an LC-circuit. Dark-time
phenomena.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Index 1</th>
<th>Index 2</th>
<th>Index 3</th>
<th>Index 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamson, C.</td>
<td>2.12</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baxter, H.W.</td>
<td>1.2</td>
<td>3.8</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Bekink, J.</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bennett, F.D.</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergold, K.</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitter, H.</td>
<td>4.4; 4.8; 5.3; 5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boehne, E.W.</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolleter, H.</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bors, S.</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne, E.B.</td>
<td></td>
<td>2.9; 2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chace, W.G.</td>
<td></td>
<td>10.1; 10.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken, W.J.</td>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daalder, J.E.</td>
<td></td>
<td>3.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dale, R.G.</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David, E.</td>
<td></td>
<td>10.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean, R.H.</td>
<td></td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ende, W.</td>
<td></td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fischer, J.</td>
<td></td>
<td>2.7; 2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gantenbein, A.</td>
<td></td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gibson, J.W.</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groszkopf, R.</td>
<td></td>
<td>2.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grünberg, L.M.</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guile, A.E.</td>
<td></td>
<td>2.10; 2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gut, G.</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hennebert, J.</td>
<td></td>
<td>4.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jahn, G.</td>
<td></td>
<td>9.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johann, H.</td>
<td></td>
<td>5.1; 5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keilhacker, M.</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleen, W.</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kriechbaum, K.</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Läpple, H.</td>
<td>1.3; 3.5; 3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebedev, S.V.</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lerstrup, K.</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Liempt, J.A.M.</td>
<td>2.3; 2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lohausen, K.A.</td>
<td>3.4; 3.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meier, F.</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meyer, G.J.</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikulecky, H.W.</td>
<td>5.10; 5.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mocsáry, J.</td>
<td>5.8; 5.9; 6.2; 8.2; 9.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, H.K.</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagata, M.</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northrup, E.F.</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novotný, H.K.</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powell, A.H.</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preece, W.H.</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rauch, W.</td>
<td>4.5; 4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rüdenberg, R.</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schuck, C.L.</td>
<td>4.2; 5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEL</td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seysen, R.</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, M.</td>
<td>7.1; 8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, M.R.</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stahn, A.</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suzuki, Y.</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turner, C.</td>
<td>1.7; 3.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turner, H.W.</td>
<td>1.7; 3.11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vermij, L. 2.15; 3.12; 3.13; 10.7
Viseshakul, M. 2.12; 2.13
de Vriend, J.A. 2.4
VEM 1.5

Watson, E.M. 10.1
Weber, H. 3.7
Wintergerst, E. 2.6

Yokoi, Y. 2.16
Preface.

This bibliography has been compiled with the intention to offer the possibility of a more directed choice in studying the literature dealing with fuses. Therefore only a limited number of publications have been mentioned. In the opinion of the author the papers mentioned in this selected bibliography give more or less an overall picture of current knowledge, possibilities and requirements regarding fuses.

The papers have been arranged according to subject, whereas further an attempt has been made for a rough classification of the publications mentioned. The A-papers are the most important publications, whereas B-papers are recommended for further study. C-papers are of interest mainly from a historical point of view. The author is indebted to Mr. J.W. Gibson (Bowthorpe Line Equipment Ltd., Bridgend, U.K.) for his critical comments and suggestions during the compiling of this bibliography.