A NEW UPPER BOUND FOR THE CARDINALITY OF
2-DISTANCE SETS IN EUCLIDEAN SPACE

by

A. Blokhuis
Abstract
It is proved that the cardinality of a 2-distance set S in Euclidean d-dimensional space satisfies

$$\text{card}(S) \leq \frac{1}{2}(d + 1)(d + 2).$$

Introduction
A set S in Euclidean d-space E^d is called a 2-distance set if the distance between distinct points of S assumes only two values. The maximum size of such a set is 5 in E^2 (Kelly), and 6 in E^3 (Croft). Delsarte, Goethals and Seidel [1] treated the case where the points of S lie on a sphere. Their argument can be modified to obtain the bound

$$\text{card}(S) \leq \frac{1}{2}(d + 1)(d + 4)$$

for general 2-distance sets as was established by Larman, Rogers and Seidel [2]. E. and E. Bannai [3] showed that equality doesn't occur in this case. The proof of Larman, Rogers and Seidel can be modified again to obtain $\text{card}(S) \leq \frac{1}{2}(d + 1)(d + 2)$.

Theorem
Let S be a 2-distance set in E^d, then

$$\text{card}(S) \leq \frac{1}{2}(d + 1)(d + 2).$$

Proof.
Let a and b the distances in S. For each point s in S and $x \in E^d$ we define

$$F_s(x) = \frac{1}{a^2b^2} (\|x - s\|^2 - a^2)(\|x\|^2 - b^2).$$
These functions form an independent set of functions since $F_s(t) = \delta_{s,t}$ for all $s, t \in S$. They are linear combinations of the following functions:

$$
\|x\|^4; \|x\|^2 x_i; x_i^2; x_i; 1; \quad \text{where } 1 \leq i \leq d.
$$

Hence the total number of functions F_s cannot exceed

$$
1 + d + \frac{1}{2}d(d + 1) + d + 1 = \frac{1}{2}(d + 1)(d + 4).
$$

We proceed to show that in fact the set

$$\{F_s(x), x_i, 1 \mid s \in S, 1 \leq i \leq d\}$$

is linearly independent, which implies

$$\text{card}(S) + d + 1 \leq \frac{1}{2}(d + 1)(d + 4)$$

and hence

$$\text{card}(S) \leq \frac{1}{2}(d + 1)(d + 2).$$

Now suppose we have

$$
\sum_{s \in S} c_s F_s(x) + \sum_{i=1}^{d} c_i x_i + c = 0. \tag{1}
$$

Inserting s in relation (1) we get

$$
c_s + \sum_{i} c_i s_i + c = 0. \tag{2}
$$

Inserting e_i in (1), where e_i is the i-th column of the unit matrix, we get

$$
\frac{1}{a^2 b^2} \sum_{s} c_s (k^2 - 2ks_i + \|s\|^2 - a^2)(k^2 - 2ks_i + \|s\|^2 - b^2) +
$$

$$
+ kc_i + c = 0. \tag{3}
$$
Comparing the coefficients of k^4 and of k^3 we obtain

\[(4) \quad \sum_s c_s = 0 \quad \text{and} \quad \sum_s c_{s_i} = 0\]

for $i = 1, \ldots, d$.

Multiply relation (2) by c_s and sum over all $s \in S$:

\[(5) \quad \sum_s c_s^2 + \sum_i \sum_s c_s c_{s_i} + c \sum_s c_s = 0.\]

Now (4) and (5) yield $c_s = 0$ for all $s \in S$, whence also $c = c_i = 0$ for $i = 1, \ldots, d$. This completes the proof of the theorem.

References

 On two-distance sets in Euclidean space.

 An upper bound for the cardinality of an s-distance subset in Euclidean
 space. (to appear in Combinatorica)