Decomposition method for project scheduling with spatial resources

Citation for published version (APA):

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 11. Sep. 2020
Decomposition Method for Project Scheduling with Spatial Resources

J.L. Hurink, A.L. Kok and J.J. Paulus
University of Twente, PO box 217, 7500AE Enschede, The Netherlands, j.j.paulus@ewi.utwente.nl

Project scheduling problems are in practice often restricted by a limited availability of spatial resources. In this paper we develop a decomposition method for the Time-Constrained Project Scheduling Problem (TCPSP) with Spatial Resources. Spatial resources are resources that are not required by single activities, but by activity groups. As soon as an activity of such a group starts, the spatial resource units are occupied, and they are not released before all activities of that group are completed. On top of that, the spatial resource units that are assigned to a group have to be adjacent. The developed decomposition method separates the spatial resource assignment from the rest of the scheduling problem. Test results demonstrate the applicability of the decomposition method. The presented decomposition forms a first promising approach for the TCPSP with spatial resources and may form a good basis to develop more elaborate methods.

1. Introduction

In many practical instances of project scheduling, there is a limited amount of physical space available. Possible examples are dry docks, shop floor spaces or assembly areas. In this paper we discuss the complications occurring in project scheduling problems where such spatial resources play a role. We present a decomposition method that separates the spatial resource assignment from the scheduling of the other resources.

Project Scheduling Problems are comprehensive descriptions of scheduling problems from practice. From the literature two variants can be distinguished. The Resource-Constrained Project Scheduling Problem (RCPSP) aims to schedule the activities such that the makespan is minimized without exceeding the resource capacities. There is a large amount of literature available on the RCPSP. For an overview see, e.g., Herroelen et al. (1998), Kolisch and Hartmann (1999), or Kolisch and Padman (2001). The other variant is the Time-Constrained Project Scheduling Problem (TCPSP), in which strict deadlines on the activities have to be met, but resource levels may be exceeded, or work in overtime is allowed, see Guldemond et al. (2006). For the TCPSP the objective is to minimize the usage of the additional resources.

In the context of project scheduling problems, De Boer (1998) introduced the concept of spatial resources through activity groups. Firstly, a spatial resource is characterized by an adjacency requirement. The units of a spatial resource that are assigned to a group have to be adjacent. The second characteristic is, that the spatial resource is not required by a single activity but by a group of activities (activity group or simply group). The spatial resource units that are assigned to a group are occupied from the first moment an activity of the group starts until the last activity in the group finishes. Whether activities within a group can be processed simultaneously depends on the availability of the other resources and precedence relations.

The concept of spatial resources is important since such resources occur often in practice. One example is given by the ship building industry. The dry docks are the spatial resources and all activities involved in building one ship form a group. As soon as we start building a ship, a certain length of the dry dock is required. This part of the dry dock is occupied until the whole ship is finished, i.e., all activities of the group are completed. Other examples can be found in berth allocation in a container terminal, see Guan et al. (2002) and Lim (1998), shop floor spaces and
assembly areas, see Hess and Kolisch (2000) and Kolisch (2000), reconfigurable computing, see Fekete et al. (2006) and Steiger et al. (2004), and check-in desks at airports, see Duin and Van der Sluis (2006). The literature on the examples mentioned above, only consider special cases, in which spatial resources are considered exclusively and groups consist of only one activity. To the best of our knowledge there does not exists any literature on the general problem of project scheduling with spatial resources.

Besides the connection with scheduling, there is a connection with packing problems. However, since the problem is set in a scheduling background we have to consider things as precedence relations, release dates and deadlines. Therefore, general packing techniques cannot be applied. Hardly any literature concerns ordered packing, Fekete et al. (2006) is an exception.

In this paper we derive a decomposition approach for the Time-Constrained Project Scheduling Problem (TCPSP) with spatial resources. This approach first treats the assignment of the groups to the spatial resources and an ordering of the groups on them. Afterwards the timing of the activities and the remaining resources are treated. The presented approach forms a first attempt to solve the problem and the underlying basic structure of the approach may form the base of more elaborated methods.

The remainder of the paper is organized as follows. Section 2 gives a detailed problem description of the TCPSP with spatial resources, and it explains why existing solution methods fail in the presence of spatial resources. In Section 3 the developed decomposition method is presented. The decomposition leads to a Group Assignment Problem (GAP), for which an ILP formulation is given. After solving the GAP, we are left with an ordinary TCPSP. For the GAP an objective function has to be chosen such that the resulting TCPSP allows for high quality solutions. Section 4 presents different possible objective functions for the GAP. Section 5 concerns the computational experiments, in which a comparison is made between the quality of the solutions of the resulting TCPSP, when different objective functions for the GAP are used. Section 6 concludes this paper.

2. The Time-Constrained Project Scheduling Problem with Spatial Resources

In this section, we start by giving a detailed description of the Time-Constrained Project Scheduling Problem with spatial resources (TCPSP with spatial resources). Hereby, we only consider 1-dimensional spaces. At the end of this section, we discuss why existing solution methods for project scheduling problems fail on the extension with spatial resources, motivating the decomposition approach.

We are given a set A of n activities, i.e., $A = \{A_1, \ldots, A_n\}$. Each activity A_j has a release date r_j and a deadline d_j, and has to be scheduled without preemption between r_j and d_j for a duration p_j. The time horizon is divided into T time buckets, $t = 0, \ldots, T - 1$, where time bucket t represents the time interval $[t, t+1]$ and $T = \max d_j$. Thus, for activity A_j time bucket t_j is the first available, and $d_j - 1$ the last. We assume the time windows for each activity to be large enough to process the activity, i.e., $d_j - t_j \geq p_j$. For the processing of the activities there is a set R of renewable resources, $R = \{R_1, \ldots, R_K\}$ and a set S of spatial resources, $S = \{S_1, \ldots, S_L\}$, available. Each renewable resource $R_\kappa \in R$ has a capacity K_κ,t in time bucket t, and each spatial resource $S_\lambda \in S$ has capacity L_λ. The processing of the activities is restricted by precedence relations, which are given by sets $P_j \subset A$, denoting all direct predecessors of activity A_j. With each precedence relation $A_i \rightarrow A_j$ there is associated a non-negative time lag τ_{ij} indicating that there have to be at least τ_{ij} time buckets between the completion of activity A_i and the start of activity A_j. We assume w.l.o.g. that all release dates and deadlines of the activities are consistent with the precedence relations, meaning that $d_i + \tau_{ij} \leq r_j$ for all $A_i \in P_j$. Activity A_i has a resource requirement $q_{i\kappa}$ for renewable resource R_κ during its processing.

Additionally, we are given a set G of m groups, i.e., $G = \{G_1, \ldots, G_m\}$. A group $G_g \in G$ represents a subset of the activities ($G_g \subset A$) and has a spatial resource requirement of l_g adjacent units of
the spatial resource $\sigma(G_g) \in S$, which get occupied from the start of the first activity in G_g until the completion of the last activity in G_g. Note, that we restrict to the case that each group uses only one spatial resource.

In the considered model the spatial resources have fixed capacities which cannot be extended. However, we do allow an increase of the capacity of the renewable resources. Increasing the capacity of renewable resource R_κ in time bucket t by one unit, incurs a cost of $c_{\kappa t}$. The objective is to find a feasible assignment of groups to the spatial resource units, and at the same time a feasible schedule of activities on the renewable resources, such that the total costs of increasing the capacity of the renewable resources is minimized.

The fact that all time windows are large enough implies that there exist feasible solutions if the spatial resources are relaxed, since we can increase the capacity levels of the renewable resources. If we remove the spatial resources, and thereby also the notion of groups, we get the Time-Constrained Project Scheduling Problem, which is NP-hard, see Guldemond et al. (2006). Due to the spatial resources, which have fixed capacity and require an adjacent assignment, determining whether there exists a feasible schedule or not is already NP-complete. The problem of strip and bin packing, which are NP-hard (see Garey and Johnson (1979)), reduce to the feasibility question.

The TCPSP with spatial resources can be represented by an activity on node network, see Figure 1. Each node corresponds to an activity and each arc to a precedence relation. The activities within a circle form a group.

![Activity on node representation of the TCPSP with spatial resources.](image)

Most of the existing methods for project scheduling problems are constructive heuristics. However, including the assignment of the groups to the spatial resource units by a simple placement rule, is very unlikely to give a feasible solution. There are two reasons why such a sequential assignment may fail. Firstly, when starting a group, the completion time of this group is unknown and, therefore, it is not known to which time period the spatial resource units are occupied. Secondly, without looking ahead one might assign the groups in such a manner that the spatial resource, at a later point in time, becomes occupied in such a way that only small isolated parts of the resource are unoccupied. Therefore, groups with a bit larger spatial requirement cannot fit, and will be delayed. Therefore, a more global approach is needed when spatial resources are involved.

In the next section we present a decomposition approach that first assigns the groups to the spatial resources, such that the resulting problem, after this assignment, is an ordinary TCPSP for which solution methods exist.

3. Decomposition Approach

In this section, we present a decomposition approach for the TCPSP with spatial resources (which we refer to as the *original problem*) that separates the spatial resource assignment from the rest of the scheduling problem. We are going to determine an assignment of the groups to the spatial
resource units, and an ordering between the groups assigned to the same spatial resource units. We call this the Group Assignment Problem (GAP). The ordering is going to imply additional precedence relations in the original problem, such that the spatial resources do not have to be considered anymore. If groups \(G_g \) and \(G_h \) share a spatial resource unit, and \(G_g \) completes before \(G_h \) starts, all activities in \(G_g \) become predecessors of all activities in \(G_h \). We are left with an ordinary TCPSP, which we refer to as the resulting TCPSP. This decomposition allows the use of existing methods to solve the resulting TCPSP.

We define the GAP such that feasibility of the original problem only depends on feasibility of the GAP. The GAP has a solution if and only if the original problem has one. The solution of the GAP implies additional precedence relations, restricting the solution space of the resulting TCPSP. Therefore, the assignment of the groups to the spatial resource units should anticipate the implications of these additional precedence relations. We do this through the objective of the GAP.

In the following, we state the Group Assignment Problem (GAP), followed by an explanation of the parameters, why they are necessary, and how to derive them from the original problem.

For the GAP, we are given a set \(\mathcal{G} \) of groups, \(\mathcal{G} = \{G_1, \ldots, G_m\} \) and a set \(\mathcal{S} \) of spatial resources, \(\mathcal{S} = \{S_1, \ldots, S_l\} \). A spatial resource \(S_\lambda \) has a capacity of \(L_\lambda \) spatial resource units. Each group \(G_g \in \mathcal{G} \) has to be scheduled on \(l_g \) adjacent spatial resource units of \(\sigma(g) \in \mathcal{S} \), for a duration of at least \(d_{g}^{\min} \). Group \(G_g \) has to start between its earliest start time \((EST_g) \) and latest start time \((LST_g) \), and complete between its earliest completion time \((ECT_g) \) and latest completion time \((LCT_g) \). Whenever there is a precedence relation between two groups \(G_g \) and \(G_h \), i.e., \(G_g \in P_h \), there is a positive time lag \(\tau_{gh} \). This time lag implies that the start of group \(G_g \) is at least \(\tau_{gh} \) time units before the completion of group \(G_h \). A solution of the GAP is an assignment of the groups to the spatial resources, and a schedule of the groups that respect the time windows and the precedence constraints.

The parameters of the GAP have to be defined such that the GAP is feasible if and only if the TCPSP with spatial resource is feasible. Therefore, the minimum duration \(d_{g}^{\min} \) of a group \(G_g \) has to be chosen such that it is long enough to accommodate all the activities of group \(G_g \), if we relax the availability of the renewable resources. Furthermore, each pair of activities \((A_i, A_j) \) in group \(G_g \) that is connected by a directed path from \(A_i \) to \(A_j \) in the activity on node network, imposes a lower bound on the duration of the group \(G_g \). This lower bound equals the minimum time difference between the start of activity \(A_i \) and the completion of activity \(A_j \), satisfying the release dates, deadlines and time lags. We define \(d_{g}^{\min} \) to be equal to the maximum of all these lower bounds. If a group is scheduled for less than this minimum duration we lose feasibility of the resulting TCPSP, and on the other hand, if we schedule the group for at least \(d_{g}^{\min} \), in the resulting TCPSP a feasible schedule of the activities of the group exists.

The time lag \(\tau_{gh} \) between two groups \(G_g \) and \(G_h \) can be derived similarly. Whenever there is a directed path from an activity \(A_i \) in group \(G_g \) to an activity \(A_j \) in group \(G_h \) in the activity on node network, we can calculate the minimum time difference between the start of activity \(A_i \) and the completion of activity \(A_j \). The time lag \(\tau_{gh} \) is now the maximum of all these minimum differences. Note that the precedence relation is from a start to a completion time. A precedence relation states that \(G_g \) start at least \(\tau_{gh} \) time units before \(G_h \) completes. Again, if any of these precedence relations is violated we lose feasibility in the resulting TCPSP, and on the other hand, if we schedule according to the precedence relations, in the resulting TCPSP a feasible schedule of the activities exists.

The release dates and deadlines of the activities restrict the start and completion times for the groups. Since we assumed the release dates and deadlines to be consistent with the precedence relations of the activities, the earliest start time of group \(G_g \) \((EST_g) \) equals the minimum release date of the activities in \(G_g \). The latest start time of group \(G_g \) \((LST_g) \) equals the minimum of
the deadline minus the processing time of the activities, i.e., $LST_g = \min_{i \in G_g} d_i - p_i$. The latest completion time of group G_g (ECT_g) equals the maximum deadline of the activities in G_g, and the earliest completion time of group G_g (ECT_g) equals the maximum of the release dates plus the processing time of the activities, i.e., $ECT_g = \max_{i \in G_g} r_i + p_i$.

The GAP is NP-hard since it contains 2-dimensional bin packing as a special case. Nevertheless, we present an ILP formulation of the problem and use this to solve it to optimality, since the number of groups is very limited in most practical applications.

To model the GAP as an ILP, we employ in the dimension time and space a start and completion variable for each group. Variables s^g_{time} (s^g_{space}) and e^g_{time} (e^g_{space}) define the start and completion of group G_g in the dimension (time) (space). Feasible placement of the groups is controlled by the binary variables w_{gh}, v_{gh}, y_{gh} and x_{gh}. If groups G_g and G_h overlap in space, variable w_{gh} equals 1 and if groups G_g and G_h overlap in time v_{gh} equals 1. To get a feasible placement for any two groups G_g and G_h, not both w_{gh} and v_{gh} can be 1. Variables y_{gh} and x_{gh} have no interpretation, but only serve the modelling.

Now the GAP can be represented by the following ILP (directly followed by an explanation of the constraints):

$$\text{maximize:} \quad f(s^g_{time}, e^g_{time})$$

subject to:

$$\begin{align*}
s^g_{time} - s^g_{time} & \geq d^g_{min} & \forall G_g \in G \\
v^g_{time} - e^g_{time} & \geq \tau_{gh} & \forall G_h \in G, G_g \in P_h \\
e^g_{space} - s^g_{space} & = l_g & \forall G_g \in G \\
L_{\sigma(G_g)} \cdot (w_{gh} + y_{gh}) & \geq e^g_{space} - s^g_{space} & \forall G_g, G_h \in G, \sigma(G_g) = \sigma(G_h) \\
L_{\sigma(G_g)} \cdot (1 + w_{gh} - y_{gh}) & \geq e^g_{time} - s^g_{time} & \forall G_g, G_h \in G, \sigma(G_g) = \sigma(G_h) \\
T \cdot (v_{gh} + x_{gh}) & \geq e^g_{time} - s^g_{time} & \forall G_g, G_h \in G, \sigma(G_g) = \sigma(G_h) \\
T \cdot (1 + v_{gh} - x_{gh}) & \geq e^g_{time} - s^g_{time} & \forall G_g, G_h \in G, \sigma(G_g) = \sigma(G_h) \\
w_{gh} + v_{gh} & \leq 1 & \forall G_g \in G \\
LST_g & \in [EST_g, LST_g] & \forall G_g \in G \\
e^g_{time} & \in [ECT_g, LCT_g] & \forall G_g \in G \\
s^g_{space} & \in [0, L_{\sigma(G_g)} - l_g] & \forall G_g \in G \\
e^g_{space} & \in [l_g, L_{\sigma(G_g)}] & \forall G_g \in G \\
w_{gh}, v_{gh}, y_{gh}, x_{gh} & \in \{0, 1\} & \forall G_g, G_h \in G, \sigma(G_g) = \sigma(G_h)
\end{align*}$$

The objective function (1) is not needed to generate feasible solutions of the GAP, but is used later, to ensure that the resulting TCPSP has a good structure. Possible objective functions are discussed in the next section. Constraint (2) ensures that each group is scheduled for at least its minimum duration. Due to constraint (3), the time lags between the groups are satisfied. Constraint (4) defines the spatial requirement of the group. Constraints (5) to (9) manage the feasibility of the placement of the groups. Whenever two groups make use of the same spatial resource units, both right hand sides of (5) and (6) are strictly positive, and independently of the value of y_{gh} the value of w_{gh} has to be equal to 1. Note that the right hand sides of (5) and (6) are at most $L_{\sigma(G_g)}$. Whenever two groups do not make use of the same spatial resource units, exactly one of the right hand sides of (5) and (6) will be strictly positive. So with the right choice of y_{gh}, we can set $w_{gh} = 0$. Similarly, constraints (7) and (8) imply that if groups G_g and G_h overlap in time then the variable v_{gh} equals 1, and is unrestricted otherwise. Through constraint (9) not both v_{gh} and w_{gh} can equal 1, implying that no two groups overlap in time and space simultaneously. Thus, feasibility of the assignment is ensured. Finally, constraints (10) to (14) define the domain of the variables.
With this ILP formulation we can obtain a solution for the GAP. Having a solution of the GAP gives us for each group a start and a completion time, and the spatial resource assignment. One way to combine this solution with the resulting scheduling problem would be to impose the start and completion times of a group on the activities within that group. However, this would unnecessarily restrict the resulting scheduling problem. We only look at the order in which two groups \(G_g \) and \(G_h \) are assigned when they share a spatial resource unit. If group \(G_g \) completes before group \(G_h \) starts, all activities of group \(G_g \) complete before any activity of group \(G_h \) starts. This only implies precedence relations in the resulting scheduling problem, thereby restricting it less. More precisely, if groups \(G_g \) and \(G_h \) share a spatial resource unit and \(G_g \) completes before \(G_h \) starts, then all activities in group \(G_g \) become predecessors of all activities in group \(G_h \).

4. Objective functions for the GAP

Within the ILP formulation, presented in the previous section, there is still room to fill in the objective function. As stated before, the assignment of the groups should be such that the resulting TCPSP allows a high quality solution. In this section we present 5 different types of objective functions for the GAP. In each of these objective functions there is a weight \(W_g \) associated with each group \(G_g \). The weight of a group denotes the importance of having a long duration for this group. We consider 3 different types of weights, which, combined with the objective functions gives a total of 15 different combinations of weight and objective functions. The next section makes a comparison between these objective weight combinations.

First the different types of objective functions are discussed and second the different types of weights. The different types of objective functions are:

- maximize total weighted duration,
- maximize the minimum weighted flexibility on each spatial resource,
- minimize the weighted shortage of processing time,
- minimize the total weighted conflict,
- minimize the maximum weighted conflict on each spatial resource.

To have flexibility in scheduling an activity, the duration for which its group is scheduled should be large. So the most intuitive objective function for the GAP is \textit{maximize total weighted duration}, given by (15).

\[
\text{maximize : } \sum_{G_g \in \mathcal{G}} W_g \cdot (c_{g}^{time} - s_{g}^{time}) \tag{15}
\]

The objective \textit{maximize total weighted duration} (15) has the disadvantage that a group with a high weight can dominate other groups. As a result, groups with a slightly lower weight might get scheduled for their minimum duration. To overcome this problem we propose a second objective function. By expressing flexibility as \(\frac{c_{g}^{time} - s_{g}^{time}}{W_g} \), we get the objective function \textit{maximize the minimum flexibility on each spatial resource}, given by (16). Each group will have at least some flexibility relative to its weight.

\[
\text{maximize : } \sum_{S_\lambda \in \mathcal{S}, \sigma(G_g) = S_\lambda} \min_{s_{g}^{time}, c_{g}^{time}} \left(\frac{c_{g}^{time} - s_{g}^{time}}{W_g} \right) \tag{16}
\]

A second way to prevent that some groups get large durations, and thereby dominating the other groups, is to compare the scheduled duration with the total processing time of the activities within the group. Scheduling a group for a larger duration than the sum of the processing times of its activities is often unnecessary. Flexibility is required but not too much, so we measure the absolute difference between the scheduled duration of a group and the sum of the processing times of the
activities within this group. The objective function minimize the weighted shortage of processing time, given by (17), is therefore the third type of objective function.

\[
\text{minimize : } W_g \cdot \left| \sum_{A_i \in G_g} p_i - \left(c_{g}^{\text{time}} - s_{g}^{\text{time}} \right) \right| \sum_{A_i \in G_g} p_i \tag{17}
\]

Whenever two groups are allocated to the same spatial resource units we call them conflicting. Since conflicting groups imply precedence relations in the resulting TCPSP, the execution of these groups get related. When groups \(G_g\) and \(G_h\) are conflicting, and we take more time for the activities in group \(G_g\), when solving the resulting TCPSP, it reduces the time for scheduling the activities of group \(G_h\), and vice versa, see Figure 2.

![Figure 2](image-url)

Two groups in conflict.

We express the conflict between groups \(G_g\) and \(G_h\) by \(p_{gh}\). The duration of group \(G_g\) is bounded by the difference between the latest completion time (\(LCT_g\)) and the earliest start time (\(EST_g\)). The conflict is measured as the scheduled duration relative to the longest possible duration. So, for \(p_{gh}\) the following should hold:

\[
p_{gh} \geq \frac{(LCT_g - EST_g) \cdot w_{gh} - (c_{g}^{\text{time}} - s_{g}^{\text{time}})}{LCT_g - EST_g} \cdot W_g \quad \forall G_g, G_h \in \mathcal{G}, \sigma(G_g) = \sigma(G_h), \quad \tag{18}
\]

\[
p_{gh} \geq 0 \quad \forall G_g, G_h \in \mathcal{G}. \quad \tag{19}
\]

Whenever there is a conflict (\(w_{gh} = 1\)), the right hand side of (18) is positive. And if \(w_{gh} = 0\), then \(p_{gh}\) is only restricted by (19).

The last two types of objective functions for the GAP become minimize the total conflict (20) and minimize the maximum conflict on each spatial resource (21). When using these objective functions, constraints (18) and (19) have to be added to the ILP-formulation.

\[
\text{minimize : } \sum_{G_g, G_h \in \mathcal{G} | \sigma(G_g) = \sigma(G_h)} p_{gh} \quad \tag{20}
\]

\[
\text{minimize : } \sum_{S_\lambda \in S} \max_{G_g, G_h \in \mathcal{G} | \sigma(G_g) = \sigma(G_h) = S_\lambda} p_{gh} \quad \tag{21}
\]

The weights \(W_g\) can be determined in numerous ways. We present three of them. The first is simply putting all weights equal to 1. This is useful for the comparisons in Section 5, to determine whether the weights have effect.

\[
W_g = 1, \quad \forall G_g \in \mathcal{G} \quad \tag{22}
\]
The other two types of weights depend on the resource requirement of the activities within the groups. For groups with a high requirement of (one particular) renewable resource it may be good to have a larger duration. The total resource requirement \(q_{\kappa g} \) of a group \(G_g \) for renewable resource \(R_\kappa \) equals the sum of the total request of its activities for this resource, i.e., \(q_{\kappa g} = \sum_{A_i \in G_g} q_{\kappa i} \cdot p_i \).

If this amount is high relative to the availability \(K_{\kappa t} \), then the weight should be large as well.

The weights \(W_g \) for a group can be defined as the total resource requests relative to the resource capacity:

\[
W_g = \sum_{R_\kappa \in R} \frac{q_{\kappa g}}{\max_t K_{\kappa t}}, \quad \forall G_g \in \mathcal{G},
\]

or as the maximum of the resource requests relative to the resource capacity:

\[
W_g = \max_{R_\kappa \in R} \frac{q_{\kappa g}}{\max_t K_{\kappa t}}, \quad \forall G_g \in \mathcal{G}.
\]

5. Computational Experiments

This section describes the setup of the computational experiments and its results. The aim of this section is to show that the presented decomposition approach gives a flexible approach to handle the TCPSP with spatial resources. Since no solution methods for this problem were known and since also the possible relaxations of the problem (e.g., relaxing the adjacency constraints of the spatial resources) do not lead to useful lower bounds, we cannot judge the overall quality of the achieved solutions. However, we show that having the freedom to choose the objective function of the GAP gives us the possibility of achieving different solutions.

After generating instances for the TCPSP with spatial resources, we solve the corresponding GAP’s with the 15 different objective functions presented in Section 4, each leading to a different resulting TCPSP. After solving the resulting TCPSP’s, we are able to compare the effect of the different objective functions. For the generation of the instances we make use of the project generator ProGen, see Kolisch and Sprecher (1997a,b) and Kolisch et al. (1995), an instance generator for the RCPSP. The GAP’s are solved with CPLEX and the resulting TCPSP with a heuristic method from Guldemond et al. (2006).

5.1. Generating Instances

The instances of the TCPSP with spatial resources are generated in three steps. To construct an instance, we first generate a set of spatial resources with their capacities, and a set of groups with their spatial resource requirement and precedence relations. The precedence network and spatial resource availability and requirement are generated with ProGen. In the second step, we generate a set of renewable resources with their capacities, and for each group a set of activities with renewable resource requirements and precedence relations. Again, this is done with ProGen. In the final step, we convert the precedence relations between groups into precedence relations between activities of those groups. Whenever there is a precedence relation from group \(G_g \) to group \(G_h \), we add a precedence relation from a randomly selected activity from \(G_g \) to a randomly selected activity from \(G_h \). Figure 3 displays the three steps of generating an instance.

We define the release date of the project as 0 and also derive a deadline that applies to all activities. Let \(MP \) denote the minimum project length, which is defined by the longest path in the activity on node network, and let \(T \) denote the upper bound on the project length, \(T = \sum_{A_j \in A} p_j \).

Now define the project deadline as \(MP + 0.1(T - MP) \). Using these general release date and deadline, induced release dates and deadlines are derived by making them consistent with the precedence constraints.

Due to the adjacency requirements of the spatial resource, there is no guarantee there exist feasible solutions for the generated instances. However, after solving the GAP, infeasibility of an instance becomes clear and we remove these infeasible instances from our test set.
5.2. Solving the GAP

From each of the generated instances, we derive 15 different GAP’s, each with a different objective function and weight combination. The GAP instances are solved with CPLEX through the ILP formulation implemented in AIMMS. It turns out that even for instances with a small number of groups, the computational time can grow large. Therefore, we have to restrict ourself to instances with 7 groups and 1 spatial resource. We have looked at the solutions of the GAP’s and observed that the use of different objective functions results in solutions that are different in assignment and ordering. This means that the additional precedence relations implied by the GAP solutions are different and, therefore, also the resulting TCPSP’s are different. Thus, we can expect different solutions for the original problem.

5.3. Solving the resulting TCPSP

Each generated instance combined with the solution of the GAP, leads to a resulting TCPSP. We solve these TCPSP’s with the method from Guldemond et al. (2006). This is a two stage approach, in which first a feasible schedule is constructed with a randomized sampling technique, and than improved by a local search. We let the cost of increasing the capacity of a renewable resource by one unit in one time unit be 1, i.e., $c_{st} = 1$.

This method gives us a schedule of the activities which due to the precedence relations implied by the GAP, is still feasible for the spatial resources. The solution of the GAP and the solution of the resulting TCPSP together give a feasible solution of the TCPSP with spatial resources.

5.4. Comparing the different objective functions

We have generated 100 instances for the TCPSP with spatial resources. Together with the 15 different objective functions this gives 1500 instances for the GAP, each leading to a resulting TCPSP instance.

The instances are generated such that the spatial resources are rather tight to ensure that they play a role. As a consequence only 63 of the 100 instances generated turned out to have feasible solutions. In the remainder we only consider these 63 feasible instances.

Table 1 displays the average objective value for the resulting TCPSP with the different objective functions. Besides these values we also give the average of the best value per objective or per weight. More precisely, given an objective, we take the best of the solutions for the three weights and present the average of these values in the rightmost column. Given a weight, we take the best
Table 1 Average objective values of the resulting TCPSP

<table>
<thead>
<tr>
<th>Objective</th>
<th>Weight:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>all equal to 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximize total weighted duration</td>
<td>409.7</td>
<td>401.7</td>
<td>395.4</td>
<td>381.7</td>
</tr>
<tr>
<td>maximize the minimum weighted flexibility</td>
<td>418.7</td>
<td>401.8</td>
<td>402.6</td>
<td>379.1</td>
</tr>
<tr>
<td>minimize the weighted shortage of processing time</td>
<td>399.9</td>
<td>393.1</td>
<td>391.2</td>
<td>381.9</td>
</tr>
<tr>
<td>minimize the total weighted conflict</td>
<td>411.4</td>
<td>403.0</td>
<td>406.8</td>
<td>384.7</td>
</tr>
<tr>
<td>minimize the maximum weighted conflict</td>
<td>410.7</td>
<td>407.0</td>
<td>410.9</td>
<td>377.9</td>
</tr>
<tr>
<td>best</td>
<td>366.3</td>
<td>365.3</td>
<td>363.4</td>
<td>352.8</td>
</tr>
</tbody>
</table>

Table 2 Number of times it gives the best solution

<table>
<thead>
<tr>
<th>Objective</th>
<th>Weight:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>all equal to 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximize total weighted duration</td>
<td>12</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>maximize the minimum weighted flexibility</td>
<td>7</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>minimize the weighted shortage of processing time</td>
<td>15</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>minimize the total weighted conflict</td>
<td>9</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>minimize the maximum weighted conflict</td>
<td>14</td>
<td>9</td>
<td>14</td>
</tr>
</tbody>
</table>

of the solutions for the five objectives and present the averages of these values in the bottom row. The bottom right cell presents the average objective value, if we take for each instance the best found schedule. In Table 2, we present the number of times each objective weight combination gives the best found schedule.

From Table 1 we can conclude that there is no objective weight combination which is dominating the others by far. About the weights we can state the following. If we consider a fixed objective, the distinguished weights (column 2 and 3) are better than the equal weights (column 1). Although for some objectives these differences are quite large, the differences get smaller if we compare the best solutions found per weight (bottom row). So, taking weights dependent on the regular resources improves the quality of the schedules. Furthermore, we can conclude that we can use the weights to get different structured solutions of the problem.

Considering the objectives, no matter which weight is used, the objective minimize the weighted shortage of processing time has the best average objective values and differences are quite large. However, if we compare the best values of all weight functions (see rightmost column) almost all difference between the objectives disappears and minimize the weighted shortage of processing time is no longer the best.

Table 2 shows that each of the objective weight combinations gives a substantial number of times the best found solution. So, again no dominance is detected and using distinguished weights is slightly better.

The above results show that it is hard to predetermine a good objective for the GAP which gives the best results for all instances. Therefore, it is worth to generate not only one solution for the GAP, but to generate a few, and solve for each of them the corresponding TCPSP. To demonstrate this, we have combined two objective functions, meaning that we solve each instance twice and take the best solution. Combining maximize the minimum weighted flexibility and minimize the weighted shortage of processing time, both with weight maximum resource request, we get an average objective value of 373.1. Note that with two solutions we have closed almost half of the gap between best method (391.2) and the best with all methods (352.8). So, it pays to generate multiple solutions for each instance. Depending on the computational time available, the user can choose the number of solutions and the set of objectives and weights to generate the solutions.
6. Conclusions

The project scheduling problem with spatial resources could not be solved with existing methods, since the spatial resource units are required to be assigned in an adjacent manner. To be able to solve the problem a more global view is required. Therefore, we have developed a decomposition method for the TCPSP with spatial resources, which first determines a solution for the assignment of the groups to spatial resources. This solution of the group assignment problem (GAP) implies additional precedence relations such that we are left with an ordinary TCPSP. With the use of different objective functions in the GAP we try to anticipate the implications of the additional precedence relations for the resulting TCPSP.

With the presented decomposition approach, we can easily detect infeasibility in the first step or if the instance is feasible, we can construct solutions. The test results show no clear dominance among the presented GAP objective functions. However, it is shown that taking into account the regular resource requirement of the groups via weights in the objective function of the GAP, does help in finding good schedules. Finding good solutions by one specific objective remains problematic, but by taking combinations of objective functions the quality of the generated schedules improves significantly. The computational time of the GAP remains a drawback, it limits the number of groups that can be handled.

For future research it would be interesting to see under which conditions which objective function performs well, and to explore different methods to solve the GAP. Besides exploring a fixed objective, the presented decomposition can be the basis of a feedback between the GAP and the resulting TCPSP, where the outcome of the resulting TCPSP can influence the GAP objective before resolving. This may lead to a local search approach, where the weights and the different type of objectives of the GAP can be used as a solution space. Adapting the weights can be seen as some sort of intensification phase and the change of the objective as some sort of diversification phase of the search process. To make such an approach successful, the computational time for solving the GAP has to be reduced (e.g. by not solving it to optimality) and intelligent ways of changing the weights based on the outcome of the TCPSP have to be developed. Summarizing, the presented decomposition forms a first promising approach for the TCPSP with spatial resources and may form a good basis to develop better and more efficient methods.

To adapt the presented decomposition approach for the TCPSP with spatial resources to the RCPSP with spatial resources, requires quite some effort. Due to the fixed capacities of the regular resources in a RCPSP, it will be much more difficult to anticipate the effect of the additional precedence relations implied by the GAP solution. The start and completion times of a group in the GAP solution can differ a lot from final solution. On top of that one would like large group durations in the GAP solution, to have flexibility in scheduling the activities, and at the same time minimize the makespan. Clearly, these are conflicting objectives.

Acknowledgments

Part of this research has been funded by the Dutch BSIK/BRICKS project.

References

