EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

Memorandum 1977-07
Issued July 1977.

Discontinuities in the asymptotics of plane trees.

by

N.G. de Bruijn.

University of Technology
Department of Mathematics
P.O.Box 513, Eindhoven.
The Netherlands.
Discontinuities in the asymptotics of plane trees.

by

N.G. de Bruijn.

1. Introduction. Recently D.A. Klarner (Binghamton, N.Y.) proposed a question on the radius of convergence of the generating series for certain classes of trees. If T is a set of plane trees he considers the set $S(T)$ of all those plane trees of which no subtree belongs to T. Let $\rho(T)$ be the radius of convergence of the generating function of $S(T)$. His question was: if $T_1 \subset T_2, \ldots, \cup_{n=1}^{\infty} T_n = T$, does it follow that $\rho(T_n) \to \rho(T)$?

There are various possibilities for the definition of "subtree". In this note we take a simple definition (different from Klarner's), we study the ρ's and show that not necessarily $\rho_n(T) \to \rho(T)$ (section vi (ii)).

2. Definitions. Here we explain the various notions used in section 1. Rather than producing a formal definition of the kind of trees we consider, we give a list of the first few; under each tree we write the number of vertices:

```
  .   1
  |   2
  V   3
  \   4
```

(Some people would call these "planted plane trees with the roots cut off", or just "planted plane trees", others like to give a recursive definition and say: a tree is a root plus a (possibly empty) sequence of edges leaving from it, and on each edge we have grown a tree).

A subtree of a tree is obtained by taking a vertex of that tree plus everything above it. So the different subtrees of

```
  V
```

are V, \ldots, V.

If s is a subtree of t, and $s \neq t$ then s is called a proper subtree of t.

If t is a tree, then $n(t)$ denotes the number of vertices.

If T is a set of trees, then $f_T(x)$ is the power series
\[f_T(x) = \sum_{t \in T} x^n(t). \]

The radius of convergence is denoted by \(\rho(T) \) (possibly \(\rho(T) = \infty \)).

If \(T \) is a set of trees, then \(S(T) \) is the set of all trees \(s \) which do not have any \(t \in T \) as a subtree.

3. The partial order. We denote the set of all trees by \(W \). In \(W \) we take the partial order relation \(\leq \): we write \(s \leq t \) iff \(s \) is a subtree of \(t \). If \(T \subset W \), and \(t \in T \), then \(t \) is called a minimum of \(T \) if \(s \in T \) and \(s \leq t \) imply \(s = t \). If \(\text{min}(T) \) is the set of minima of \(T \), then \(\text{min}(T) \subset T \), and to every \(t \in T \) there is at least one \(s \in \text{min}(T) \) with \(s \leq t \). This easily follows from the fact that in every descending sequence of trees \(t_1 \geq t_2 \geq t_3 \geq \ldots \) the \(t_n \) is constant from a certain index onward.

It is clear that \(S(T) = S(\text{min}(T)) \).

If \(A \subset W \), and if \(A \) has the property that for all \(s \in A \), \(t \in W \) with \(t \leq s \) we have \(t \in A \) then \(A \) is called conservative. It is easy to see that \(A \) is conservative if and only if there is a \(T \) (\(T \subset W \)) with \(A = S(T) \). Moreover, if \(A \) is conservative we have \(A = S(W \setminus A) \).

A subset \(B \) of \(W \) can be written in the form \(B = \text{min}(T) \) with some \(T \), \(T \subset W \), if and only if \(B \) is an independence set, i.e., if never \(s \leq t \) with \(s \in B \), \(t \in B \), \(s \neq t \).

4. The generating functions.

Theorem. If \(T \) is an independence set, we have (coefficientwise)

\[f_{S(T)}(x) + f_T(x) = x + xf_{S(T)}(x) + x(f_{S(T)}(x))^2 + \ldots \quad (4.1) \]

Proof. As \(S(T) \) and \(T \) are disjoint, we have, on the left, the generating function of \(S(T) \cup T \). This can be described as the set of all trees of which no proper subtree lies in \(T \). We can partition \(S(T) \cup T \) in a second way, where one part consists of the one-vertex tree only, and, for \(n = 1, 2, \ldots \), the \(n \)-th part consists of all trees where \(n \) edges leave the root and where on the endpoint of each edge there grows one of the trees of \(S(T) \). This partition corresponds to the right-hand side.

5. Convergence and analyticity. Formula (4.1) was intended as a formal relation between power series with positive coefficients. But as the series on the left is dominated by \(f_W(x) \), and since it is not hard to show that the number of trees with \(n \) vertices is \(\leq 4^n \), the series in (4.1) converge at least for \(|x| < \frac{1}{4} \).
A theorem of Pringsheim says that if \(p \) is the radius of convergence of a power series with non-negative coefficients, and if \(0 < p < \infty \), then the sum of the series has a singularity at \(x = p \). Now let \(\rho_1 \) and \(\rho_2 \) be the radii of \(f_{S(T)} \) and \(f_T \), respectively; so \(0 < \rho_1 \leq \infty \), \(0 < \rho_2 \leq \infty \). For a small positive value of \(x \) we can solve \(f_{S(T)} \) from (4.1):

\[
f_{S(T)}(x) = \frac{1}{2} (1 - f_T(x)) - \frac{1}{2} \sqrt{(1 + f_T(x))^2 - 4x}.
\]

(5.1)

Observing \(f_T(x) \) on the interval \(0 \leq x \leq \rho_2 \), we see three cases:

(i) \((1 + f_T(x))^2 > 4x \) \((0 \leq x < \rho_2)\). Now \(f_{S(T)} \) is analytic on that segment, and we infer that \(\rho_1 \geq \rho_2 \).

(ii) \((1 + f_T(x))^2 > 4x \) \((0 \leq x < c)\) and \((1 + f_T(c))^2 = 4c\),

\[
2f_T'(c)(1 + f_T(c)) = 4
\]

for some \(c \) with \(0 < c < \rho_2 \). We can now argue that \(f_T(x) \) is still analytic at \(c \). Noting that \(f_T'(x) \) has non-negative coefficients we derive that \((1 + f_T(x))^2 > 4x \) \((c < x < \rho_2)\). Our conclusion is again that \(\rho_1 \geq \rho_2 \).

(iii) \((1 + f_T(x))^2 > 4x \) for some interval \(0 \leq x < c \) with \(0 < c < \rho_2 \), and \((1 + f_T(x))^2 < 4x \) for all \(x \) in some interval \(c < x < c' \). Now \(f_{S(T)} \) has its first singularity at \(c \), whence \(\rho_1 = c \).

6. Applications. (i) If \(T \) is taken to be empty then \(S(T) = W \). We are in case (iii) of section 5, with \(c = \frac{1}{4} \), and by (5.1), we get the well-known formula

\[
f_W(x) = \frac{1}{2} - \frac{1}{2} (1 - 4x)^{\frac{1}{2}} = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{2^{n-2}}{n-1} \right) x^n.
\]

(ii) We define the trees

\[
a_1 = |, \quad a_2 = \lor, \quad a_3 = \lor, \ldots
\]

and the sets \(T_n = \{a_1, \ldots, a_n\} \), \(T = \{a_1, a_2, \ldots\} \). For every \(n \), the set \(T_n \) is an independence set. We have

\[
f_T(x) = x^2 + x^3 + \ldots = x^2 (1-x)^{-1},
\]

and the funny identity

\[
(1 + x^2 (1-x)^{-1})^2 - 4x = ((1 - 3x + x^2)/(1-x))^2.
\]

So \(\rho_2 = 1 \) and \(\rho_1 \geq 1 \) (section 5, case (ii)). Actually we get \(\rho_1 = \infty \), since \(f_{S(T)}(x) = x \) by (5.1). The number \(c \) where \((1 + f_T(c))^2 = 4c\) is the positive
solution of \(x^2 - 3x + 1 = 0 \), i.e. \(\frac{1}{2}(3 - \sqrt{5}) = -0.381966 \) (it is the square of the golden ratio number \(\frac{1}{2}(-1 + \sqrt{5}) \)).

If we replace \(x^2 + x^3 + \cdots \) by its truncation \(x^2 + x^3 + \cdots + x^n \), it is easy to see that we get case (iii) of section 5, with a value of \(c \) that tends to \(\frac{1}{2}(3 - \sqrt{5}) \) as \(n \) tends to infinity. So with the notation of section 1 we have

\[
\rho(T_n) + \frac{1}{2}(3 - \sqrt{5}), \quad \rho(T) = \infty .
\]

It is not hard to see what the elements of \(S(T_n) \) look like. Apart from the one-vertex tree they might be called "brushy trees" : we get them from an arbitrary tree if we grow on each end-point a new tree, taken from the collection \(a_{n+1}, a_{n+2}, \ldots \). The set \(S(T) \), however, consists of the one-vertex tree only.

(iii) The following example just serves as a further illustration to the contents of sections 3 and 4. We start from a conservative set \(A \), viz. \(A = \{b_1, b_2, \ldots \} \), where

\[
b_1 = \, , \quad b_2 = \, , \quad b_3 = \, , \, \ldots \ .
\]

By section 3 we have \(A = S(W \setminus A) = S(\min(W \setminus A)) \). If \(T \) is defined as \(\min(W \setminus A) \), we have by (4.1)

\[
f_T(x) = \frac{x}{1-x} - x(1 - \frac{x}{1-x})^{-2} = \frac{x^3}{(1-x)(1-2x)} = \]

\[
= x^3 + 3x^4 + 7x^5 + 15x^6 + 31x^7 \ldots \ .
\]

What is \(T \)? If \(t \in T \) then \(t \) is minimal in \(W \setminus A \), i.e. \(t \) itself is not in \(A \) but every proper subtree of \(t \) is in \(A \). So \(t \) looks like this

```
  __
 / \   \  
|   |   |
```

with at least 2 edges leaving the root. The number of such trees with \(n+1 \) points equals the number of solutions of \(u_1 + \ldots + u_k = n \) in positive integers \(u_1, \ldots, u_k \) with \(k > 1 \). This number equals \(2^{n-1} - 1 \) indeed.