Some auxiliary operators in AUT-PI

de Bruijn, N.G.

Published: 01/01/1977

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

Citation for published version (APA):
EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

Issued November 1977.

SOME AUXILIARY OPERATORS IN AUT-II.

by

N.G. de Bruijn.

University of Technology
Department of Mathematics
P.O.Box 513 Eindhoven.
The Netherlands.
SOME AUXILIARY OPERATORS IN AUT-π.

by

N.G. de Bruijn.

For AUT-π we refer to Zucker [2]. If we omit all those features that the languages of the AUTOMATH family have in common (cf. the description of AUT-QE in D. van Daalen [1]), the basic rules are the following (i) - (vii). Two simplifications are made here. First, we use a symbol τ which may be either type or prop. Secondly, we omit all \Pi's in expressions of degree 1, which does not make any essential difference. And we use the notation \((x : α) \vdash \) in order to indicate that something is valid in the context extended by \(x\) (of type \(α\)). As in [1], \([x/A]\%\) means that in \(Z\) we have to replace \(x\) by \(A\).

The rules are

(i) \[\perp_\tau \]

(ii) \[\vdash α : τ (x : α) \vdash P \]

\[\vdash [x : α] P \]

(iii) \[\vdash α : τ (x : α) \vdash Q : P \]

\[\vdash [x : α] Q : [x : α] P \]

(iv) \[\vdash A : α : τ \vdash Q : [x : α] P \]

\[\vdash [A] Q : [x/A] P \]

(v) \[\vdash α : τ \vdash Q : [x : α] τ \]

\[\vdash [x : α] Q : τ \]

(vi) \[\vdash α : τ (x : α) \vdash R : Q : τ \]

\[\vdash [x : α] R : [x : α] Q \]

(vii) \[\vdash A : α : τ \vdash R : [x : α] Q \]

\[\vdash [A] R : \{A\} Q \]

We shall now define operators \(e_1, e_2, \ldots, e_m\) acting on Q's with
The symbols are metalinguistic: $\theta_j Q$ is used in the metalanguage to indicate a certain expression in the language, viz.

$$\theta_1 Q = [x_1: \alpha_1] \ldots [x_m: \alpha_m] \Pi [x_{m-1}: \alpha_{m-1}] [x_{m-2}: \ldots [x_1] Q$$

$$\theta_2 Q = [x_1: \alpha_1] \ldots [x_{m-2}: \alpha_{m-2}] \Pi [x_{m-1}: \alpha_{m-1}] \Pi [x_{m-2}: \ldots [x_1] Q$$

$$\theta_{m - 1} Q = [x_1: \alpha_1] \Pi [x_2: \alpha_2] \Pi \ldots [x_{m-1}: \alpha_{m-1}] \Pi [x_{m-2}: \ldots [x_1] Q$$

$$\theta_m Q = \Pi [x_1: \alpha_1] \Pi [x_2: \alpha_2] \Pi \ldots [x_{m-1}: \alpha_{m-1}] \Pi [x_{m-2}: \ldots [x_1] Q$$

Note that θ_j is built by starting from the expression just given for $\theta_1 Q$ and then omitting the first $m - j$ Π's. If $m = 1$ we just have $\theta_1 Q = \Pi Q$. If $m = 2$ then $\theta_1 Q = [x_1: \alpha_1] \Pi [x_1] Q$ and $\theta_2 Q = [x_1: \alpha_1] \Pi [x_1] Q$. If $m = 0$ none of the θ_j's are defined.

We can now prove the validity of a new rule, viz:

\begin{equation}
\tag{viii}
(\forall \alpha: \tau \quad [x_1: \alpha_1] \ldots [x_m: \alpha_m] \tau
\end{equation}

$$\quad [x_1: \alpha_1] \ldots [x_m: \alpha_m] \tau$$

$$\quad [x_1: \alpha_1] \ldots [x_m: \alpha_m] \tau$$

for $1 \leq j \leq m$. If $j = m - 1$ it is just the old rule (v).

For shortness we shall write $[x_i]$ and (x_i) instead of $[x_i: \alpha_i]$ and $(x_i: \alpha_i)$.

Let us start from

$$\quad [x_1: \alpha_1] \ldots [x_m] \tau$$

Applying (iv) we get

$$(x_1) [x_1] Q : [x_1] \ldots [x_m] \tau$$

and $m - 2$ more applications of the same rule leads to

$$(x_1 \ldots (x_{m-1}) [x_m] \ldots [x_1] Q : [x_m] \tau$$

Next we apply (v):

$$(x_1 \ldots (x_{m-1}) \Pi [x_{m-1}] \ldots [x_1] Q : \tau$$
and by (iii) this gives

\[(x_1)\ldots(x_{m-2}) \overset{\beta}{\to} [x_{m-1}] \Pi \{x_{m-1}\} \ldots \{x_1\} Q : [x_{m-2}] \tau\]

(2)

Now \(m-2\) further applications of (iii) gives

\[\overset{\beta}{\theta}_1 Q : [x_1] \ldots [x_{m-1}] \tau\]

On the other hand, if we apply (v) to (2) followed by a single application of (iii) we get

\[(x_1)\ldots(x_{m-3}) \overset{\beta}{\to} [x_{m-2}] \Pi [x_{m-1}] \Pi \{x_{m-1}\} \ldots \{x_1\} Q : [x_{m-2}] \tau\]

(3)

Now \(m-3\) more applications of (iii) lead to

\[\overset{\beta}{\theta}_2 Q : [x_1] \ldots [x_{m-2}] \tau\]

On the other hand, if we apply (v) followed by (iii) to (3) we get

\[(x_1)\ldots(x_{m-4}) \overset{\beta}{\to} [x_{m-3}] \Pi [x_{m-2}] \Pi [x_{m-1}] \Pi \{x_{m-1}\} \ldots \{x_1\} Q : [x_{m-3}] \tau\]

This way we get, indeed

\[\overset{\beta}{\theta}_j Q : [x_1] \ldots [x_{m-j}] \tau\]

(4)

for all \(j\) (1 \(\leq j \leq m\)).

We shall also show that \(\theta_i \theta_j \overset{\beta}{\to} \theta_{i+j} \). More precisely, if \(\overset{\beta}{\theta} Q : [x_1 : \alpha_1] \ldots [x_m : \alpha_m] \tau\), and if \(i \geq 1, j \geq 1, i+j \leq m\), then \(\theta_i \theta_j Q\) reduces to \(\theta_{i+j} Q\) by means of repeated \(\beta\)-reduction. First we have (4), i.e.

\[\overset{\beta}{\theta} [x_1] \ldots [x_{m-j}] \Pi [x_{m-j+1}] \Pi \ldots \Pi [x_{m-1}] \Pi \{x_{m-1}\} \ldots \{x_1\} Q : [x_1] \ldots [x_{m-j}] \tau\]

Applying \(\theta_1\) to this we get

\[\overset{\beta}{\theta}_1 \theta_j Q : [x_1] \ldots [x_{m-j-1}] \tau\]

and
The sequence \(\{y_{m-j}\} \ldots \{y_1\} \{x_{m-j}\} \ldots \{x_1\} Q \) is annihilated by \(m \) applications of \(\beta \)-reduction. After that, we change the names \(y_1, \ldots, y_{m-j-1} \) into \(x_1, \ldots, x_{m-j-1} \), thus arriving at \(\theta_{i+j} Q \).

Above we extended rule (v) to rule (viii). Similarly, we shall extend rule (vii) to the following rule (ix) for \(m \geq 1 \):

\[
(xix) \quad \vdash A : \alpha_i, \quad \vdash R : \theta_{m-1} Q, \quad \vdash Q : [x_1 : \alpha_1] \ldots [x_m : \alpha_m] \tau
\]

\[\vdash [A] R : \{A\} \theta_{m-1} Q\]

If \(m=1 \) we have \(\theta_m Q = \Pi Q \), and \(\theta_{m-1} Q \) has to be explained as \(Q \) itself (\(\theta_0 \) was not defined before).

Rule (ix) is not hard to derive. Noting that \(\theta_m Q = \Pi \theta_{m-1} Q \), and \(\vdash Q : [x_1 : \alpha_1] \tau \) by (viii), we can apply (vii) with \(Q \) replaced by \(\theta_{m-1} Q \), which leads to \(\vdash [A] R : \{A\} \theta_{m-1} Q \).

We note that in all rules, formulas of the type \(\vdash R : Q \) lead to \(\vdash Q : \tau \). Indeed, in (vi) we have \(\vdash \Pi [x : \alpha] Q : \tau \) by (v), and in (ix) we have \(\vdash [A] \theta_{m-1} Q : \tau \) by (iv), according to the typing of \(\theta_{m-1} Q \) just derived.

Instead of the lower kind of (ix) we may as well get

\[
\vdash [A] R : \theta_{m-1} \{A\} Q
\]

since \(\{A\} \theta_{m-1} Q \) reduces to \(\theta_{m-1} \{A\} Q \) by a single beta reduction.

More generally, we observe that

\[
\{A\} \theta_j Q \text{ reduces to } \theta_j \{A\} Q
\]

by a single beta reduction if \(j < m \).

The symbols \(\theta_j \) also commute with abstraction: if

\[
\vdash Q : [x_1 : \alpha_1] \ldots [x_m : \alpha_m] \tau
\]

then

\[
[y : \beta] \theta_j Q \text{ reduces to } \theta_j [y : \beta] Q
\]

if \(j < m \).

These observations mean that in composite expressions like

\[
\{ \ldots \theta_i [\ldots \theta_j \{ \ldots \theta_k [] \ldots Q \text{ the } \theta's \text{ may all be shifted to the extreme left.}
\]
References:
