High resolution sheet resistance mapping to unveil edge effects in industrial IBC Solar Cells

Published in:
Energy Procedia

Document license:
CC BY-NC-ND

DOI:
10.1016/j.egypro.2016.07.062

Published: 01/01/2016

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 02. Jan. 2019
High resolution sheet resistance mapping to unveil edge effects in industrial IBC solar cells

Pierpaolo Spinelli*a, Pi Danzl*a, Nicolas Guillevin*a, Agnes Mewe*a, Simon Sawallich*b, Ard Vlooswijk*c, Bas van de Loo*d, Erwin Kessels*d, Michael Nagel*b, Ilkay Cesar*a

aEnergy Research Centre of the Netherlands (ECN), Westerdauinweg 3, 1755LE Petten, The Netherlands
bProtemics GmbH, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
cTempress Systems B.V., Radeweg 31, 8171 MD Vaassen, The Netherlands
dEindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We present Terahertz (THz) transmission measurements with a spatial resolution of down to 10 μm as a new inspection technique for high-resolution sheet resistance (Rs) measurements, that are well suited to quantify the local Rs (n-type and p-type regions) of interdigitated back-contact (IBC) structures and to support further optimization of our IBC cells. Using this technique, we investigated the homogeneity of the emitter of our IBC cells. We have greatly improved the Rs homogeneity of the boron diffusion. Moreover, we compared THz mapping with standard four point probe (4pp) technique. While the 4pp measurement showed a homogeneous mapping, the THz could unveil elevated Rs near the very edge of the wafer. Higher Rs of the surface doping can result in higher J0 at the metal contact regions (J0,contact). A local Voc mapping technique was used and it was found that the local Voc at the wafer edge was lowered by 17 mV compared to the centre in the most extreme case. We estimate that an improved edge doping could result in a performance gain of at least 0.2% absolute, excluding FF and Jsc benefits.

In summary we show that THz mapping is a powerful method in determining inhomogeneities and can aid in the development of diffused-junction IBC solar cells.

© 2016 The Authors. Published by Elsevier Ltd. Peer review by the scientific conference committee of SiliconPV 2016 under responsibility of PSE AG.

Keywords: IBC solar cells; sheet resistance; Terahertz transmission

* Corresponding author. Tel.: +31 885154697.
E-mail address: spinelli@ecn.nl

Available online at www.sciencedirect.com
1. Mercury IBC cells at ECN

The Mercury cell developed at ECN is an IBC solar cell with a Front Floating Emitter (FFE). While IBC cell technology has been demonstrated ideal for high-efficiency solar cells [1] due to the absence of optical shading losses from front metallization, cost effective production of these devices is still challenging. The presence of electrical shading [2] limits the choice of back surface field (BSF) width to less than 0.4 mm, which in turn poses severe limitations on patterning and metallization tolerances.

The use of a FFE gives the IBC cell characteristics that are radically different from a front surface field (FSF) cells [3,4]. One main feature of the FFE is that it enables the so called “pumping effect” that creates a lateral flow of holes in the FFE from areas above the BSF to areas above the emitter. Holes are therefore injected into the base and collected by the rear emitter [5]. This overall has the effect of strongly mitigating electrical shading above the BSF compared to FSF cells. Because of the pumping effect, the BSF regions can be made wider than in FSF cells without sacrificing photocurrent. This allows lower resolution processing (e.g. standard screen printing), improves manufacturability and reduces the losses due to BSF busbars. In addition the FFE allows to widen the BSF area for busbar and pads for soldering tabs or interconnection to a conductive back sheet foil through a conductive adhesive. Figure 1 shows a schematic of the Mercury cell developed at ECN.

Mercury cells of 156x156 mm² were processed at ECN on semi-square n-Cz wafers using the same process equipment as our industrial n-Pasha cell process [6]. Screen printed metallization was used and an isolation gap between rear emitter and BSF was omitted mainly for process simplicity. On 6-inch cells we obtained a best cell efficiency of 21.1% (full size illumination) as shown in Table 1.

```
Table 1. Best cell IV parameters for Mercury IBC solar cell

<table>
<thead>
<tr>
<th>Area</th>
<th>Jsc</th>
<th>Voc</th>
<th>FF</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>239 cm²</td>
<td>41.2 mA/cm²</td>
<td>653 mV</td>
<td>78.4%</td>
<td>21.1%</td>
</tr>
</tbody>
</table>
```

2. THz R_{ab} mapping method

Sheet resistance (R_{ab}) mapping is of great importance to characterize the homogeneity and doping levels of doped regions in solar cells. Usually four point probe (4pp) measurements are used to measure R_{ab}. However, this method lacks the resolution required for a detailed inspection of Interdigitated Back Contact (IBC) cells with sub-millimeter features.

THz transmission near-field imaging is a recently introduced inspection method for high-resolution large-area sheet resistance quantification [7]. Sheet resistance measurements with a high spatial resolution of a few μm are of general importance for the inspection of IBC cells in order to distinguish the fine patterning of the diffusions at the cell’s rear side. Such measurements allow monitoring the accuracy of the patterning process, and help to avoid undesirable – and otherwise hardly detectable – local defects due to high contact resistance, or spiking through the diffusion during firing.
Fig. 2. a) Schematic of the THz near-field setup, and b) of the THz transmission amplitude reduction.

Measurements were performed in a THz transmission setup based on a pump/probe scheme, using broadband THz pulses. As described in an earlier publication [8], sub-wavelength spatial resolution is achieved by using a near-field microprobe (TeraSpike TD-800-X-HR, Protemics GmbH) for photo-conductive THz detection which is scanned across the investigated IBC cell in a distance of few tens of microns. The setup is schematically depicted in Fig. 2 (a), showing also a blow-up of the microprobe-tip.

The sheet resistance R_{sh} of a thin conductive layer on top of a substrate is calculated from the measured THz transmission amplitude reduction generated by the doping layer [9] using the Tinkham formula [10]:

$$\left(\frac{n+1}{z_0 E_{SL}^{ref}} E_{SL} \frac{1}{Z_0} \left[1 + \frac{Z_0}{R_{sh}^{ref}(n+1)} \right] - 1 \right)$$

E_{SL} represents the transmitted THz field amplitude through the sample with conductive layer. The superscript i indicates a position $i(x,z)$ anywhere on the sample, while the superscript ref indicates a position on a reference area on the sample with known R_{sh}. Further constants are the substrate refractive index n and the free-space impedance Z_0. The method can also take into account a second conductive layer on the other side of the cell (e.g. an FFE) if either the sheet resistance of this layer or its behavior in respect to the rear R_{sh} is known.

3. THz mapping of interdigitated diffused structures

In order to show the advantages of THz transmission measurements, we compared two emitters used for the boron doped regions of IBC cells. The emitters were obtained with different boron diffusion recipes, and subsequent etching for R_{sh} tuning. First, we used a standard 4pp measurement (in a ShereScan device) to compare the two emitters. Figures 3(a-b) show 4pp R_{sh} maps of the emitters obtained with the two recipes. The maps were measured on the FFE of full-area IBC cells. The rear-side diffused IBC structures could be measured because of the limited 4pp resolution. From the maps it is clear that recipe 2 (b) improves the B diffusion homogeneity over the entire wafer with respect to recipe 1 (a). While recipe 2 looks very homogeneous over the entire wafer, it was not possible to measure R_{sh} up to the very edge of the wafer without distortions due to a distorted current path of the 4pp measurement. For this reason, the data points at the edge of the maps in Fig. 3a and 3b were measured 11 mm from the wafer edge.

Next, we used a THz tool to measure diffused IBC cells obtained with the two diffusion recipes. Before the THz measurement, the cells were stripped of the metal contact by means of wet etching in a H$_3$PO$_4$/HNO$_3$ solution. Since front and rear emitter are the same, we could measure fully diffused wafers and use the 2-layer approach. Figure
3(c) and (d) show \(R_{sh} \) maps of IBC cells with diffusion 1 and 2, respectively, measured with a THz tool. The \(R_{sh} \) maps clearly resolve the interdigitated fingers of the IBC cell (see also inset in fig. 3(f)). The areas with higher \(R_{sh} \) (warm colors) correspond to emitter fingers, while lower \(R_{sh} \) (cold colors) is measured on the BSF fingers. Note that for recipe 1 the THz \(R_{sh} \) map of the emitter part matches very closely the 4pp map on the unpatterned wafer, over the entire wafer area. However, the THz map of recipe 2 shows a non-uniform region very close (less than 2 cm) to the wafer edge. We have checked on a cleaved wafer that this is not an artefact of the measurement. Fig. 3(c) and (f) show line scans taken from the maps of (c) and (d), respectively. The boron diffusion recipe 1 creates large non-uniformities in \(R_{sh} \) in an area between 4 and 6 cm from the edge of the wafer. The \(R_{sh} \) at the very edge of the wafer reaches values up to 150 \(\Omega/\text{sq} \), compared to an \(R_{sh} \) of 72 \(\Omega/\text{sq} \) at the centre of the wafer. Recipe 2, on the other hand, creates \(p^+ \) Si with a more uniform profile, with an \(R_{sh} \) of 85 \(\Omega/\text{sq} \) over large part of the wafer. The \(R_{sh} \) however increases to 100 \(\Omega/\text{sq} \) in proximity of the edge of the cell.

Fig. 3. (a-b) 4pp (Sherescan) maps of 2 diffusion recipes; (c-d) THz \(R_{sh} \) maps; (e-f) line scans from THz maps.

Overall, Figure 3 shows that THz maps introduce two main advantages over 4pp maps. First, the \(R_{sh} \) maps have a much higher resolution, which allows studying real IBC cell structures. They can be measured on cell half-fabricates, or on complete cells after stripping the rear-side metallization (this approach was used for the data in Fig. 2c and d). Second, \(R_{sh} \) can be measured up to the very edge of the wafer, and thus inhomogeneities can be detected much closer to the edge of the wafer. As we will show in the next paragraph, these inhomogeneity can have important effects on the cell performance, such as a lower \(V_{oc} \) due to higher metal contact region recombination.

Note that the THz transmission \(R_{sh} \) mapping measurement can also be done on metallized samples. Figure 4(a) shows a picture of the THz setup with a metallized IBC sample mounted for measurement. Figure 4(b) shows the measured THz map on the same sample. As can be seen, the emitter and BSF diffused fingers can be clearly resolved as well as the metallized parts, which appear as low \(R_{sh} \) values due to the fact that metals efficiently block the THz radiation.
4. \(V_{oc}\) mapping method and edge effects

In order to study the effect of the higher \(R_{sh}\) at the edge of the wafer we developed a technique which allows mapping of the \(V_{oc}\) over the area of the cell using a SunsVoc tool. The IBC cell was illuminated at the rear side while the \(V_{oc}\) was measured by contacting 2 contact pads of different polarities with metal pins. We probed different pairs of contact pads, both at the centre as well as at the edge of the cell. Figure 5 (a) shows a map of the rear side of the Mercury IBC cell where the contacting points are shown as green and red dots, representing the two polarities. In total, 22 pairs of pads were measured, which are identified by the numbers (measurement ID) shown in Fig. 5(a). For each of these measurements, the \(V_{oc}\) and pFF were recorded. In this paper we focus on \(V_{oc}\) effects only.

Figure 3b shows the measured \(V_{oc}\) at the centre (measurement ID = 6-17) and at the edges of the completed IBC FFE cell (measurement ID = 1-5, 18-22). Results are shown for Diffusion 1 (blue) and Diffusion 2 (purple). First, we observe a 15 mV improvement in \(V_{oc}\) for recipe 2 with respect to recipe 1. It was shown before that this \(V_{oc}\) difference is largely due to rear-side pn-junction recombination in recipe 1, which is solved with recipe 2 and resulted in an absolute 1% gain in efficiency [2].

While the overall \(V_{oc}\) is increased for recipe 2, we also note that the \(V_{oc}\) measured at the edge of the wafer is lower than that of the centre. For recipe 1, the \(V_{oc}\) variation between centre and edge is about 10 mV, but the overall \(V_{oc}\) level is low due to pn-junction recombination. For the better performing recipe 2 however, the edge \(V_{oc}\) drop is even more significant (17 mV). We have checked that the drop of \(V_{oc}\) at the edge is neither due to pn-junction recombination nor due to the presence of a FFE. Interestingly, the lower \(V_{oc}\) corresponds to the higher \(R_{sh}\) near the edge, which could only be observed with THz mapping.
In order to confirm the SunsVoc results (which could be influenced by the lamp homogeneity), we performed one Sun I-V measurements on different areas of the cells in a Wacom solar simulator. By isolating the area shown in blue (yellow) in Fig. 5 (a) we could measure the I-V parameters of the cell when only the edge (centre) region is contacted. The fully-contacted cell case was also measured for completeness. Figure 5(c) shows the Voc as measured by one Sun I-V measurement. Data are shown for Diffusion 1 (blue) and 2 (purple). The Voc variations between the edges and the centre measured in the SunsVoc are confirmed one Sun I-V measurements. Note that the full-area Voc (first column) is lower than the Voc measured at the centre (second column). A difference of 6 mV is found for the best performing recipe (purple color). Therefore, this analysis shows that by improving the Voc at the edge there is a further potential gain in absolute efficiency of at least 0.2% (not considering FF and J_sc effects) for the best performing diffusion diffusion recipe.

The lower Voc at the edges can be explained by the emitter doping variations which were identified with THz R_sh mapping. It is well known that the recombination prefactor for the metal contacts J_0,metal is given by

\[J_{0,\text{metal}} = q D_{h/e} \int_0^w W - \frac{n_{\text{eff}}}{N_{D/A}} d x \]

with \(q \) the elementary charge, \(D_{h/e} \) the diffusion constant for electrons or holes, \(N_{D/A} \) the doping level of donors or acceptors respectively, \(W \) the base side edge of the doped region and \(n_{\text{eff}} \) the effective intrinsic carrier concentration. If the doping concentration is high (as shown by the schematics in Fig. 6(a)), the highly doped region near the contact effectively shields the minority carriers from the recombination active region of the metal. In regions where the doping is lower (which also results in the higher sheet resistance, see Fig. 6(b)), the charge carrier recombination at the metal contact is increased [11]. Assuming a similar etch depth (black vertical line) of the screen printed paste in the different regions of the cell, the higher doping concentration of the profile at the centre will yield a better screening effect and thus reduce contact recombination. This hypothesis thus explains well the Voc variations observed on cell level between centre and edge.

![Fig. 6. Schematics of regions of the cell with high (left) and low (right) emitter doping, corresponding to regions of low and high R_sh, respectively.](image)

5. Conclusion

We have presented a new method to make R_sh maps of solar cells with a much higher resolution than standard 4-point-probe methods. The new method is based on THz transmission through a doped wafer, and is particularly suited to measure R_sh of interdigitated diffusions, featuring small structures. Using THz transmission measurements we were able to unveil edge effects in industrial IBC cells which were not detectable before with standard 4pp measurements. The THz method allowed to detect more lightly doped edge regions which caused higher contact recombination and thus a lower Voc at the edges. Improving the lower Voc at the edges can result in a 0.2% absolute improvement of the cell efficiency. Therefore, we have shown that THz mapping is a powerful tool to optimize the cell process before a cell is made which reduces development effort and potentially production cost.
Acknowledgements

This work was supported by the Dutch Ministry of Economic Affairs, within the TKI framework, project IBChampion.

References